summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtopology.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtopology.v')
-rw-r--r--theories/Reals/Rtopology.v202
1 files changed, 101 insertions, 101 deletions
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index 9501bc1e..5b55896b 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtopology.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -33,8 +33,8 @@ Definition interior (D:R -> Prop) (x:R) : Prop := neighbourhood D x.
Lemma interior_P1 : forall D:R -> Prop, included (interior D) D.
Proof.
intros; unfold included in |- *; unfold interior in |- *; intros;
- unfold neighbourhood in H; elim H; intros; unfold included in H0;
- apply H0; unfold disc in |- *; unfold Rminus in |- *;
+ unfold neighbourhood in H; elim H; intros; unfold included in H0;
+ apply H0; unfold disc in |- *; unfold Rminus in |- *;
rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0).
Qed.
@@ -98,7 +98,7 @@ Lemma complementary_P1 :
~ (exists y : R, intersection_domain D (complementary D) y).
Proof.
intro; red in |- *; intro; elim H; intros;
- unfold intersection_domain, complementary in H0; elim H0;
+ unfold intersection_domain, complementary in H0; elim H0;
intros; elim H2; assumption.
Qed.
@@ -110,23 +110,23 @@ Proof.
elim H1; intro.
assumption.
assert (H3 := H _ H2); assert (H4 := H0 _ H3); elim H4; intros;
- unfold intersection_domain in H5; elim H5; intros;
+ unfold intersection_domain in H5; elim H5; intros;
elim H6; assumption.
Qed.
Lemma adherence_P3 : forall D:R -> Prop, closed_set (adherence D).
Proof.
intro; unfold closed_set, adherence in |- *;
- unfold open_set, complementary, point_adherent in |- *;
+ unfold open_set, complementary, point_adherent in |- *;
intros;
set
(P :=
fun V:R -> Prop =>
neighbourhood V x -> exists y : R, intersection_domain V D y);
- assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1;
+ assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1;
unfold P in H1; assert (H2 := imply_to_and _ _ H1);
unfold neighbourhood in |- *; elim H2; intros; unfold neighbourhood in H3;
- elim H3; intros; exists x0; unfold included in |- *;
+ elim H3; intros; exists x0; unfold included in |- *;
intros; red in |- *; intro.
assert (H8 := H7 V0);
cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)).
@@ -170,7 +170,7 @@ Proof.
apply adherence_P2; assumption.
unfold eq_Dom in |- *; unfold included in |- *; intros;
assert (H0 := adherence_P3 D); unfold closed_set in H0;
- unfold closed_set in |- *; unfold open_set in |- *;
+ unfold closed_set in |- *; unfold open_set in |- *;
unfold open_set in H0; intros; assert (H2 : complementary (adherence D) x).
unfold complementary in |- *; unfold complementary in H1; red in |- *; intro;
elim H; clear H; intros _ H; elim H1; apply (H _ H2).
@@ -178,7 +178,7 @@ Proof.
unfold neighbourhood in H3; elim H3; intros; exists x0;
unfold included in |- *; unfold included in H4; intros;
assert (H6 := H4 _ H5); unfold complementary in H6;
- unfold complementary in |- *; red in |- *; intro;
+ unfold complementary in |- *; red in |- *; intro;
elim H; clear H; intros H _; elim H6; apply (H _ H7).
Qed.
@@ -187,7 +187,7 @@ Lemma neighbourhood_P1 :
included D1 D2 -> neighbourhood D1 x -> neighbourhood D2 x.
Proof.
unfold included, neighbourhood in |- *; intros; elim H0; intros; exists x0;
- intros; unfold included in |- *; unfold included in H1;
+ intros; unfold included in |- *; unfold included in H1;
intros; apply (H _ (H1 _ H2)).
Qed.
@@ -211,8 +211,8 @@ Proof.
unfold open_set in |- *; intros; unfold intersection_domain in H1; elim H1;
intros.
assert (H4 := H _ H2); assert (H5 := H0 _ H3);
- unfold intersection_domain in |- *; unfold neighbourhood in H4, H5;
- elim H4; clear H; intros del1 H; elim H5; clear H0;
+ unfold intersection_domain in |- *; unfold neighbourhood in H4, H5;
+ elim H4; clear H; intros del1 H; elim H5; clear H0;
intros del2 H0; cut (0 < Rmin del1 del2).
intro; set (del := mkposreal _ H6).
exists del; unfold included in |- *; intros; unfold included in H, H0;
@@ -292,7 +292,7 @@ Proof.
apply (sym_not_eq (A:=R)); apply H7.
unfold disc in H6; apply H6.
intros; unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
intros.
assert (H1 := H (disc (f x) (mkposreal eps H0))).
cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)).
@@ -317,8 +317,8 @@ Proof.
intros; unfold open_set in H0; unfold open_set in |- *; intros;
assert (H2 := continuity_P1 f x); elim H2; intros H3 _;
assert (H4 := H3 (H x)); unfold neighbourhood, image_rec in |- *;
- unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1));
- elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7;
+ unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1));
+ elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7;
elim H7; intros del H9; exists del; unfold included in H9;
unfold included in |- *; intros; apply (H8 _ (H9 _ H10)).
Qed.
@@ -333,7 +333,7 @@ Proof.
intros; apply continuity_P2; assumption.
intros; unfold continuity in |- *; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
intros; cut (open_set (disc (f x) (mkposreal _ H0))).
intro; assert (H2 := H _ H1).
unfold open_set, image_rec in H2; cut (disc (f x) (mkposreal _ H0) (f x)).
@@ -466,7 +466,7 @@ Proof.
cut (covering_open_set X f0).
intro; assert (H3 := H1 H2); elim H3; intros D' H4;
unfold covering_finite in H4; elim H4; intros; unfold family_finite in H6;
- unfold domain_finite in H6; elim H6; intros l H7;
+ unfold domain_finite in H6; elim H6; intros l H7;
unfold bounded in |- *; set (r := MaxRlist l).
exists (- r); exists r; intros.
unfold covering in H5; assert (H9 := H5 _ H8); elim H9; intros;
@@ -538,9 +538,9 @@ Proof.
intro; assert (H10 := H0 (disc x (mkposreal _ H9)));
cut (neighbourhood (disc x (mkposreal alp H9)) x).
intro; assert (H12 := H10 H11); elim H12; clear H12; intros y H12;
- unfold intersection_domain in H12; elim H12; clear H12;
- intros; assert (H14 := H7 _ H13); elim H14; clear H14;
- intros y0 H14; elim H14; clear H14; intros; unfold g in H14;
+ unfold intersection_domain in H12; elim H12; clear H12;
+ intros; assert (H14 := H7 _ H13); elim H14; clear H14;
+ intros y0 H14; elim H14; clear H14; intros; unfold g in H14;
elim H14; clear H14; intros; unfold disc in H12; simpl in H12;
cut (alp <= Rabs (y0 - x) / 2).
intro; assert (H18 := Rlt_le_trans _ _ _ H12 H17);
@@ -557,10 +557,10 @@ Proof.
unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H9.
unfold alp in |- *; apply MinRlist_P2; intros;
- assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10;
- intros z H10; elim H10; clear H10; intros; rewrite H11;
+ assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10;
+ intros z H10; elim H10; clear H10; intros; rewrite H11;
apply H2; elim (H8 z); clear H8; intros; assert (H13 := H12 H10);
- unfold intersection_domain, D in H13; elim H13; clear H13;
+ unfold intersection_domain, D in H13; elim H13; clear H13;
intros; assumption.
unfold covering_open_set in |- *; split.
unfold covering in |- *; intros; exists x0; simpl in |- *; unfold g in |- *;
@@ -577,7 +577,7 @@ Proof.
rewrite <- (Rabs_Ropp (x0 - x1)); rewrite Ropp_minus_distr; apply H6.
apply H5.
unfold included, disc in |- *; simpl in |- *; intros; elim H6; intros;
- rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr;
+ rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr;
apply H7.
apply open_set_P6 with (fun z:R => False).
apply open_set_P4.
@@ -639,8 +639,8 @@ Proof.
intro; assert (H3 := completeness A H1 H2); elim H3; clear H3; intros m H3;
unfold is_lub in H3; cut (a <= m <= b).
intro; unfold covering_open_set in H; elim H; clear H; intros;
- unfold covering in H; assert (H6 := H m H4); elim H6;
- clear H6; intros y0 H6; unfold family_open_set in H5;
+ unfold covering in H; assert (H6 := H m H4); elim H6;
+ clear H6; intros y0 H6; unfold family_open_set in H5;
assert (H7 := H5 y0); unfold open_set in H7; assert (H8 := H7 m H6);
unfold neighbourhood in H8; elim H8; clear H8; intros eps H8;
cut (exists x : R, A x /\ m - eps < x <= m).
@@ -651,11 +651,11 @@ Proof.
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
unfold covering_finite in |- *; split.
unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold covering in H12; case (Rle_dec x0 x);
+ intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
- simpl in H16; simpl in |- *; unfold Db in |- *; elim H16;
+ simpl in H16; simpl in |- *; unfold Db in |- *; elim H16;
clear H16; intros; split; [ apply H16 | left; apply H17 ].
split.
elim H14; intros; assumption.
@@ -672,9 +672,9 @@ Proof.
apply Rge_minus; apply Rle_ge; elim H14; intros _ H15; apply H15.
unfold Db in |- *; right; reflexivity.
unfold family_finite in |- *; unfold domain_finite in |- *;
- unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold family_finite in H13; unfold domain_finite in H13;
- elim H13; clear H13; intros l H13; exists (cons y0 l);
+ unfold covering_finite in H12; elim H12; clear H12;
+ intros; unfold family_finite in H13; unfold domain_finite in H13;
+ elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
@@ -723,7 +723,7 @@ Proof.
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
unfold covering_finite in |- *; split.
unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold covering in H12; case (Rle_dec x0 x);
+ intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
@@ -758,15 +758,15 @@ Proof.
ring.
unfold Db in |- *; right; reflexivity.
unfold family_finite in |- *; unfold domain_finite in |- *;
- unfold covering_finite in H12; elim H12; clear H12;
- intros; unfold family_finite in H13; unfold domain_finite in H13;
- elim H13; clear H13; intros l H13; exists (cons y0 l);
+ unfold covering_finite in H12; elim H12; clear H12;
+ intros; unfold family_finite in H13; unfold domain_finite in H13;
+ elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
simpl in |- *; left; apply H16.
simpl in |- *; right; apply H13; simpl in |- *;
- unfold intersection_domain in |- *; unfold Db in H14;
+ unfold intersection_domain in |- *; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
@@ -793,7 +793,7 @@ Proof.
set (P := fun n:R => A n /\ m - eps < n <= m);
assert (H12 := not_ex_all_not _ P H9); unfold P in H12;
unfold is_upper_bound in |- *; intros;
- assert (H14 := not_and_or _ _ (H12 x)); elim H14;
+ assert (H14 := not_and_or _ _ (H12 x)); elim H14;
intro.
elim H15; apply H13.
elim (not_and_or _ _ H15); intro.
@@ -806,11 +806,11 @@ Proof.
split.
apply (H3 _ H0).
apply (H4 b); unfold is_upper_bound in |- *; intros; unfold A in H5; elim H5;
- clear H5; intros H5 _; elim H5; clear H5; intros _ H5;
+ clear H5; intros H5 _; elim H5; clear H5; intros _ H5;
apply H5.
exists a; apply H0.
unfold bound in |- *; exists b; unfold is_upper_bound in |- *; intros;
- unfold A in H1; elim H1; clear H1; intros H1 _; elim H1;
+ unfold A in H1; elim H1; clear H1; intros H1 _; elim H1;
clear H1; intros _ H1; apply H1.
unfold A in |- *; split.
split; [ right; reflexivity | apply r ].
@@ -862,15 +862,15 @@ Proof.
elim H10; intros H11 _; unfold complementary in H11; elim H11; apply H7.
apply H9.
unfold family_finite in |- *; unfold domain_finite in |- *;
- unfold family_finite in H6; unfold domain_finite in H6;
+ unfold family_finite in H6; unfold domain_finite in H6;
elim H6; clear H6; intros l H6; exists l; intro; assert (H7 := H6 x);
elim H7; clear H7; intros.
split.
intro; apply H7; simpl in |- *; unfold intersection_domain in |- *;
- simpl in H9; unfold intersection_domain in H9; unfold D' in |- *;
+ simpl in H9; unfold intersection_domain in H9; unfold D' in |- *;
apply H9.
intro; assert (H10 := H8 H9); simpl in H10; unfold intersection_domain in H10;
- simpl in |- *; unfold intersection_domain in |- *;
+ simpl in |- *; unfold intersection_domain in |- *;
unfold D' in H10; apply H10.
unfold covering_open_set in |- *; unfold covering_open_set in H2; elim H2;
clear H2; intros.
@@ -964,14 +964,14 @@ Proof.
simpl in H11; elim H11; intros z H12; exists z; unfold g in H12;
unfold image_rec in H12; rewrite H9; apply H12.
unfold family_finite in H6; unfold domain_finite in H6;
- unfold family_finite in |- *; unfold domain_finite in |- *;
- elim H6; intros l H7; exists l; intro; elim (H7 x);
+ unfold family_finite in |- *; unfold domain_finite in |- *;
+ elim H6; intros l H7; exists l; intro; elim (H7 x);
intros; split; intro.
apply H8; simpl in H10; simpl in |- *; apply H10.
apply (H9 H10).
unfold covering_open_set in |- *; split.
unfold covering in |- *; intros; simpl in |- *; unfold covering in H1;
- unfold image_dir in H1; unfold g in |- *; unfold image_rec in |- *;
+ unfold image_dir in H1; unfold g in |- *; unfold image_rec in |- *;
apply H1.
exists x; split; [ reflexivity | apply H4 ].
unfold family_open_set in |- *; unfold family_open_set in H2; intro;
@@ -1014,8 +1014,8 @@ Proof.
exists h; split.
unfold continuity in |- *; intro; case (Rtotal_order x a); intro.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists (a - x);
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros; exists (a - x);
split.
change (0 < a - x) in |- *; apply Rlt_Rminus; assumption.
intros; elim H5; clear H5; intros _ H5; unfold h in |- *.
@@ -1034,8 +1034,8 @@ Proof.
unfold limit1_in in H6; unfold limit_in in H6; simpl in H6;
unfold R_dist in H6; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
- intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a));
+ unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a));
split.
unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro.
elim H8; intros; assumption.
@@ -1067,8 +1067,8 @@ Proof.
unfold limit1_in in H7; unfold limit_in in H7; simpl in H7;
unfold R_dist in H7; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
- intros; elim (H7 _ H8); intros; elim H9; clear H9;
+ unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros; elim (H7 _ H8); intros; elim H9; clear H9;
intros.
assert (H11 : 0 < x - a).
apply Rlt_Rminus; assumption.
@@ -1119,8 +1119,8 @@ Proof.
unfold limit1_in in H8; unfold limit_in in H8; simpl in H8;
unfold R_dist in H8; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
- intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a));
+ unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a));
split.
unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro.
elim H10; intros; assumption.
@@ -1152,8 +1152,8 @@ Proof.
assumption.
apply Rmin_r.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists (x - b);
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros; exists (x - b);
split.
change (0 < x - b) in |- *; apply Rlt_Rminus; assumption.
intros; elim H8; clear H8; intros.
@@ -1210,8 +1210,8 @@ Proof.
intro; unfold image_dir in H8; elim H8; clear H8; intros Mxx H8; elim H8;
clear H8; intros; exists Mxx; split.
intros; rewrite <- (Heq c H10); rewrite <- (Heq Mxx H9); intros;
- rewrite <- H8; unfold is_lub in H7; elim H7; clear H7;
- intros H7 _; unfold is_upper_bound in H7; apply H7;
+ rewrite <- H8; unfold is_lub in H7; elim H7; clear H7;
+ intros H7 _; unfold is_upper_bound in H7; apply H7;
unfold image_dir in |- *; exists c; split; [ reflexivity | apply H10 ].
apply H9.
elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro.
@@ -1298,7 +1298,7 @@ Proof.
intro; assert (H2 := continuity_ab_maj (- f0)%F a b H H1); elim H2;
intros x0 H3; exists x0; intros; split.
intros; rewrite <- (Ropp_involutive (f0 x0));
- rewrite <- (Ropp_involutive (f0 c)); apply Ropp_le_contravar;
+ rewrite <- (Ropp_involutive (f0 c)); apply Ropp_le_contravar;
elim H3; intros; unfold opp_fct in H5; apply H5; apply H4.
elim H3; intros; assumption.
intros.
@@ -1348,10 +1348,10 @@ Lemma ValAdh_un_prop :
Proof.
intros; split; intro.
unfold ValAdh in H; unfold ValAdh_un in |- *;
- unfold intersection_family in |- *; simpl in |- *;
+ unfold intersection_family in |- *; simpl in |- *;
intros; elim H0; intros N H1; unfold adherence in |- *;
- unfold point_adherent in |- *; intros; elim (H V N H2);
- intros; exists (un x0); unfold intersection_domain in |- *;
+ unfold point_adherent in |- *; intros; elim (H V N H2);
+ intros; exists (un x0); unfold intersection_domain in |- *;
elim H3; clear H3; intros; split.
assumption.
split.
@@ -1367,9 +1367,9 @@ Proof.
(exists n : nat, INR N = INR n)) x).
apply H; exists N; reflexivity.
unfold adherence in H1; unfold point_adherent in H1; assert (H2 := H1 _ H0);
- elim H2; intros; unfold intersection_domain in H3;
- elim H3; clear H3; intros; elim H4; clear H4; intros;
- elim H4; clear H4; intros; elim H4; clear H4; intros;
+ elim H2; intros; unfold intersection_domain in H3;
+ elim H3; clear H3; intros; elim H4; clear H4; intros;
+ elim H4; clear H4; intros; elim H4; clear H4; intros;
exists x1; split.
apply (INR_le _ _ H6).
rewrite H4 in H3; apply H3.
@@ -1379,7 +1379,7 @@ Lemma adherence_P4 :
forall F G:R -> Prop, included F G -> included (adherence F) (adherence G).
Proof.
unfold adherence, included in |- *; unfold point_adherent in |- *; intros;
- elim (H0 _ H1); unfold intersection_domain in |- *;
+ elim (H0 _ H1); unfold intersection_domain in |- *;
intros; elim H2; clear H2; intros; exists x0; split;
[ assumption | apply (H _ H3) ].
Qed.
@@ -1392,7 +1392,7 @@ Definition intersection_vide_in (D:R -> Prop) (f:family) : Prop :=
(ind f x -> included (f x) D) /\
~ (exists y : R, intersection_family f y).
-Definition intersection_vide_finite_in (D:R -> Prop)
+Definition intersection_vide_finite_in (D:R -> Prop)
(f:family) : Prop := intersection_vide_in D f /\ family_finite f.
(**********)
@@ -1417,9 +1417,9 @@ Proof.
elim (H1 x); intros; unfold intersection_family in H5;
assert
(H6 := not_ex_all_not _ (fun y:R => forall y0:R, ind g y0 -> g y0 y) H5 x);
- assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6);
- elim H7; intros; exists x0; elim (imply_to_and _ _ H8);
- intros; unfold f0 in |- *; simpl in |- *; unfold f' in |- *;
+ assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6);
+ elim H7; intros; exists x0; elim (imply_to_and _ _ H8);
+ intros; unfold f0 in |- *; simpl in |- *; unfold f' in |- *;
split; [ apply H10 | apply H9 ].
unfold family_open_set in |- *; intro; elim (classic (D' x)); intro.
apply open_set_P6 with (complementary (g x)).
@@ -1448,7 +1448,7 @@ Proof.
unfold covering in H4; elim (H4 x0 H7); intros; simpl in H8;
unfold intersection_domain in H6; cut (ind g x1 /\ SF x1).
intro; assert (H10 := H6 x1 H9); elim H10; clear H10; intros H10 _; elim H8;
- clear H8; intros H8 _; unfold f' in H8; unfold complementary in H8;
+ clear H8; intros H8 _; unfold f' in H8; unfold complementary in H8;
elim H8; clear H8; intros H8 _; elim H8; assumption.
split.
apply (cond_fam f0).
@@ -1463,15 +1463,15 @@ Proof.
unfold covering_finite in H4; elim H4; clear H4; intros H4 _;
cut (exists z : R, X z).
intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5);
- intros; simpl in H6; elim Hyp'; exists x1; elim H6;
+ intros; simpl in H6; elim Hyp'; exists x1; elim H6;
intros; unfold intersection_domain in |- *; split.
apply (cond_fam f0); exists x0; apply H7.
apply H8.
apply Hyp.
unfold covering_finite in H4; elim H4; clear H4; intros;
unfold family_finite in H5; unfold domain_finite in H5;
- unfold family_finite in |- *; unfold domain_finite in |- *;
- elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x);
+ unfold family_finite in |- *; unfold domain_finite in |- *;
+ elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x);
intros; split; intro;
[ apply H6; simpl in |- *; simpl in H8; apply H8 | apply (H7 H8) ].
Qed.
@@ -1506,7 +1506,7 @@ Proof.
intro; cut (intersection_vide_in X f0).
intro; assert (H7 := H3 H5 H6).
elim H7; intros SF H8; unfold intersection_vide_finite_in in H8; elim H8;
- clear H8; intros; unfold intersection_vide_in in H8;
+ clear H8; intros; unfold intersection_vide_in in H8;
elim (H8 0); intros _ H10; elim H10; unfold family_finite in H9;
unfold domain_finite in H9; elim H9; clear H9; intros l H9;
set (r := MaxRlist l); cut (D r).
@@ -1536,7 +1536,7 @@ Proof.
assert
(H17 :=
not_ex_all_not _ (fun z:R => intersection_domain (ind f0) SF z) H13);
- assert (H18 := H16 x); unfold intersection_family in H18;
+ assert (H18 := H16 x); unfold intersection_family in H18;
simpl in H18;
assert
(H19 :=
@@ -1598,17 +1598,17 @@ Theorem Heine :
(forall x:R, X x -> continuity_pt f x) -> uniform_continuity f X.
Proof.
intros f0 X H0 H; elim (domain_P1 X); intro Hyp.
-(* X est vide *)
+(* X is empty *)
unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1);
intros; elim Hyp; exists x; assumption.
elim Hyp; clear Hyp; intro Hyp.
-(* X possède un seul élément *)
+(* X has only one element *)
unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1);
- intros; elim Hyp; clear Hyp; intros; elim H4; clear H4;
- intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2);
+ intros; elim Hyp; clear Hyp; intros; elim H4; clear H4;
+ intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2);
rewrite H6; rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply (cond_pos eps).
-(* X possède au moins deux éléments distincts *)
+(* X has at least two distinct elements *)
assert
(X_enc :
exists m : R, (exists M : R, (forall x:R, X x -> m <= x <= M) /\ m < M)).
@@ -1616,8 +1616,8 @@ Proof.
elim H2; intros; exists x; exists x0; split.
apply H3.
elim Hyp; intros; elim H4; intros; decompose [and] H5;
- assert (H10 := H3 _ H6); assert (H11 := H3 _ H8);
- elim H10; intros; elim H11; intros; case (total_order_T x x0);
+ assert (H10 := H3 _ H6); assert (H11 := H3 _ H8);
+ elim H10; intros; elim H11; intros; case (total_order_T x x0);
intro.
elim s; intro.
assumption.
@@ -1652,7 +1652,7 @@ Proof.
assumption.
assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4;
unfold limit1_in in H4; unfold limit_in in H4; simpl in H4;
- unfold R_dist in H4; elim (H4 (eps / 2) (H1 eps));
+ unfold R_dist in H4; elim (H4 (eps / 2) (H1 eps));
intros;
set
(E :=
@@ -1661,7 +1661,7 @@ Proof.
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H6 : bound E).
unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
- unfold E in |- *; intros; elim H6; clear H6; intros H6 _;
+ unfold E in |- *; intros; elim H6; clear H6; intros H6 _;
elim H6; clear H6; intros _ H6; apply H6.
assert (H7 : exists x : R, E x).
elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E in |- *; intros;
@@ -1693,14 +1693,14 @@ Proof.
intro; assert (H16 := H14 _ H15);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H16)).
unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H13;
- assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x)));
+ assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x)));
intro.
assumption.
elim (H12 x2); split; [ split; [ auto with real | assumption ] | assumption ].
split.
apply p.
unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
- rewrite Rabs_R0; simpl in |- *; unfold Rdiv in |- *;
+ rewrite Rabs_R0; simpl in |- *; unfold Rdiv in |- *;
apply Rmult_lt_0_compat; [ apply H8 | apply Rinv_0_lt_compat; prove_sup0 ].
elim H7; intros; unfold E in H8; elim H8; intros H9 _; elim H9; intros H10 _;
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H12;
@@ -1711,8 +1711,8 @@ Proof.
unfold family_open_set in |- *; intro; simpl in |- *; elim (classic (X x));
intro.
unfold g in |- *; unfold open_set in |- *; intros; elim H4; clear H4;
- intros _ H4; elim H4; clear H4; intros; elim H4; clear H4;
- intros; unfold neighbourhood in |- *; case (Req_dec x x0);
+ intros _ H4; elim H4; clear H4; intros; elim H4; clear H4;
+ intros; unfold neighbourhood in |- *; case (Req_dec x x0);
intro.
exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included in |- *; intros;
split.
@@ -1745,7 +1745,7 @@ Proof.
intros; unfold g in H4; elim H4; clear H4; intros H4 _; elim H3; apply H4.
elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4;
intros; unfold family_finite in H5; unfold domain_finite in H5;
- unfold covering in H4; simpl in H4; simpl in H5; elim H5;
+ unfold covering in H4; simpl in H4; simpl in H5; elim H5;
clear H5; intros l H5; unfold intersection_domain in H5;
cut
(forall x:R,
@@ -1761,8 +1761,8 @@ Proof.
(fun x del:R =>
0 < del /\
(forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\
- included (g x) (fun z:R => Rabs (z - x) < del / 2)) H6);
- elim H7; clear H7; intros l' H7; elim H7; clear H7;
+ included (g x) (fun z:R => Rabs (z - x) < del / 2)) H6);
+ elim H7; clear H7; intros l' H7; elim H7; clear H7;
intros; set (D := MinRlist l'); cut (0 < D / 2).
intro; exists (mkposreal _ H9); intros; assert (H13 := H4 _ H10); elim H13;
clear H13; intros xi H13; assert (H14 : In xi l).
@@ -1785,8 +1785,8 @@ Proof.
rewrite double; apply Rplus_lt_compat_l; apply H19.
discrR.
assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20;
- elim H20; clear H20; intros; rewrite <- Rabs_Ropp;
- rewrite Ropp_minus_distr; apply H20; unfold included in H21;
+ elim H20; clear H20; intros; rewrite <- Rabs_Ropp;
+ rewrite Ropp_minus_distr; apply H20; unfold included in H21;
elim H13; intros; assert (H24 := H21 x H22);
apply Rle_lt_trans with (Rabs (y - x) + Rabs (x - xi)).
replace (y - xi) with (y - x + (x - xi)); [ apply Rabs_triang | ring ].
@@ -1803,7 +1803,7 @@ Proof.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ unfold D in |- *; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros;
elim (H10 H9); intros; elim H12; intros; rewrite H14;
- rewrite <- H7 in H13; elim (H8 x H13); intros;
+ rewrite <- H7 in H13; elim (H8 x H13); intros;
apply H15
| apply Rinv_0_lt_compat; prove_sup0 ].
intros; elim (H5 x); intros; elim (H8 H6); intros;
@@ -1814,14 +1814,14 @@ Proof.
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H11 : bound E).
unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
- unfold E in |- *; intros; elim H11; clear H11; intros H11 _;
+ unfold E in |- *; intros; elim H11; clear H11; intros H11 _;
elim H11; clear H11; intros _ H11; apply H11.
assert (H12 : exists x : R, E x).
assert (H13 := H _ H9); unfold continuity_pt in H13;
- unfold continue_in in H13; unfold limit1_in in H13;
+ unfold continue_in in H13; unfold limit1_in in H13;
unfold limit_in in H13; simpl in H13; unfold R_dist in H13;
- elim (H13 _ (H1 eps)); intros; elim H12; clear H12;
- intros; exists (Rmin x0 (M - m)); unfold E in |- *;
+ elim (H13 _ (H1 eps)); intros; elim H12; clear H12;
+ intros; exists (Rmin x0 (M - m)); unfold E in |- *;
intros; split.
split;
[ unfold Rmin in |- *; case (Rle_dec x0 (M - m)); intro;
@@ -1850,7 +1850,7 @@ Proof.
intro; assert (H21 := H19 _ H20);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H15 H21)).
unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H18;
- assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x)));
+ assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x)));
intro.
assumption.
elim (H17 x1); split.
@@ -1864,7 +1864,7 @@ Proof.
apply H21.
elim H12; intros; unfold E in H13; elim H13; intros H14 _; elim H14;
intros H15 _; unfold is_lub in p; elim p; intros;
- unfold is_upper_bound in H16; unfold is_upper_bound in H17;
+ unfold is_upper_bound in H16; unfold is_upper_bound in H17;
split.
apply Rlt_le_trans with x1; [ assumption | apply (H16 _ H13) ].
apply H17; intros; unfold E in H18; elim H18; intros; elim H19; intros;