summaryrefslogtreecommitdiff
path: root/theories/Reals/Rpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rpower.v')
-rw-r--r--theories/Reals/Rpower.v168
1 files changed, 84 insertions, 84 deletions
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index 593e54c6..43f326a0 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,25 +15,25 @@
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
-Require Import Rtrigo.
+Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Exp_prop.
Require Import Rsqrt_def.
Require Import R_sqrt.
Require Import MVT.
Require Import Ranalysis4.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Lemma P_Rmin : forall (P:R -> Prop) (x y:R), P x -> P y -> P (Rmin x y).
Proof.
- intros P x y H1 H2; unfold Rmin in |- *; case (Rle_dec x y); intro;
+ intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro;
assumption.
Qed.
Lemma exp_le_3 : exp 1 <= 3.
Proof.
assert (exp_1 : exp 1 <> 0).
- assert (H0 := exp_pos 1); red in |- *; intro; rewrite H in H0;
+ assert (H0 := exp_pos 1); red; intro; rewrite H in H0;
elim (Rlt_irrefl _ H0).
apply Rmult_le_reg_l with (/ exp 1).
apply Rinv_0_lt_compat; apply exp_pos.
@@ -43,7 +43,7 @@ Proof.
rewrite Rmult_1_r; rewrite <- (Rmult_comm 3); rewrite <- Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ exp 1) with (exp (-1)).
- unfold exp in |- *; case (exist_exp (-1)); intros; simpl in |- *;
+ unfold exp; case (exist_exp (-1)); intros; simpl;
unfold exp_in in e;
assert (H := alternated_series_ineq (fun i:nat => / INR (fact i)) x 1).
cut
@@ -73,7 +73,7 @@ Proof.
ring.
discrR.
apply H.
- unfold Un_decreasing in |- *; intros;
+ unfold Un_decreasing; intros;
apply Rmult_le_reg_l with (INR (fact n)).
apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S n))).
@@ -84,13 +84,13 @@ Proof.
rewrite Rmult_1_r; apply le_INR; apply fact_le; apply le_n_Sn.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- assert (H0 := cv_speed_pow_fact 1); unfold Un_cv in |- *; unfold Un_cv in H0;
+ assert (H0 := cv_speed_pow_fact 1); unfold Un_cv; unfold Un_cv in H0;
intros; elim (H0 _ H1); intros; exists x0; intros;
- unfold R_dist in H2; unfold R_dist in |- *;
+ unfold R_dist in H2; unfold R_dist;
replace (/ INR (fact n)) with (1 ^ n / INR (fact n)).
apply (H2 _ H3).
- unfold Rdiv in |- *; rewrite pow1; rewrite Rmult_1_l; reflexivity.
- unfold infinite_sum in e; unfold Un_cv, tg_alt in |- *; intros; elim (e _ H0);
+ unfold Rdiv; rewrite pow1; rewrite Rmult_1_l; reflexivity.
+ unfold infinite_sum in e; unfold Un_cv, tg_alt; intros; elim (e _ H0);
intros; exists x0; intros;
replace (sum_f_R0 (fun i:nat => (-1) ^ i * / INR (fact i)) n) with
(sum_f_R0 (fun i:nat => / INR (fact i) * (-1) ^ i) n).
@@ -121,7 +121,7 @@ Proof.
intro.
replace (derive_pt exp x0 (H0 x0)) with (exp x0).
apply exp_pos.
- symmetry in |- *; apply derive_pt_eq_0.
+ symmetry ; apply derive_pt_eq_0.
apply (derivable_pt_lim_exp x0).
apply H.
Qed.
@@ -143,11 +143,11 @@ Proof.
rewrite Ropp_0; rewrite Rplus_0_r;
replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0).
rewrite exp_0; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
- pattern x at 1 in |- *; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0));
+ pattern x at 1; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0));
apply Rmult_lt_compat_l.
apply H.
rewrite <- exp_0; apply exp_increasing; elim H3; intros; assumption.
- symmetry in |- *; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
+ symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
Qed.
Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }.
@@ -160,18 +160,18 @@ Proof.
cut (f 0 * f y <= 0); [intro H4|].
pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7));
exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7.
- pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y));
+ pattern 0 at 2; rewrite <- (Rmult_0_r (f y));
rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
assumption.
- unfold f in |- *; apply Rplus_le_reg_l with y; left;
+ unfold f; apply Rplus_le_reg_l with y; left;
apply Rlt_trans with (1 + y).
rewrite <- (Rplus_comm y); apply Rplus_lt_compat_l; apply Rlt_0_1.
replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H0) | ring ].
- unfold f in |- *; change (continuity (exp - fct_cte y)) in |- *;
+ unfold f; change (continuity (exp - fct_cte y));
apply continuity_minus;
[ apply derivable_continuous; apply derivable_exp
| apply derivable_continuous; apply derivable_const ].
- unfold f in |- *; rewrite exp_0; apply Rplus_le_reg_l with y;
+ unfold f; rewrite exp_0; apply Rplus_le_reg_l with y;
rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ].
Qed.
@@ -185,18 +185,18 @@ Proof.
apply H.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ n).
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
destruct (ln_exists1 _ H0) as (x,p); exists (- x);
apply Rmult_eq_reg_l with (exp x / y).
- unfold Rdiv in |- *; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+ unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc;
rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
- rewrite Rmult_1_r; symmetry in |- *; apply p.
- red in |- *; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
- unfold Rdiv in |- *; apply prod_neq_R0.
- assert (H3 := exp_pos x); red in |- *; intro H4; rewrite H4 in H3;
+ rewrite Rmult_1_r; symmetry ; apply p.
+ red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
+ unfold Rdiv; apply prod_neq_R0.
+ assert (H3 := exp_pos x); red; intro H4; rewrite H4 in H3;
elim (Rlt_irrefl _ H3).
- apply Rinv_neq_0_compat; red in |- *; intro H3; rewrite H3 in H;
+ apply Rinv_neq_0_compat; red; intro H3; rewrite H3 in H;
elim (Rlt_irrefl _ H).
Qed.
@@ -213,11 +213,11 @@ Definition ln (x:R) : R :=
Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Proof.
- intros; unfold ln in |- *; case (Rlt_dec 0 x); intro.
- unfold Rln in |- *;
+ intros; unfold ln; case (Rlt_dec 0 x); intro.
+ unfold Rln;
case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r)));
intros.
- simpl in e; symmetry in |- *; apply e.
+ simpl in e; symmetry ; apply e.
elim n; apply H.
Qed.
@@ -231,7 +231,7 @@ Qed.
Theorem exp_Ropp : forall x:R, exp (- x) = / exp x.
Proof.
intros x; assert (H : exp x <> 0).
- assert (H := exp_pos x); red in |- *; intro; rewrite H0 in H;
+ assert (H := exp_pos x); red; intro; rewrite H0 in H;
elim (Rlt_irrefl _ H).
apply Rmult_eq_reg_l with (r := exp x).
rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0.
@@ -306,11 +306,11 @@ Theorem ln_continue :
forall y:R, 0 < y -> continue_in ln (fun x:R => 0 < x) y.
Proof.
intros y H.
- unfold continue_in, limit1_in, limit_in in |- *; intros eps Heps.
+ unfold continue_in, limit1_in, limit_in; intros eps Heps.
cut (1 < exp eps); [ intros H1 | idtac ].
cut (exp (- eps) < 1); [ intros H2 | idtac ].
exists (Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))); split.
- red in |- *; apply P_Rmin.
+ red; apply P_Rmin.
apply Rmult_lt_0_compat.
assumption.
apply Rplus_lt_reg_r with 1.
@@ -321,7 +321,7 @@ Proof.
apply Rplus_lt_reg_r with (exp (- eps)).
rewrite Rplus_0_r; replace (exp (- eps) + (1 - exp (- eps))) with 1;
[ apply H2 | ring ].
- unfold dist, R_met, R_dist in |- *; simpl in |- *.
+ unfold dist, R_met, R_dist; simpl.
intros x [[H3 H4] H5].
cut (y * (x * / y) = x).
intro Hxyy.
@@ -351,7 +351,7 @@ Proof.
rewrite Hxyy; rewrite Rmult_1_r; apply Hxy.
rewrite Hxy; rewrite Rinv_r.
rewrite ln_1; rewrite Rabs_R0; apply Heps.
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
rewrite Rabs_right.
apply exp_lt_inv.
rewrite exp_ln.
@@ -366,7 +366,7 @@ Proof.
left; apply (Rgt_minus _ _ Hxy).
apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ].
rewrite <- ln_1.
- apply Rgt_ge; red in |- *; apply ln_increasing.
+ apply Rgt_ge; red; apply ln_increasing.
apply Rlt_0_1.
apply Rmult_lt_reg_l with (r := y).
apply H.
@@ -379,7 +379,7 @@ Proof.
apply Rinv_0_lt_compat; assumption.
rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
ring.
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
apply Rmult_lt_reg_l with (exp eps).
apply exp_pos.
rewrite <- exp_plus; rewrite Rmult_1_r; rewrite Rplus_opp_r; rewrite exp_0;
@@ -394,7 +394,7 @@ Qed.
Definition Rpower (x y:R) := exp (y * ln x).
-Infix Local "^R" := Rpower (at level 30, right associativity) : R_scope.
+Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope.
(******************************************************************)
(** * Properties of Rpower *)
@@ -412,13 +412,13 @@ Infix Local "^R" := Rpower (at level 30, right associativity) : R_scope.
Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y.
Proof.
- intros x y z; unfold Rpower in |- *.
+ intros x y z; unfold Rpower.
rewrite Rmult_plus_distr_r; rewrite exp_plus; auto.
Qed.
Theorem Rpower_mult : forall x y z:R, (x ^R y) ^R z = x ^R (y * z).
Proof.
- intros x y z; unfold Rpower in |- *.
+ intros x y z; unfold Rpower.
rewrite ln_exp.
replace (z * (y * ln x)) with (y * z * ln x).
reflexivity.
@@ -427,22 +427,22 @@ Qed.
Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1.
Proof.
- intros x _; unfold Rpower in |- *.
+ intros x _; unfold Rpower.
rewrite Rmult_0_l; apply exp_0.
Qed.
Theorem Rpower_1 : forall x:R, 0 < x -> x ^R 1 = x.
Proof.
- intros x H; unfold Rpower in |- *.
+ intros x H; unfold Rpower.
rewrite Rmult_1_l; apply exp_ln; apply H.
Qed.
Theorem Rpower_pow : forall (n:nat) (x:R), 0 < x -> x ^R INR n = x ^ n.
Proof.
- intros n; elim n; simpl in |- *; auto; fold INR in |- *.
+ intros n; elim n; simpl; auto; fold INR.
intros x H; apply Rpower_O; auto.
intros n1; case n1.
- intros H x H0; simpl in |- *; rewrite Rmult_1_r; apply Rpower_1; auto.
+ intros H x H0; simpl; rewrite Rmult_1_r; apply Rpower_1; auto.
intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1;
try apply Rmult_comm || assumption.
Qed.
@@ -451,7 +451,7 @@ Theorem Rpower_lt :
forall x y z:R, 1 < x -> 0 <= y -> y < z -> x ^R y < x ^R z.
Proof.
intros x y z H H0 H1.
- unfold Rpower in |- *.
+ unfold Rpower.
apply exp_increasing.
apply Rmult_lt_compat_r.
rewrite <- ln_1; apply ln_increasing.
@@ -464,18 +464,18 @@ Theorem Rpower_sqrt : forall x:R, 0 < x -> x ^R (/ 2) = sqrt x.
Proof.
intros x H.
apply ln_inv.
- unfold Rpower in |- *; apply exp_pos.
+ unfold Rpower; apply exp_pos.
apply sqrt_lt_R0; apply H.
apply Rmult_eq_reg_l with (INR 2).
apply exp_inv.
- fold Rpower in |- *.
+ fold Rpower.
cut ((x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2).
- unfold Rpower in |- *; auto.
+ unfold Rpower; auto.
rewrite Rpower_mult.
rewrite Rinv_l.
replace 1 with (INR 1); auto.
- repeat rewrite Rpower_pow; simpl in |- *.
- pattern x at 1 in |- *; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)).
+ repeat rewrite Rpower_pow; simpl.
+ pattern x at 1; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)).
ring.
apply sqrt_lt_R0; apply H.
apply H.
@@ -485,7 +485,7 @@ Qed.
Theorem Rpower_Ropp : forall x y:R, x ^R (- y) = / x ^R y.
Proof.
- unfold Rpower in |- *.
+ unfold Rpower.
intros x y; rewrite Ropp_mult_distr_l_reverse.
apply exp_Ropp.
Qed.
@@ -505,11 +505,11 @@ Proof.
rewrite Rinv_r.
apply exp_lt_inv.
apply Rle_lt_trans with (1 := exp_le_3).
- change (3 < 2 ^R 2) in |- *.
+ change (3 < 2 ^R 2).
repeat rewrite Rpower_plus; repeat rewrite Rpower_1.
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rmult_1_l.
- pattern 3 at 1 in |- *; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1);
+ pattern 3 at 1; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1);
[ apply Rplus_lt_compat_l; apply Rlt_0_1 | ring ].
prove_sup0.
discrR.
@@ -523,7 +523,7 @@ Theorem limit1_ext :
forall (f g:R -> R) (D:R -> Prop) (l x:R),
(forall x:R, D x -> f x = g x) -> limit1_in f D l x -> limit1_in g D l x.
Proof.
- intros f g D l x H; unfold limit1_in, limit_in in |- *.
+ intros f g D l x H; unfold limit1_in, limit_in.
intros H0 eps H1; case (H0 eps); auto.
intros x0 [H2 H3]; exists x0; split; auto.
intros x1 [H4 H5]; rewrite <- H; auto.
@@ -533,7 +533,7 @@ Theorem limit1_imp :
forall (f:R -> R) (D D1:R -> Prop) (l x:R),
(forall x:R, D1 x -> D x) -> limit1_in f D l x -> limit1_in f D1 l x.
Proof.
- intros f D D1 l x H; unfold limit1_in, limit_in in |- *.
+ intros f D D1 l x H; unfold limit1_in, limit_in.
intros H0 eps H1; case (H0 eps H1); auto.
intros alpha [H2 H3]; exists alpha; split; auto.
intros d [H4 H5]; apply H3; split; auto.
@@ -541,7 +541,7 @@ Qed.
Theorem Rinv_Rdiv : forall x y:R, x <> 0 -> y <> 0 -> / (x / y) = y / x.
Proof.
- intros x y H1 H2; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ intros x y H1 H2; unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
assumption.
@@ -551,18 +551,18 @@ Qed.
Theorem Dln : forall y:R, 0 < y -> D_in ln Rinv (fun x:R => 0 < x) y.
Proof.
- intros y Hy; unfold D_in in |- *.
+ intros y Hy; unfold D_in.
apply limit1_ext with
(f := fun x:R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))).
intros x [HD1 HD2]; repeat rewrite exp_ln.
- unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
apply Rminus_eq_contra.
- red in |- *; intros H2; case HD2.
- symmetry in |- *; apply (ln_inv _ _ HD1 Hy H2).
- apply Rminus_eq_contra; apply (sym_not_eq HD2).
- apply Rinv_neq_0_compat; apply Rminus_eq_contra; red in |- *; intros H2;
+ red; intros H2; case HD2.
+ symmetry ; apply (ln_inv _ _ HD1 Hy H2).
+ apply Rminus_eq_contra; apply (not_eq_sym HD2).
+ apply Rinv_neq_0_compat; apply Rminus_eq_contra; red; intros H2;
case HD2; apply ln_inv; auto.
assumption.
assumption.
@@ -574,62 +574,62 @@ Proof.
intros x [H1 H2]; split.
split; auto.
split; auto.
- red in |- *; intros H3; case H2; apply ln_inv; auto.
+ red; intros H3; case H2; apply ln_inv; auto.
apply limit_comp with
(l := ln y) (g := fun x:R => (exp x - exp (ln y)) / (x - ln y)) (f := ln).
apply ln_continue; auto.
assert (H0 := derivable_pt_lim_exp (ln y)); unfold derivable_pt_lim in H0;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; elim (H0 _ H);
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros; elim (H0 _ H);
intros; exists (pos x); split.
apply (cond_pos x).
- intros; pattern y at 3 in |- *; rewrite <- exp_ln.
- pattern x0 at 1 in |- *; replace x0 with (ln y + (x0 - ln y));
+ intros; pattern y at 3; rewrite <- exp_ln.
+ pattern x0 at 1; replace x0 with (ln y + (x0 - ln y));
[ idtac | ring ].
apply H1.
elim H2; intros H3 _; unfold D_x in H3; elim H3; clear H3; intros _ H3;
- apply Rminus_eq_contra; apply (sym_not_eq (A:=R));
+ apply Rminus_eq_contra; apply (not_eq_sym (A:=R));
apply H3.
elim H2; clear H2; intros _ H2; apply H2.
assumption.
- red in |- *; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy).
+ red; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy).
Qed.
Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x).
Proof.
intros; assert (H0 := Dln x H); unfold D_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
- unfold derivable_pt_lim in |- *; intros; elim (H0 _ H1);
+ unfold derivable_pt_lim; intros; elim (H0 _ H1);
intros; elim H2; clear H2; intros; set (alp := Rmin x0 (x / 2));
assert (H4 : 0 < alp).
- unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec x0 (x / 2)); intro.
+ unfold alp; unfold Rmin; case (Rle_dec x0 (x / 2)); intro.
apply H2.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- exists (mkposreal _ H4); intros; pattern h at 2 in |- *;
+ exists (mkposreal _ H4); intros; pattern h at 2;
replace h with (x + h - x); [ idtac | ring ].
apply H3; split.
- unfold D_x in |- *; split.
+ unfold D_x; split.
case (Rcase_abs h); intro.
assert (H7 : Rabs h < x / 2).
apply Rlt_le_trans with alp.
apply H6.
- unfold alp in |- *; apply Rmin_r.
+ unfold alp; apply Rmin_r.
apply Rlt_trans with (x / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
rewrite Rabs_left in H7.
apply Rplus_lt_reg_r with (- h - x / 2).
replace (- h - x / 2 + x / 2) with (- h); [ idtac | ring ].
- pattern x at 2 in |- *; rewrite double_var.
+ pattern x at 2; rewrite double_var.
replace (- h - x / 2 + (x / 2 + x / 2 + h)) with (x / 2); [ apply H7 | ring ].
apply r.
apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply r ].
- apply (sym_not_eq (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h;
+ apply (not_eq_sym (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h;
[ apply H5 | ring ].
replace (x + h - x) with h;
[ apply Rlt_le_trans with alp;
- [ apply H6 | unfold alp in |- *; apply Rmin_l ]
+ [ apply H6 | unfold alp; apply Rmin_l ]
| ring ].
Qed.
@@ -637,7 +637,7 @@ Theorem D_in_imp :
forall (f g:R -> R) (D D1:R -> Prop) (x:R),
(forall x:R, D1 x -> D x) -> D_in f g D x -> D_in f g D1 x.
Proof.
- intros f g D D1 x H; unfold D_in in |- *.
+ intros f g D D1 x H; unfold D_in.
intros H0; apply limit1_imp with (D := D_x D x); auto.
intros x1 [H1 H2]; split; auto.
Qed.
@@ -646,7 +646,7 @@ Theorem D_in_ext :
forall (f g h:R -> R) (D:R -> Prop) (x:R),
f x = g x -> D_in h f D x -> D_in h g D x.
Proof.
- intros f g h D x H; unfold D_in in |- *.
+ intros f g h D x H; unfold D_in.
rewrite H; auto.
Qed.
@@ -661,7 +661,7 @@ Proof.
intros x H0; repeat split.
assumption.
apply D_in_ext with (f := fun x:R => / x * (z * exp (z * ln x))).
- unfold Rminus in |- *; rewrite Rpower_plus; rewrite Rpower_Ropp;
+ unfold Rminus; rewrite Rpower_plus; rewrite Rpower_Ropp;
rewrite (Rpower_1 _ H); unfold Rpower; ring.
apply Dcomp with
(f := ln)
@@ -674,7 +674,7 @@ Proof.
intros x H1; repeat split; auto.
apply
(Dcomp (fun _:R => True) (fun _:R => True) (fun x => z) exp
- (fun x:R => z * x) exp); simpl in |- *.
+ (fun x:R => z * x) exp); simpl.
apply D_in_ext with (f := fun x:R => z * 1).
apply Rmult_1_r.
apply (Dmult_const (fun x => True) (fun x => x) (fun x => 1)); apply Dx.
@@ -687,16 +687,16 @@ Theorem derivable_pt_lim_power :
0 < x -> derivable_pt_lim (fun x => x ^R y) x (y * x ^R (y - 1)).
Proof.
intros x y H.
- unfold Rminus in |- *; rewrite Rpower_plus.
+ unfold Rminus; rewrite Rpower_plus.
rewrite Rpower_Ropp.
rewrite Rpower_1; auto.
rewrite <- Rmult_assoc.
- unfold Rpower in |- *.
+ unfold Rpower.
apply derivable_pt_lim_comp with (f1 := ln) (f2 := fun x => exp (y * x)).
apply derivable_pt_lim_ln; assumption.
rewrite (Rmult_comm y).
apply derivable_pt_lim_comp with (f1 := fun x => y * x) (f2 := exp).
- pattern y at 2 in |- *; replace y with (0 * ln x + y * 1).
+ pattern y at 2; replace y with (0 * ln x + y * 1).
apply derivable_pt_lim_mult with (f1 := fun x:R => y) (f2 := fun x:R => x).
apply derivable_pt_lim_const with (a := y).
apply derivable_pt_lim_id.