summaryrefslogtreecommitdiff
path: root/theories/Reals/Rlimit.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rlimit.v')
-rw-r--r--theories/Reals/Rlimit.v62
1 files changed, 31 insertions, 31 deletions
diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v
index 1a2fa03a..be7895f5 100644
--- a/theories/Reals/Rlimit.v
+++ b/theories/Reals/Rlimit.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rlimit.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
(*********************************************************)
(** Definition of the limit *)
@@ -85,7 +85,7 @@ Proof.
fourier.
discrR.
ring.
-Qed.
+Qed.
(*********)
Lemma prop_eps : forall r:R, (forall eps:R, eps > 0 -> r < eps) -> r <= 0.
@@ -95,7 +95,7 @@ Proof.
elim H0; intro.
apply Req_le; assumption.
clear H0; generalize (H r H1); intro; generalize (Rlt_irrefl r); intro;
- elimtype False; auto.
+ exfalso; auto.
Qed.
(*********)
@@ -148,7 +148,7 @@ Qed.
(*******************************)
(*********)
-Record Metric_Space : Type :=
+Record Metric_Space : Type :=
{Base : Type;
dist : Base -> Base -> R;
dist_pos : forall x y:Base, dist x y >= 0;
@@ -167,7 +167,7 @@ Definition limit_in (X X':Metric_Space) (f:Base X -> Base X')
eps > 0 ->
exists alp : R,
alp > 0 /\
- (forall x:Base X, D x /\ dist X x x0 < alp -> dist X' (f x) l < eps).
+ (forall x:Base X, D x /\ dist X x x0 < alp -> dist X' (f x) l < eps).
(*******************************)
(** ** R is a metric space *)
@@ -214,7 +214,7 @@ Qed.
Lemma lim_x : forall (D:R -> Prop) (x0:R), limit1_in (fun x:R => x) D x0 x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
- split with eps; split; auto; intros; elim H0; intros;
+ split with eps; split; auto; intros; elim H0; intros;
auto.
Qed.
@@ -226,7 +226,7 @@ Lemma limit_plus :
Proof.
intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
intros; elim (H (eps * / 2) (eps2_Rgt_R0 eps H1));
- elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl in |- *;
+ elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl in |- *;
clear H H0; intros; elim H; elim H0; clear H H0; intros;
split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
@@ -248,11 +248,11 @@ Lemma limit_Ropp :
limit1_in f D l x0 -> limit1_in (fun x:R => - f x) D (- l) x0.
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
- elim (H eps H0); clear H; intros; elim H; clear H;
- intros; split with x; split; auto; intros; generalize (H1 x1 H2);
+ elim (H eps H0); clear H; intros; elim H; clear H;
+ intros; split with x; split; auto; intros; generalize (H1 x1 H2);
clear H1; intro; unfold R_dist in |- *; unfold Rminus in |- *;
rewrite (Ropp_involutive l); rewrite (Rplus_comm (- f x1) l);
- fold (l - f x1) in |- *; fold (R_dist l (f x1)) in |- *;
+ fold (l - f x1) in |- *; fold (R_dist l (f x1)) in |- *;
rewrite R_dist_sym; assumption.
Qed.
@@ -273,7 +273,7 @@ Lemma limit_free :
Proof.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
split with eps; split; auto; intros; elim (R_dist_refl (f x) (f x));
- intros a b; rewrite (b (refl_equal (f x))); unfold Rgt in H;
+ intros a b; rewrite (b (refl_equal (f x))); unfold Rgt in H;
assumption.
Qed.
@@ -286,13 +286,13 @@ Proof.
intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
intros;
elim (H (Rmin 1 (eps * mul_factor l l')) (mul_factor_gt_f eps l l' H1));
- elim (H0 (eps * mul_factor l l') (mul_factor_gt eps l l' H1));
- clear H H0; simpl in |- *; intros; elim H; elim H0;
+ elim (H0 (eps * mul_factor l l') (mul_factor_gt eps l l' H1));
+ clear H H0; simpl in |- *; intros; elim H; elim H0;
clear H H0; intros; split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
intros; elim H4; clear H4; intros; unfold R_dist in |- *;
replace (f x2 * g x2 - l * l') with (f x2 * (g x2 - l') + l' * (f x2 - l)).
- cut (Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l)) < eps).
+ cut (Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l)) < eps).
cut
(Rabs (f x2 * (g x2 - l') + l' * (f x2 - l)) <=
Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l))).
@@ -353,19 +353,19 @@ Proof.
unfold Rabs in |- *; case (Rcase_abs (l - l')); intros.
cut (forall eps:R, eps > 0 -> - (l - l') < eps).
intro; generalize (prop_eps (- (l - l')) H1); intro;
- generalize (Ropp_gt_lt_0_contravar (l - l') r); intro;
- unfold Rgt in H3; generalize (Rgt_not_le (- (l - l')) 0 H3);
- intro; elimtype False; auto.
+ generalize (Ropp_gt_lt_0_contravar (l - l') r); intro;
+ unfold Rgt in H3; generalize (Rgt_not_le (- (l - l')) 0 H3);
+ intro; exfalso; auto.
intros; cut (eps * / 2 > 0).
intro; generalize (H0 (eps * / 2) H2); rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
- unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
- intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
+ unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
+ intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
- rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
+ rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
intro; apply (Rlt_trans 0 1 2 Rlt_0_1 H2).
@@ -374,7 +374,7 @@ Proof.
(**)
cut (forall eps:R, eps > 0 -> l - l' < eps).
intro; generalize (prop_eps (l - l') H1); intro; elim (Rle_le_eq (l - l') 0);
- intros a b; clear b; apply (Rminus_diag_uniq l l');
+ intros a b; clear b; apply (Rminus_diag_uniq l l');
apply a; split.
assumption.
apply (Rge_le (l - l') 0 r).
@@ -383,11 +383,11 @@ Proof.
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
- unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
- intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
+ unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
+ intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
- rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
+ rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
intro; apply (Rlt_trans 0 1 2 Rlt_0_1 H2).
@@ -395,21 +395,21 @@ Proof.
rewrite a; clear a b; trivial.
(**)
intros; unfold adhDa in H; elim (H0 eps H2); intros; elim (H1 eps H2); intros;
- clear H0 H1; elim H3; elim H4; clear H3 H4; intros;
- simpl in |- *; simpl in H1, H4; generalize (Rmin_Rgt x x1 0);
+ clear H0 H1; elim H3; elim H4; clear H3 H4; intros;
+ simpl in |- *; simpl in H1, H4; generalize (Rmin_Rgt x x1 0);
intro; elim H5; intros; clear H5; elim (H (Rmin x x1) (H7 (conj H3 H0)));
intros; elim H5; intros; clear H5 H H6 H7;
- generalize (Rmin_Rgt x x1 (R_dist x2 x0)); intro;
- elim H; intros; clear H H6; unfold Rgt in H5; elim (H5 H9);
+ generalize (Rmin_Rgt x x1 (R_dist x2 x0)); intro;
+ elim H; intros; clear H H6; unfold Rgt in H5; elim (H5 H9);
intros; clear H5 H9; generalize (H1 x2 (conj H8 H6));
- generalize (H4 x2 (conj H8 H)); clear H8 H H6 H1 H4 H0 H3;
+ generalize (H4 x2 (conj H8 H)); clear H8 H H6 H1 H4 H0 H3;
intros;
generalize
(Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0);
unfold R_dist in |- *; intros; rewrite (Rabs_minus_sym (f x2) l) in H1;
rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1);
elim (Rmult_ne eps); intros a b; rewrite a; clear a b;
- generalize (R_dist_tri l l' (f x2)); unfold R_dist in |- *;
+ generalize (R_dist_tri l l' (f x2)); unfold R_dist in |- *;
intros;
apply
(Rle_lt_trans (Rabs (l - l')) (Rabs (l - f x2) + Rabs (f x2 - l'))
@@ -449,7 +449,7 @@ Proof.
intro H7; intro H10; elim H10; intros; cut (D x /\ Rabs (x - x0) < delta1).
cut (D x /\ Rabs (x - x0) < delta2).
intros; generalize (H5 H11); clear H5; intro H5; generalize (H7 H12);
- clear H7; intro H7; generalize (Rabs_triang_inv l (f x));
+ clear H7; intro H7; generalize (Rabs_triang_inv l (f x));
intro; rewrite Rabs_minus_sym in H7;
generalize
(Rle_lt_trans (Rabs l - Rabs (f x)) (Rabs (l - f x)) (Rabs l / 2) H13 H7);