summaryrefslogtreecommitdiff
path: root/theories/Reals/Rseries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rseries.v')
-rw-r--r--theories/Reals/Rseries.v44
1 files changed, 22 insertions, 22 deletions
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 479d381d..3c10725b 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,7 +9,7 @@
Require Import Rbase.
Require Import Rfunctions.
Require Import Compare.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Implicit Type r : R.
@@ -54,20 +54,20 @@ Section sequence.
(*********)
Lemma EUn_noempty : exists r : R, EUn r.
Proof.
- unfold EUn in |- *; split with (Un 0); split with 0%nat; trivial.
+ unfold EUn; split with (Un 0); split with 0%nat; trivial.
Qed.
(*********)
Lemma Un_in_EUn : forall n:nat, EUn (Un n).
Proof.
- intro; unfold EUn in |- *; split with n; trivial.
+ intro; unfold EUn; split with n; trivial.
Qed.
(*********)
Lemma Un_bound_imp :
forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x.
Proof.
- intros; unfold is_upper_bound in |- *; intros; unfold EUn in H0; elim H0;
+ intros; unfold is_upper_bound; intros; unfold EUn in H0; elim H0;
clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
trivial.
Qed.
@@ -77,7 +77,7 @@ Section sequence.
forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m.
Proof.
double induction n m; intros.
- unfold Rge in |- *; right; trivial.
+ unfold Rge; right; trivial.
exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
cut (n0 >= 0)%nat.
generalize H0; intros; unfold Un_growing in H0;
@@ -89,7 +89,7 @@ Section sequence.
elim y; clear y; intro y.
unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro;
exfalso; auto.
- rewrite y; unfold Rge in |- *; right; trivial.
+ rewrite y; unfold Rge; right; trivial.
unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro;
unfold Un_growing in H1;
apply
@@ -182,13 +182,13 @@ Section sequence.
assert (Hs0: forall n, sum n = 0).
intros n.
- specialize (Hm1 (sum n) (ex_intro _ _ (refl_equal _))).
+ specialize (Hm1 (sum n) (ex_intro _ _ (eq_refl _))).
apply Rle_antisym with (2 := proj1 (Hsum n)).
now rewrite <- Hm.
assert (Hub: forall n, Un n <= l - eps).
intros n.
- generalize (refl_equal (sum (S n))).
+ generalize (eq_refl (sum (S n))).
simpl sum at 1.
rewrite 2!Hs0, Rplus_0_l.
unfold test.
@@ -238,7 +238,7 @@ Section sequence.
rewrite (IHN H6), Rplus_0_l.
unfold test.
destruct Rle_lt_dec.
- apply refl_equal.
+ apply eq_refl.
now elim Rlt_not_le with (1 := r).
destruct (le_or_lt N n) as [Hn|Hn].
@@ -272,20 +272,20 @@ Section sequence.
Proof.
intro; induction N as [| N HrecN].
split with (Un 0); intros; rewrite (le_n_O_eq n H);
- apply (Req_le (Un n) (Un n) (refl_equal (Un n))).
+ apply (Req_le (Un n) (Un n) (eq_refl (Un n))).
elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros;
elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1;
inversion H0.
rewrite <- H1; rewrite <- H1 in H2;
apply
- (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (refl_equal (Un n))))).
+ (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (eq_refl (Un n))))).
apply (H2 (or_intror (Un n <= Un (S N)) (H n H3))).
Qed.
(*********)
Lemma cauchy_bound : Cauchy_crit -> bound EUn.
Proof.
- unfold Cauchy_crit, bound in |- *; intros; unfold is_upper_bound in |- *;
+ unfold Cauchy_crit, bound; intros; unfold is_upper_bound;
unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
generalize (H x); intro; generalize (le_dec x); intro;
elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
@@ -324,12 +324,12 @@ End Isequence.
Lemma GP_infinite :
forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
- intros; unfold Pser in |- *; unfold infinite_sum in |- *; intros;
+ intros; unfold Pser; unfold infinite_sum; intros;
elim (Req_dec x 0).
intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).
intros; rewrite H3; rewrite R_dist_eq; auto.
- elim n; simpl in |- *.
+ elim n; simpl.
ring.
intros; rewrite H3; ring.
intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))).
@@ -344,11 +344,11 @@ Proof.
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
- unfold R_dist in |- *; rewrite <- Rabs_mult.
+ unfold R_dist; rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
cut
((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n =
@@ -359,7 +359,7 @@ Proof.
cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)).
intro; rewrite H7.
rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto.
- intro H8; rewrite H8; simpl in |- *; rewrite Rabs_mult;
+ intro H8; rewrite H8; simpl; rewrite Rabs_mult;
apply
(Rlt_le_trans (Rabs x * Rabs (x ^ n))
(Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) (
@@ -373,7 +373,7 @@ Proof.
Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))).
clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps).
- intros; rewrite H9; unfold Rle in |- *; right; reflexivity.
+ intros; rewrite H9; unfold Rle; right; reflexivity.
ring.
assumption.
ring.
@@ -381,12 +381,12 @@ Proof.
ring.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
ring; ring.
- elim n; simpl in |- *.
+ elim n; simpl.
ring.
intros; rewrite H5.
ring.
@@ -396,7 +396,7 @@ Proof.
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.