summaryrefslogtreecommitdiff
path: root/theories/Reals/Rsqrt_def.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rsqrt_def.v')
-rw-r--r--theories/Reals/Rsqrt_def.v216
1 files changed, 108 insertions, 108 deletions
diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v
index 7c3b4699..a6e48f83 100644
--- a/theories/Reals/Rsqrt_def.v
+++ b/theories/Reals/Rsqrt_def.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -11,7 +11,7 @@ Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Fixpoint Dichotomy_lb (x y:R) (P:R -> bool) (N:nat) {struct N} : R :=
match N with
@@ -41,18 +41,18 @@ Lemma dicho_comp :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
apply Rplus_le_compat_l.
assumption.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
@@ -67,14 +67,14 @@ Lemma dicho_lb_growing :
forall (x y:R) (P:R -> bool), x <= y -> Un_growing (dicho_lb x y P).
Proof.
intros.
- unfold Un_growing in |- *.
+ unfold Un_growing.
intro.
- simpl in |- *.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
right; reflexivity.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
@@ -87,11 +87,11 @@ Lemma dicho_up_decreasing :
forall (x y:R) (P:R -> bool), x <= y -> Un_decreasing (dicho_up x y P).
Proof.
intros.
- unfold Un_decreasing in |- *.
+ unfold Un_decreasing.
intro.
- simpl in |- *.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
@@ -112,17 +112,17 @@ Lemma dicho_lb_maj_y :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
assumption.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
assumption.
- pattern y at 2 in |- *; replace y with (Dichotomy_ub x y P 0);
+ pattern y at 2; replace y with (Dichotomy_ub x y P 0);
[ idtac | reflexivity ].
apply decreasing_prop.
assert (H0 := dicho_up_decreasing x y P H).
@@ -136,10 +136,10 @@ Proof.
intros.
cut (forall n:nat, dicho_lb x y P n <= y).
intro.
- unfold has_ub in |- *.
- unfold bound in |- *.
+ unfold has_ub.
+ unfold bound.
exists y.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2; apply H0.
@@ -151,15 +151,15 @@ Lemma dicho_up_min_x :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
- pattern x at 1 in |- *; replace x with (Dichotomy_lb x y P 0);
+ pattern x at 1; replace x with (Dichotomy_lb x y P 0);
[ idtac | reflexivity ].
apply tech9.
assert (H0 := dicho_lb_growing x y P H).
@@ -175,14 +175,14 @@ Proof.
intros.
cut (forall n:nat, x <= dicho_up x y P n).
intro.
- unfold has_lb in |- *.
- unfold bound in |- *.
+ unfold has_lb.
+ unfold bound.
exists (- x).
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2.
- unfold opp_seq in |- *.
+ unfold opp_seq.
apply Ropp_le_contravar.
apply H0.
apply dicho_up_min_x; assumption.
@@ -214,35 +214,35 @@ Lemma dicho_lb_dicho_up :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
- unfold Rdiv in |- *; rewrite Rinv_1; ring.
- simpl in |- *.
+ simpl.
+ unfold Rdiv; rewrite Rinv_1; ring.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *.
+ unfold Rdiv.
replace
((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
- unfold Rdiv in |- *; rewrite Hrecn.
- unfold Rdiv in |- *.
+ unfold Rdiv; rewrite Hrecn.
+ unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
- pattern (Dichotomy_lb x y P n) at 2 in |- *;
+ pattern (Dichotomy_lb x y P n) at 2;
rewrite (double_var (Dichotomy_lb x y P n));
- unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring.
+ unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
replace
(Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
- unfold Rdiv in |- *; rewrite Hrecn.
- unfold Rdiv in |- *.
+ unfold Rdiv; rewrite Hrecn.
+ unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
- pattern (Dichotomy_ub x y P n) at 1 in |- *;
+ pattern (Dichotomy_ub x y P n) at 1;
rewrite (double_var (Dichotomy_ub x y P n));
- unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring.
+ unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
Qed.
Definition pow_2_n (n:nat) := 2 ^ n.
@@ -250,23 +250,23 @@ Definition pow_2_n (n:nat) := 2 ^ n.
Lemma pow_2_n_neq_R0 : forall n:nat, pow_2_n n <> 0.
Proof.
intro.
- unfold pow_2_n in |- *.
+ unfold pow_2_n.
apply pow_nonzero.
discrR.
Qed.
Lemma pow_2_n_growing : Un_growing pow_2_n.
Proof.
- unfold Un_growing in |- *.
+ unfold Un_growing.
intro.
replace (S n) with (n + 1)%nat;
- [ unfold pow_2_n in |- *; rewrite pow_add | ring ].
- pattern (2 ^ n) at 1 in |- *; rewrite <- Rmult_1_r.
+ [ unfold pow_2_n; rewrite pow_add | ring ].
+ pattern (2 ^ n) at 1; rewrite <- Rmult_1_r.
apply Rmult_le_compat_l.
left; apply pow_lt; prove_sup0.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
Qed.
@@ -274,7 +274,7 @@ Lemma pow_2_n_infty : cv_infty pow_2_n.
Proof.
cut (forall N:nat, INR N <= 2 ^ N).
intros.
- unfold cv_infty in |- *.
+ unfold cv_infty.
intro.
case (total_order_T 0 M); intro.
elim s; intro.
@@ -287,41 +287,41 @@ Proof.
apply Rlt_le_trans with (INR N0).
rewrite INR_IZR_INZ.
rewrite <- H1.
- unfold N in |- *.
+ unfold N.
assert (H3 := archimed M).
elim H3; intros; assumption.
apply Rle_trans with (pow_2_n N0).
- unfold pow_2_n in |- *; apply H.
+ unfold pow_2_n; apply H.
apply Rge_le.
apply growing_prop.
apply pow_2_n_growing.
assumption.
apply le_IZR.
- unfold N in |- *.
- simpl in |- *.
+ unfold N.
+ simpl.
assert (H0 := archimed M); elim H0; intros.
left; apply Rlt_trans with M; assumption.
exists 0%nat; intros.
rewrite <- b.
- unfold pow_2_n in |- *; apply pow_lt; prove_sup0.
+ unfold pow_2_n; apply pow_lt; prove_sup0.
exists 0%nat; intros.
apply Rlt_trans with 0.
assumption.
- unfold pow_2_n in |- *; apply pow_lt; prove_sup0.
+ unfold pow_2_n; apply pow_lt; prove_sup0.
simple induction N.
- simpl in |- *.
+ simpl.
left; apply Rlt_0_1.
intros.
- pattern (S n) at 2 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ pattern (S n) at 2; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite S_INR; rewrite pow_add.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
apply Rle_trans with (2 ^ n).
rewrite <- (Rplus_comm 1).
rewrite <- (Rmult_1_r (INR n)).
apply (poly n 1).
apply Rlt_0_1.
- pattern (2 ^ n) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (2 ^ n) at 1; rewrite <- Rplus_0_r.
rewrite <- (Rmult_comm 2).
rewrite double.
apply Rplus_le_compat_l.
@@ -338,8 +338,8 @@ Proof.
cut (Un_cv (fun i:nat => dicho_lb x y P i - dicho_up x y P i) 0).
intro.
assert (H4 := UL_sequence _ _ _ H2 H3).
- symmetry in |- *; apply Rminus_diag_uniq_sym; assumption.
- unfold Un_cv in |- *; unfold R_dist in |- *.
+ symmetry ; apply Rminus_diag_uniq_sym; assumption.
+ unfold Un_cv; unfold R_dist.
intros.
assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty).
case (total_order_T x y); intro.
@@ -356,7 +356,7 @@ Proof.
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (y - x)).
apply Rmult_lt_reg_l with (/ (y - x)).
apply Rinv_0_lt_compat; assumption.
@@ -366,12 +366,12 @@ Proof.
[ unfold pow_2_n, Rdiv in H6; rewrite <- (Rmult_comm eps); apply H6;
assumption
| ring ].
- red in |- *; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp).
+ red; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp).
apply Rle_ge.
apply Rplus_le_reg_l with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
assumption.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ].
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
@@ -382,7 +382,7 @@ Proof.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
rewrite b.
- unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; rewrite Rmult_0_l;
+ unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l;
rewrite Rabs_R0; assumption.
assumption.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
@@ -399,26 +399,26 @@ Lemma continuity_seq :
forall (f:R -> R) (Un:nat -> R) (l:R),
continuity_pt f l -> Un_cv Un l -> Un_cv (fun i:nat => f (Un i)) (f l).
Proof.
- unfold continuity_pt, Un_cv in |- *; unfold continue_in in |- *.
- unfold limit1_in in |- *.
- unfold limit_in in |- *.
- unfold dist in |- *.
- simpl in |- *.
- unfold R_dist in |- *.
+ unfold continuity_pt, Un_cv; unfold continue_in.
+ unfold limit1_in.
+ unfold limit_in.
+ unfold dist.
+ simpl.
+ unfold R_dist.
intros.
elim (H eps H1); intros alp H2.
elim H2; intros.
elim (H0 alp H3); intros N H5.
exists N; intros.
case (Req_dec (Un n) l); intro.
- rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
apply H4.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
- apply (sym_not_eq (A:=R)); assumption.
+ apply (not_eq_sym (A:=R)); assumption.
apply H5; assumption.
Qed.
@@ -428,9 +428,9 @@ Lemma dicho_lb_car :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
assumption.
- simpl in |- *.
+ simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
@@ -447,9 +447,9 @@ Lemma dicho_up_car :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
assumption.
- simpl in |- *.
+ simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
@@ -480,7 +480,7 @@ Proof.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
- simpl in |- *.
+ simpl.
right; reflexivity.
apply growing_ineq.
apply dicho_lb_growing; assumption.
@@ -503,7 +503,7 @@ Proof.
assert (H10 := H5 H7).
apply Rle_antisym; assumption.
intro.
- unfold Wn in |- *.
+ unfold Wn.
cut (forall z:R, cond_positivity z = true <-> 0 <= z).
intro.
assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
@@ -514,7 +514,7 @@ Proof.
apply H12.
left; assumption.
intro.
- unfold cond_positivity in |- *.
+ unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro; assumption.
@@ -523,7 +523,7 @@ Proof.
intro feqt;discriminate feqt.
intro.
elim n0; assumption.
- unfold Vn in |- *.
+ unfold Vn.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
@@ -535,7 +535,7 @@ Proof.
apply H12.
assumption.
intro.
- unfold cond_positivity in |- *.
+ unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro feqt; discriminate feqt.
@@ -554,7 +554,7 @@ Proof.
cut (0 < - f x0).
intro.
elim (H7 (- f x0) H8); intros.
- cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H11 := H9 x2 H10).
rewrite Rabs_right in H11.
pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
@@ -562,11 +562,11 @@ Proof.
assert (H12 := Rplus_lt_reg_r _ _ _ H11).
assert (H13 := H6 x2).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
- apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat.
+ apply Rle_ge; left; unfold Rminus; apply Rplus_le_lt_0_compat.
apply H6.
exact H8.
apply Ropp_0_gt_lt_contravar; assumption.
- unfold Wn in |- *; assumption.
+ unfold Wn; assumption.
cut (Un_cv Vn x0).
intros.
assert (H7 := continuity_seq f Vn x0 (H x0) H5).
@@ -574,7 +574,7 @@ Proof.
elim s; intro.
unfold Un_cv in H7; unfold R_dist in H7.
elim (H7 (f x0) a); intros.
- cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
@@ -589,12 +589,12 @@ Proof.
apply Ropp_0_gt_lt_contravar; assumption.
apply Rplus_lt_reg_r with (f x0 - f (Vn x2)).
rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
- [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
+ [ unfold Rminus; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
right; rewrite <- b; reflexivity.
left; assumption.
- unfold Vn in |- *; assumption.
+ unfold Vn; assumption.
Qed.
Lemma IVT_cor :
@@ -613,11 +613,11 @@ Proof.
exists y.
split.
split; [ assumption | right; reflexivity ].
- symmetry in |- *; exact b.
+ symmetry ; exact b.
exists x.
split.
split; [ right; reflexivity | assumption ].
- symmetry in |- *; exact b.
+ symmetry ; exact b.
elim s; intro.
cut (x < y).
intro.
@@ -633,8 +633,8 @@ Proof.
unfold opp_fct in H7.
rewrite <- (Ropp_involutive (f x0)).
apply Ropp_eq_0_compat; assumption.
- unfold opp_fct in |- *; apply Ropp_0_gt_lt_contravar; assumption.
- unfold opp_fct in |- *.
+ unfold opp_fct; apply Ropp_0_gt_lt_contravar; assumption.
+ unfold opp_fct.
apply Rplus_lt_reg_r with (f x); rewrite Rplus_opp_r; rewrite Rplus_0_r;
assumption.
inversion H0.
@@ -644,7 +644,7 @@ Proof.
exists x.
split.
split; [ right; reflexivity | assumption ].
- symmetry in |- *; assumption.
+ symmetry ; assumption.
case (total_order_T 0 (f y)); intro.
elim s; intro.
cut (x < y).
@@ -657,7 +657,7 @@ Proof.
exists y.
split.
split; [ assumption | right; reflexivity ].
- symmetry in |- *; assumption.
+ symmetry ; assumption.
cut (0 < f x * f y).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H2 H1)).
@@ -690,18 +690,18 @@ Proof.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
- rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f 1)).
+ rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f 1)).
apply Rmult_le_compat_l; assumption.
- unfold f in |- *.
+ unfold f.
rewrite Rsqr_1.
apply Rplus_le_reg_l with y.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
left; assumption.
exists 1.
split.
left; apply Rlt_0_1.
- rewrite b; symmetry in |- *; apply Rsqr_1.
+ rewrite b; symmetry ; apply Rsqr_1.
cut (0 <= f y).
intro.
cut (f 0 * f y <= 0).
@@ -714,14 +714,14 @@ Proof.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
- rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y)).
+ rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f y)).
apply Rmult_le_compat_l; assumption.
- unfold f in |- *.
+ unfold f.
apply Rplus_le_reg_l with y.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
- pattern y at 1 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *; apply Rmult_le_compat_l.
+ pattern y at 1; rewrite <- Rmult_1_r.
+ unfold Rsqr; apply Rmult_le_compat_l.
assumption.
left; exact r.
replace f with (Rsqr - fct_cte y)%F.
@@ -729,8 +729,8 @@ Proof.
apply derivable_continuous; apply derivable_Rsqr.
apply derivable_continuous; apply derivable_const.
reflexivity.
- unfold f in |- *; rewrite Rsqr_0.
- unfold Rminus in |- *; rewrite Rplus_0_l.
+ unfold f; rewrite Rsqr_0.
+ unfold Rminus; rewrite Rplus_0_l.
apply Rge_le.
apply Ropp_0_le_ge_contravar; assumption.
Qed.
@@ -749,7 +749,7 @@ Proof.
intros.
elim p; intros.
rewrite H in H0; assumption.
- unfold Rsqrt in |- *.
+ unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.
@@ -770,7 +770,7 @@ Proof.
rewrite <- H.
elim p; intros.
rewrite H1; reflexivity.
- unfold Rsqrt in |- *.
+ unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.