summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo_calc.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo_calc.v')
-rw-r--r--theories/Reals/Rtrigo_calc.v578
1 files changed, 303 insertions, 275 deletions
diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v
index f8c15667..baf0fa4b 100644
--- a/theories/Reals/Rtrigo_calc.v
+++ b/theories/Reals/Rtrigo_calc.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo_calc.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Rtrigo_calc.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -16,365 +16,388 @@ Require Import R_sqrt.
Open Local Scope R_scope.
Lemma tan_PI : tan PI = 0.
-unfold tan in |- *; rewrite sin_PI; rewrite cos_PI; unfold Rdiv in |- *;
- apply Rmult_0_l.
+Proof.
+ unfold tan in |- *; rewrite sin_PI; rewrite cos_PI; unfold Rdiv in |- *;
+ apply Rmult_0_l.
Qed.
Lemma sin_3PI2 : sin (3 * (PI / 2)) = -1.
-replace (3 * (PI / 2)) with (PI + PI / 2).
-rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; rewrite sin_PI2; ring.
-pattern PI at 1 in |- *; rewrite (double_var PI); ring.
+Proof.
+ replace (3 * (PI / 2)) with (PI + PI / 2).
+ rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; rewrite sin_PI2; ring.
+ pattern PI at 1 in |- *; rewrite (double_var PI); ring.
Qed.
Lemma tan_2PI : tan (2 * PI) = 0.
-unfold tan in |- *; rewrite sin_2PI; unfold Rdiv in |- *; apply Rmult_0_l.
+Proof.
+ unfold tan in |- *; rewrite sin_2PI; unfold Rdiv in |- *; apply Rmult_0_l.
Qed.
Lemma sin_cos_PI4 : sin (PI / 4) = cos (PI / 4).
Proof with trivial.
-rewrite cos_sin...
-replace (PI / 2 + PI / 4) with (- (PI / 4) + PI)...
-rewrite neg_sin; rewrite sin_neg; ring...
-cut (PI = PI / 2 + PI / 2); [ intro | apply double_var ]...
-pattern PI at 2 3 in |- *; rewrite H; pattern PI at 2 3 in |- *; rewrite H...
-assert (H0 : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; rewrite Rinv_mult_distr; try ring ]...
+ rewrite cos_sin...
+ replace (PI / 2 + PI / 4) with (- (PI / 4) + PI)...
+ rewrite neg_sin; rewrite sin_neg; ring...
+ cut (PI = PI / 2 + PI / 2); [ intro | apply double_var ]...
+ pattern PI at 2 3 in |- *; rewrite H; pattern PI at 2 3 in |- *; rewrite H...
+ assert (H0 : 2 <> 0);
+ [ discrR | unfold Rdiv in |- *; rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6).
Proof with trivial.
-replace (PI / 6) with (PI / 2 - PI / 3)...
-rewrite cos_shift...
-assert (H0 : 6 <> 0); [ discrR | idtac ]...
-assert (H1 : 3 <> 0); [ discrR | idtac ]...
-assert (H2 : 2 <> 0); [ discrR | idtac ]...
-apply Rmult_eq_reg_l with 6...
-rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
-unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
-rewrite <- Rinv_l_sym...
-rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
-pattern PI at 2 in |- *; rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
-ring...
+ replace (PI / 6) with (PI / 2 - PI / 3)...
+ rewrite cos_shift...
+ assert (H0 : 6 <> 0); [ discrR | idtac ]...
+ assert (H1 : 3 <> 0); [ discrR | idtac ]...
+ assert (H2 : 2 <> 0); [ discrR | idtac ]...
+ apply Rmult_eq_reg_l with 6...
+ rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
+ unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
+ rewrite <- Rinv_l_sym...
+ rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
+ pattern PI at 2 in |- *; rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
+ repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
+ ring...
Qed.
Lemma sin_PI6_cos_PI3 : cos (PI / 3) = sin (PI / 6).
Proof with trivial.
-replace (PI / 6) with (PI / 2 - PI / 3)...
-rewrite sin_shift...
-assert (H0 : 6 <> 0); [ discrR | idtac ]...
-assert (H1 : 3 <> 0); [ discrR | idtac ]...
-assert (H2 : 2 <> 0); [ discrR | idtac ]...
-apply Rmult_eq_reg_l with 6...
-rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
-unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
-rewrite <- Rinv_l_sym...
-rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
-pattern PI at 2 in |- *; rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
-ring...
+ replace (PI / 6) with (PI / 2 - PI / 3)...
+ rewrite sin_shift...
+ assert (H0 : 6 <> 0); [ discrR | idtac ]...
+ assert (H1 : 3 <> 0); [ discrR | idtac ]...
+ assert (H2 : 2 <> 0); [ discrR | idtac ]...
+ apply Rmult_eq_reg_l with 6...
+ rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
+ unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
+ rewrite <- Rinv_l_sym...
+ rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
+ pattern PI at 2 in |- *; rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
+ repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
+ ring...
Qed.
Lemma PI6_RGT_0 : 0 < PI / 6.
-unfold Rdiv in |- *; apply Rmult_lt_0_compat;
- [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
+Proof.
+ unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma PI6_RLT_PI2 : PI / 6 < PI / 2.
-unfold Rdiv in |- *; apply Rmult_lt_compat_l.
-apply PI_RGT_0.
-apply Rinv_lt_contravar; prove_sup.
+Proof.
+ unfold Rdiv in |- *; apply Rmult_lt_compat_l.
+ apply PI_RGT_0.
+ apply Rinv_lt_contravar; prove_sup.
Qed.
Lemma sin_PI6 : sin (PI / 6) = 1 / 2.
Proof with trivial.
-assert (H : 2 <> 0); [ discrR | idtac ]...
-apply Rmult_eq_reg_l with (2 * cos (PI / 6))...
-replace (2 * cos (PI / 6) * sin (PI / 6)) with
- (2 * sin (PI / 6) * cos (PI / 6))...
-rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)...
-rewrite sin_PI3_cos_PI6...
-unfold Rdiv in |- *; rewrite Rmult_1_l; rewrite Rmult_assoc;
- pattern 2 at 2 in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r...
-unfold Rdiv in |- *; rewrite Rinv_mult_distr...
-rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2);
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r...
-discrR...
-ring...
-apply prod_neq_R0...
-cut (0 < cos (PI / 6));
- [ intro H1; auto with real
- | apply cos_gt_0;
- [ apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)
- | apply PI6_RLT_PI2 ] ]...
+ assert (H : 2 <> 0); [ discrR | idtac ]...
+ apply Rmult_eq_reg_l with (2 * cos (PI / 6))...
+ replace (2 * cos (PI / 6) * sin (PI / 6)) with
+ (2 * sin (PI / 6) * cos (PI / 6))...
+ rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)...
+ rewrite sin_PI3_cos_PI6...
+ unfold Rdiv in |- *; rewrite Rmult_1_l; rewrite Rmult_assoc;
+ pattern 2 at 2 in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r...
+ unfold Rdiv in |- *; rewrite Rinv_mult_distr...
+ rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2);
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r...
+ discrR...
+ ring...
+ apply prod_neq_R0...
+ cut (0 < cos (PI / 6));
+ [ intro H1; auto with real
+ | apply cos_gt_0;
+ [ apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)
+ | apply PI6_RLT_PI2 ] ]...
Qed.
Lemma sqrt2_neq_0 : sqrt 2 <> 0.
-assert (Hyp : 0 < 2);
- [ prove_sup0
- | generalize (Rlt_le 0 2 Hyp); intro H1; red in |- *; intro H2;
- generalize (sqrt_eq_0 2 H1 H2); intro H; absurd (2 = 0);
- [ discrR | assumption ] ].
+Proof.
+ assert (Hyp : 0 < 2);
+ [ prove_sup0
+ | generalize (Rlt_le 0 2 Hyp); intro H1; red in |- *; intro H2;
+ generalize (sqrt_eq_0 2 H1 H2); intro H; absurd (2 = 0);
+ [ discrR | assumption ] ].
Qed.
Lemma R1_sqrt2_neq_0 : 1 / sqrt 2 <> 0.
-generalize (Rinv_neq_0_compat (sqrt 2) sqrt2_neq_0); intro H;
- generalize (prod_neq_R0 1 (/ sqrt 2) R1_neq_R0 H);
- intro H0; assumption.
+Proof.
+ generalize (Rinv_neq_0_compat (sqrt 2) sqrt2_neq_0); intro H;
+ generalize (prod_neq_R0 1 (/ sqrt 2) R1_neq_R0 H);
+ intro H0; assumption.
Qed.
Lemma sqrt3_2_neq_0 : 2 * sqrt 3 <> 0.
-apply prod_neq_R0;
- [ discrR
- | assert (Hyp : 0 < 3);
- [ prove_sup0
- | generalize (Rlt_le 0 3 Hyp); intro H1; red in |- *; intro H2;
- generalize (sqrt_eq_0 3 H1 H2); intro H; absurd (3 = 0);
- [ discrR | assumption ] ] ].
+Proof.
+ apply prod_neq_R0;
+ [ discrR
+ | assert (Hyp : 0 < 3);
+ [ prove_sup0
+ | generalize (Rlt_le 0 3 Hyp); intro H1; red in |- *; intro H2;
+ generalize (sqrt_eq_0 3 H1 H2); intro H; absurd (3 = 0);
+ [ discrR | assumption ] ] ].
Qed.
Lemma Rlt_sqrt2_0 : 0 < sqrt 2.
-assert (Hyp : 0 < 2);
- [ prove_sup0
- | generalize (sqrt_positivity 2 (Rlt_le 0 2 Hyp)); intro H1; elim H1;
- intro H2;
- [ assumption
- | absurd (0 = sqrt 2);
- [ apply (sym_not_eq (A:=R)); apply sqrt2_neq_0 | assumption ] ] ].
+Proof.
+ assert (Hyp : 0 < 2);
+ [ prove_sup0
+ | generalize (sqrt_positivity 2 (Rlt_le 0 2 Hyp)); intro H1; elim H1;
+ intro H2;
+ [ assumption
+ | absurd (0 = sqrt 2);
+ [ apply (sym_not_eq (A:=R)); apply sqrt2_neq_0 | assumption ] ] ].
Qed.
Lemma Rlt_sqrt3_0 : 0 < sqrt 3.
-cut (0%nat <> 1%nat);
- [ intro H0; assert (Hyp : 0 < 2);
- [ prove_sup0
- | generalize (Rlt_le 0 2 Hyp); intro H1; assert (Hyp2 : 0 < 3);
- [ prove_sup0
- | generalize (Rlt_le 0 3 Hyp2); intro H2;
- generalize (lt_INR_0 1 (neq_O_lt 1 H0));
- unfold INR in |- *; intro H3;
- generalize (Rplus_lt_compat_l 2 0 1 H3);
- rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3;
- [ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3;
- apply (Rlt_trans 0 (sqrt 2) (sqrt 3) Rlt_sqrt2_0 H3)
- | ring ] ] ]
- | discriminate ].
+Proof.
+ cut (0%nat <> 1%nat);
+ [ intro H0; assert (Hyp : 0 < 2);
+ [ prove_sup0
+ | generalize (Rlt_le 0 2 Hyp); intro H1; assert (Hyp2 : 0 < 3);
+ [ prove_sup0
+ | generalize (Rlt_le 0 3 Hyp2); intro H2;
+ generalize (lt_INR_0 1 (neq_O_lt 1 H0));
+ unfold INR in |- *; intro H3;
+ generalize (Rplus_lt_compat_l 2 0 1 H3);
+ rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3;
+ [ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3;
+ apply (Rlt_trans 0 (sqrt 2) (sqrt 3) Rlt_sqrt2_0 H3)
+ | ring ] ] ]
+ | discriminate ].
Qed.
Lemma PI4_RGT_0 : 0 < PI / 4.
-unfold Rdiv in |- *; apply Rmult_lt_0_compat;
- [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
+Proof.
+ unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma cos_PI4 : cos (PI / 4) = 1 / sqrt 2.
Proof with trivial.
-apply Rsqr_inj...
-apply cos_ge_0...
-left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 4) _PI2_RLT_0 PI4_RGT_0)...
-left; apply PI4_RLT_PI2...
-left; apply (Rmult_lt_0_compat 1 (/ sqrt 2))...
-prove_sup...
-apply Rinv_0_lt_compat; apply Rlt_sqrt2_0...
-rewrite Rsqr_div...
-rewrite Rsqr_1; rewrite Rsqr_sqrt...
-assert (H : 2 <> 0); [ discrR | idtac ]...
-unfold Rsqr in |- *; pattern (cos (PI / 4)) at 1 in |- *;
- rewrite <- sin_cos_PI4;
- replace (sin (PI / 4) * cos (PI / 4)) with
- (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))...
-rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)...
-rewrite sin_PI2...
-apply Rmult_1_r...
-unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr...
-repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r...
-unfold Rdiv in |- *; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc...
-rewrite <- Rinv_l_sym...
-rewrite Rmult_1_l...
-left; prove_sup...
-apply sqrt2_neq_0...
+ apply Rsqr_inj...
+ apply cos_ge_0...
+ left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 4) _PI2_RLT_0 PI4_RGT_0)...
+ left; apply PI4_RLT_PI2...
+ left; apply (Rmult_lt_0_compat 1 (/ sqrt 2))...
+ prove_sup...
+ apply Rinv_0_lt_compat; apply Rlt_sqrt2_0...
+ rewrite Rsqr_div...
+ rewrite Rsqr_1; rewrite Rsqr_sqrt...
+ assert (H : 2 <> 0); [ discrR | idtac ]...
+ unfold Rsqr in |- *; pattern (cos (PI / 4)) at 1 in |- *;
+ rewrite <- sin_cos_PI4;
+ replace (sin (PI / 4) * cos (PI / 4)) with
+ (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))...
+ rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)...
+ rewrite sin_PI2...
+ apply Rmult_1_r...
+ unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr...
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r...
+ unfold Rdiv in |- *; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc...
+ rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_l...
+ left; prove_sup...
+ apply sqrt2_neq_0...
Qed.
Lemma sin_PI4 : sin (PI / 4) = 1 / sqrt 2.
-rewrite sin_cos_PI4; apply cos_PI4.
+Proof.
+ rewrite sin_cos_PI4; apply cos_PI4.
Qed.
Lemma tan_PI4 : tan (PI / 4) = 1.
-unfold tan in |- *; rewrite sin_cos_PI4.
-unfold Rdiv in |- *; apply Rinv_r.
-change (cos (PI / 4) <> 0) in |- *; rewrite cos_PI4; apply R1_sqrt2_neq_0.
+Proof.
+ unfold tan in |- *; rewrite sin_cos_PI4.
+ unfold Rdiv in |- *; apply Rinv_r.
+ change (cos (PI / 4) <> 0) in |- *; rewrite cos_PI4; apply R1_sqrt2_neq_0.
Qed.
Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
-replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
-rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4...
-unfold Rdiv in |- *; rewrite Ropp_mult_distr_l_reverse...
-unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
- rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
- repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
- [ ring | discrR | discrR ]...
+ replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
+ rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4...
+ unfold Rdiv in |- *; rewrite Ropp_mult_distr_l_reverse...
+ unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
+ rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
+ [ ring | discrR | discrR ]...
Qed.
Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2.
Proof with trivial.
-replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
-rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4...
-unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
- rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
- repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
- [ ring | discrR | discrR ]...
+ replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
+ rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4...
+ unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
+ rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
+ [ ring | discrR | discrR ]...
Qed.
Lemma cos_PI6 : cos (PI / 6) = sqrt 3 / 2.
Proof with trivial.
-apply Rsqr_inj...
-apply cos_ge_0...
-left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)...
-left; apply PI6_RLT_PI2...
-left; apply (Rmult_lt_0_compat (sqrt 3) (/ 2))...
-apply Rlt_sqrt3_0...
-apply Rinv_0_lt_compat; prove_sup0...
-assert (H : 2 <> 0); [ discrR | idtac ]...
-assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
-rewrite Rsqr_div...
-rewrite cos2; unfold Rsqr in |- *; rewrite sin_PI6; rewrite sqrt_def...
-unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
-rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3);
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
-rewrite Rmult_1_l; rewrite Rmult_1_r...
-rewrite <- (Rmult_comm (/ 2)); repeat rewrite <- Rmult_assoc...
-rewrite <- Rinv_l_sym...
-rewrite Rmult_1_l; rewrite <- Rinv_r_sym...
-ring...
-left; prove_sup0...
+ apply Rsqr_inj...
+ apply cos_ge_0...
+ left; apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)...
+ left; apply PI6_RLT_PI2...
+ left; apply (Rmult_lt_0_compat (sqrt 3) (/ 2))...
+ apply Rlt_sqrt3_0...
+ apply Rinv_0_lt_compat; prove_sup0...
+ assert (H : 2 <> 0); [ discrR | idtac ]...
+ assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
+ rewrite Rsqr_div...
+ rewrite cos2; unfold Rsqr in |- *; rewrite sin_PI6; rewrite sqrt_def...
+ unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
+ rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3);
+ repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
+ rewrite Rmult_1_l; rewrite Rmult_1_r...
+ rewrite <- (Rmult_comm (/ 2)); repeat rewrite <- Rmult_assoc...
+ rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_l; rewrite <- Rinv_r_sym...
+ ring...
+ left; prove_sup0...
Qed.
Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3.
-unfold tan in |- *; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv in |- *;
- repeat rewrite Rmult_1_l; rewrite Rinv_mult_distr.
-rewrite Rinv_involutive.
-rewrite (Rmult_comm (/ 2)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
-apply Rmult_1_r.
-discrR.
-discrR.
-red in |- *; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1;
- elim (Rlt_irrefl 0 H1).
-apply Rinv_neq_0_compat; discrR.
+Proof.
+ unfold tan in |- *; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv in |- *;
+ repeat rewrite Rmult_1_l; rewrite Rinv_mult_distr.
+ rewrite Rinv_involutive.
+ rewrite (Rmult_comm (/ 2)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
+ apply Rmult_1_r.
+ discrR.
+ discrR.
+ red in |- *; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1;
+ elim (Rlt_irrefl 0 H1).
+ apply Rinv_neq_0_compat; discrR.
Qed.
Lemma sin_PI3 : sin (PI / 3) = sqrt 3 / 2.
-rewrite sin_PI3_cos_PI6; apply cos_PI6.
+Proof.
+ rewrite sin_PI3_cos_PI6; apply cos_PI6.
Qed.
Lemma cos_PI3 : cos (PI / 3) = 1 / 2.
-rewrite sin_PI6_cos_PI3; apply sin_PI6.
+Proof.
+ rewrite sin_PI6_cos_PI3; apply sin_PI6.
Qed.
Lemma tan_PI3 : tan (PI / 3) = sqrt 3.
-unfold tan in |- *; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv in |- *;
- rewrite Rmult_1_l; rewrite Rinv_involutive.
-rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
-apply Rmult_1_r.
-discrR.
-discrR.
+Proof.
+ unfold tan in |- *; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv in |- *;
+ rewrite Rmult_1_l; rewrite Rinv_involutive.
+ rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+ apply Rmult_1_r.
+ discrR.
+ discrR.
Qed.
Lemma sin_2PI3 : sin (2 * (PI / 3)) = sqrt 3 / 2.
-rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3;
- unfold Rdiv in |- *; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2));
- repeat rewrite <- Rmult_assoc; rewrite double_var;
- reflexivity.
+Proof.
+ rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3;
+ unfold Rdiv in |- *; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2));
+ repeat rewrite <- Rmult_assoc; rewrite double_var;
+ reflexivity.
Qed.
Lemma cos_2PI3 : cos (2 * (PI / 3)) = -1 / 2.
Proof with trivial.
-assert (H : 2 <> 0); [ discrR | idtac ]...
-assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
-rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3;
- unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
-rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm 2)...
-repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r; rewrite <- Rinv_r_sym...
-pattern 2 at 4 in |- *; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r...
-rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r; rewrite (Rmult_comm 2); rewrite (Rmult_comm (/ 2))...
-repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
-rewrite Rmult_1_r; rewrite sqrt_def...
-ring...
-left; prove_sup...
+ assert (H : 2 <> 0); [ discrR | idtac ]...
+ assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
+ rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3;
+ unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
+ rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc;
+ rewrite (Rmult_comm 2)...
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r; rewrite <- Rinv_r_sym...
+ pattern 2 at 4 in |- *; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r...
+ rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r; rewrite (Rmult_comm 2); rewrite (Rmult_comm (/ 2))...
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
+ rewrite Rmult_1_r; rewrite sqrt_def...
+ ring...
+ left; prove_sup...
Qed.
Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3.
Proof with trivial.
-assert (H : 2 <> 0); [ discrR | idtac ]...
-unfold tan in |- *; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv in |- *;
- rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l;
- rewrite <- Ropp_inv_permute...
-rewrite Rinv_involutive...
-rewrite Rmult_assoc; rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_l_sym...
-ring...
-apply Rinv_neq_0_compat...
+ assert (H : 2 <> 0); [ discrR | idtac ]...
+ unfold tan in |- *; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv in |- *;
+ rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l;
+ rewrite <- Ropp_inv_permute...
+ rewrite Rinv_involutive...
+ rewrite Rmult_assoc; rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_l_sym...
+ ring...
+ apply Rinv_neq_0_compat...
Qed.
Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
-replace (5 * (PI / 4)) with (PI / 4 + PI)...
-rewrite neg_cos; rewrite cos_PI4; unfold Rdiv in |- *;
- rewrite Ropp_mult_distr_l_reverse...
-pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
- rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
+ replace (5 * (PI / 4)) with (PI / 4 + PI)...
+ rewrite neg_cos; rewrite cos_PI4; unfold Rdiv in |- *;
+ rewrite Ropp_mult_distr_l_reverse...
+ pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
+ rewrite double_var; assert (H : 2 <> 0);
+ [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
-replace (5 * (PI / 4)) with (PI / 4 + PI)...
-rewrite neg_sin; rewrite sin_PI4; unfold Rdiv in |- *;
- rewrite Ropp_mult_distr_l_reverse...
-pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
- rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
+ replace (5 * (PI / 4)) with (PI / 4 + PI)...
+ rewrite neg_sin; rewrite sin_PI4; unfold Rdiv in |- *;
+ rewrite Ropp_mult_distr_l_reverse...
+ pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
+ rewrite double_var; assert (H : 2 <> 0);
+ [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)).
-rewrite cos_5PI4; rewrite sin_5PI4; reflexivity.
+Proof.
+ rewrite cos_5PI4; rewrite sin_5PI4; reflexivity.
Qed.
Lemma Rgt_3PI2_0 : 0 < 3 * (PI / 2).
-apply Rmult_lt_0_compat;
- [ prove_sup0
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
- [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ] ].
+Proof.
+ apply Rmult_lt_0_compat;
+ [ prove_sup0
+ | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ] ].
Qed.
Lemma Rgt_2PI_0 : 0 < 2 * PI.
-apply Rmult_lt_0_compat; [ prove_sup0 | apply PI_RGT_0 ].
+Proof.
+ apply Rmult_lt_0_compat; [ prove_sup0 | apply PI_RGT_0 ].
Qed.
Lemma Rlt_PI_3PI2 : PI < 3 * (PI / 2).
-generalize PI2_RGT_0; intro H1;
- generalize (Rplus_lt_compat_l PI 0 (PI / 2) H1);
- replace (PI + PI / 2) with (3 * (PI / 2)).
-rewrite Rplus_0_r; intro H2; assumption.
-pattern PI at 2 in |- *; rewrite double_var; ring.
+Proof.
+ generalize PI2_RGT_0; intro H1;
+ generalize (Rplus_lt_compat_l PI 0 (PI / 2) H1);
+ replace (PI + PI / 2) with (3 * (PI / 2)).
+ rewrite Rplus_0_r; intro H2; assumption.
+ pattern PI at 2 in |- *; rewrite double_var; ring.
Qed.
-
+
Lemma Rlt_3PI2_2PI : 3 * (PI / 2) < 2 * PI.
-generalize PI2_RGT_0; intro H1;
- generalize (Rplus_lt_compat_l (3 * (PI / 2)) 0 (PI / 2) H1);
- replace (3 * (PI / 2) + PI / 2) with (2 * PI).
-rewrite Rplus_0_r; intro H2; assumption.
-rewrite double; pattern PI at 1 2 in |- *; rewrite double_var; ring.
+Proof.
+ generalize PI2_RGT_0; intro H1;
+ generalize (Rplus_lt_compat_l (3 * (PI / 2)) 0 (PI / 2) H1);
+ replace (3 * (PI / 2) + PI / 2) with (2 * PI).
+ rewrite Rplus_0_r; intro H2; assumption.
+ rewrite double; pattern PI at 1 2 in |- *; rewrite double_var; ring.
Qed.
(***************************************************************)
-(* Radian -> Degree | Degree -> Radian *)
+(** Radian -> Degree | Degree -> Radian *)
(***************************************************************)
Definition plat : R := 180.
@@ -382,27 +405,30 @@ Definition toRad (x:R) : R := x * PI * / plat.
Definition toDeg (x:R) : R := x * plat * / PI.
Lemma rad_deg : forall x:R, toRad (toDeg x) = x.
-intro; unfold toRad, toDeg in |- *;
- replace (x * plat * / PI * PI * / plat) with
- (x * (plat * / plat) * (PI * / PI)); [ idtac | ring ].
-repeat rewrite <- Rinv_r_sym.
-ring.
-apply PI_neq0.
-unfold plat in |- *; discrR.
+Proof.
+ intro; unfold toRad, toDeg in |- *;
+ replace (x * plat * / PI * PI * / plat) with
+ (x * (plat * / plat) * (PI * / PI)); [ idtac | ring ].
+ repeat rewrite <- Rinv_r_sym.
+ ring.
+ apply PI_neq0.
+ unfold plat in |- *; discrR.
Qed.
Lemma toRad_inj : forall x y:R, toRad x = toRad y -> x = y.
-intros; unfold toRad in H; apply Rmult_eq_reg_l with PI.
-rewrite <- (Rmult_comm x); rewrite <- (Rmult_comm y).
-apply Rmult_eq_reg_l with (/ plat).
-rewrite <- (Rmult_comm (x * PI)); rewrite <- (Rmult_comm (y * PI));
- assumption.
-apply Rinv_neq_0_compat; unfold plat in |- *; discrR.
-apply PI_neq0.
+Proof.
+ intros; unfold toRad in H; apply Rmult_eq_reg_l with PI.
+ rewrite <- (Rmult_comm x); rewrite <- (Rmult_comm y).
+ apply Rmult_eq_reg_l with (/ plat).
+ rewrite <- (Rmult_comm (x * PI)); rewrite <- (Rmult_comm (y * PI));
+ assumption.
+ apply Rinv_neq_0_compat; unfold plat in |- *; discrR.
+ apply PI_neq0.
Qed.
Lemma deg_rad : forall x:R, toDeg (toRad x) = x.
-intro x; apply toRad_inj; rewrite (rad_deg (toRad x)); reflexivity.
+Proof.
+ intro x; apply toRad_inj; rewrite (rad_deg (toRad x)); reflexivity.
Qed.
Definition sind (x:R) : R := sin (toRad x).
@@ -410,25 +436,27 @@ Definition cosd (x:R) : R := cos (toRad x).
Definition tand (x:R) : R := tan (toRad x).
Lemma Rsqr_sin_cos_d_one : forall x:R, Rsqr (sind x) + Rsqr (cosd x) = 1.
-intro x; unfold sind in |- *; unfold cosd in |- *; apply sin2_cos2.
+Proof.
+ intro x; unfold sind in |- *; unfold cosd in |- *; apply sin2_cos2.
Qed.
(***************************************************)
-(* Other properties *)
+(** Other properties *)
(***************************************************)
Lemma sin_lb_ge_0 : forall a:R, 0 <= a -> a <= PI / 2 -> 0 <= sin_lb a.
-intros; case (Rtotal_order 0 a); intro.
-left; apply sin_lb_gt_0; assumption.
-elim H1; intro.
-rewrite <- H2; unfold sin_lb in |- *; unfold sin_approx in |- *;
- unfold sum_f_R0 in |- *; unfold sin_term in |- *;
- repeat rewrite pow_ne_zero.
-unfold Rdiv in |- *; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r;
- repeat rewrite Rplus_0_r; right; reflexivity.
-discriminate.
-discriminate.
-discriminate.
-discriminate.
-elim (Rlt_irrefl 0 (Rle_lt_trans 0 a 0 H H2)).
-Qed. \ No newline at end of file
+Proof.
+ intros; case (Rtotal_order 0 a); intro.
+ left; apply sin_lb_gt_0; assumption.
+ elim H1; intro.
+ rewrite <- H2; unfold sin_lb in |- *; unfold sin_approx in |- *;
+ unfold sum_f_R0 in |- *; unfold sin_term in |- *;
+ repeat rewrite pow_ne_zero.
+ unfold Rdiv in |- *; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r;
+ repeat rewrite Rplus_0_r; right; reflexivity.
+ discriminate.
+ discriminate.
+ discriminate.
+ discriminate.
+ elim (Rlt_irrefl 0 (Rle_lt_trans 0 a 0 H H2)).
+Qed.