summaryrefslogtreecommitdiff
path: root/theories/Reals/RiemannInt_SF.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/RiemannInt_SF.v')
-rw-r--r--theories/Reals/RiemannInt_SF.v278
1 files changed, 139 insertions, 139 deletions
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index 7a02544e..f9b1b890 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RiemannInt_SF.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -36,8 +36,8 @@ Proof.
intros I H H0; set (E := fun x:R => exists i : nat, I i /\ INR i = x);
assert (H1 : bound E).
unfold Nbound in H0; elim H0; intros N H1; unfold bound in |- *;
- exists (INR N); unfold is_upper_bound in |- *; intros;
- unfold E in H2; elim H2; intros; elim H3; intros;
+ exists (INR N); unfold is_upper_bound in |- *; intros;
+ unfold E in H2; elim H2; intros; elim H3; intros;
rewrite <- H5; apply le_INR; apply H1; assumption.
assert (H2 : exists x : R, E x).
elim H; intros; exists (INR x); unfold E in |- *; exists x; split;
@@ -54,13 +54,13 @@ Proof.
assert (H9 : x <= IZR (up x) - 1).
apply H5; intros; assert (H10 := H4 _ H9); unfold E in H9; elim H9; intros;
elim H11; intros; rewrite <- H13; apply Rplus_le_reg_l with 1;
- replace (1 + (IZR (up x) - 1)) with (IZR (up x));
+ replace (1 + (IZR (up x) - 1)) with (IZR (up x));
[ idtac | ring ]; replace (1 + INR x1) with (INR (S x1));
[ idtac | rewrite S_INR; ring ].
assert (H14 : (0 <= up x)%Z).
apply le_IZR; apply Rle_trans with x; [ apply H6 | left; assumption ].
assert (H15 := IZN _ H14); elim H15; clear H15; intros; rewrite H15;
- rewrite <- INR_IZR_INZ; apply le_INR; apply lt_le_S;
+ rewrite <- INR_IZR_INZ; apply le_INR; apply lt_le_S;
apply INR_lt; rewrite H13; apply Rle_lt_trans with x;
[ assumption | rewrite INR_IZR_INZ; rewrite <- H15; assumption ].
assert (H10 : x = IZR (up x) - 1).
@@ -68,7 +68,7 @@ Proof.
[ assumption
| apply Rplus_le_reg_l with (- x + 1);
replace (- x + 1 + (IZR (up x) - 1)) with (IZR (up x) - x);
- [ idtac | ring ]; replace (- x + 1 + x) with 1;
+ [ idtac | ring ]; replace (- x + 1 + x) with 1;
[ assumption | ring ] ].
assert (H11 : (0 <= up x)%Z).
apply le_IZR; apply Rle_trans with x; [ apply H6 | left; assumption ].
@@ -104,7 +104,7 @@ Proof.
simpl in |- *; split.
assumption.
intros; apply INR_le; rewrite H15; rewrite <- H15; elim H12; intros;
- rewrite H20; apply H4; unfold E in |- *; exists i;
+ rewrite H20; apply H4; unfold E in |- *; exists i;
split; [ assumption | reflexivity ].
Qed.
@@ -113,7 +113,7 @@ Qed.
(*******************************************)
Definition open_interval (a b x:R) : Prop := a < x < b.
-Definition co_interval (a b x:R) : Prop := a <= x < b.
+Definition co_interval (a b x:R) : Prop := a <= x < b.
Definition adapted_couple (f:R -> R) (a b:R) (l lf:Rlist) : Prop :=
ordered_Rlist l /\
@@ -149,7 +149,7 @@ Definition subdivision_val (a b:R) (f:StepFun a b) : Rlist :=
| existT a b => a
end.
-Boxed Fixpoint Int_SF (l k:Rlist) {struct l} : R :=
+Boxed Fixpoint Int_SF (l k:Rlist) : R :=
match l with
| nil => 0
| cons a l' =>
@@ -174,7 +174,7 @@ Definition RiemannInt_SF (a b:R) (f:StepFun a b) : R :=
Lemma StepFun_P1 :
forall (a b:R) (f:StepFun a b),
adapted_couple f a b (subdivision f) (subdivision_val f).
-Proof.
+Proof.
intros a b f; unfold subdivision_val in |- *; case (projT2 (pre f)); intros;
apply a0.
Qed.
@@ -182,7 +182,7 @@ Qed.
Lemma StepFun_P2 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple f a b l lf -> adapted_couple f b a l lf.
-Proof.
+Proof.
unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
repeat split; try assumption.
rewrite H2; unfold Rmin in |- *; case (Rle_dec a b); intro;
@@ -199,7 +199,7 @@ Lemma StepFun_P3 :
forall a b c:R,
a <= b ->
adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil).
-Proof.
+Proof.
intros; unfold adapted_couple in |- *; repeat split.
unfold ordered_Rlist in |- *; intros; simpl in H0; inversion H0;
[ simpl in |- *; assumption | elim (le_Sn_O _ H2) ].
@@ -212,19 +212,19 @@ Proof.
Qed.
Lemma StepFun_P4 : forall a b c:R, IsStepFun (fct_cte c) a b.
-Proof.
+Proof.
intros; unfold IsStepFun in |- *; case (Rle_dec a b); intro.
apply existT with (cons a (cons b nil)); unfold is_subdivision in |- *;
apply existT with (cons c nil); apply (StepFun_P3 c r).
apply existT with (cons b (cons a nil)); unfold is_subdivision in |- *;
- apply existT with (cons c nil); apply StepFun_P2;
+ apply existT with (cons c nil); apply StepFun_P2;
apply StepFun_P3; auto with real.
Qed.
Lemma StepFun_P5 :
forall (a b:R) (f:R -> R) (l:Rlist),
is_subdivision f a b l -> is_subdivision f b a l.
-Proof.
+Proof.
destruct 1 as (x,(H0,(H1,(H2,(H3,H4))))); exists x;
repeat split; try assumption.
rewrite H1; apply Rmin_comm.
@@ -233,7 +233,7 @@ Qed.
Lemma StepFun_P6 :
forall (f:R -> R) (a b:R), IsStepFun f a b -> IsStepFun f b a.
-Proof.
+Proof.
unfold IsStepFun in |- *; intros; elim X; intros; apply existT with x;
apply StepFun_P5; assumption.
Qed.
@@ -243,7 +243,7 @@ Lemma StepFun_P7 :
a <= b ->
adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf) ->
adapted_couple f r2 b (cons r2 l) lf.
-Proof.
+Proof.
unfold adapted_couple in |- *; intros; decompose [and] H0; clear H0;
assert (H5 : Rmax a b = b).
unfold Rmax in |- *; case (Rle_dec a b); intro;
@@ -258,7 +258,7 @@ Proof.
unfold Rmax in |- *; case (Rle_dec r2 b); intro;
[ rewrite H5 in H2; rewrite <- H2; reflexivity | elim n; assumption ].
simpl in H4; simpl in |- *; apply INR_eq; apply Rplus_eq_reg_l with 1;
- do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR;
+ do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR;
rewrite H4; reflexivity.
intros; unfold constant_D_eq, open_interval in |- *; intros;
unfold constant_D_eq, open_interval in H6;
@@ -270,7 +270,7 @@ Qed.
Lemma StepFun_P8 :
forall (f:R -> R) (l1 lf1:Rlist) (a b:R),
adapted_couple f a b l1 lf1 -> a = b -> Int_SF lf1 l1 = 0.
-Proof.
+Proof.
simple induction l1.
intros; induction lf1 as [| r lf1 Hreclf1]; reflexivity.
simple induction r0.
@@ -285,7 +285,7 @@ Proof.
ring.
rewrite H3; apply StepFun_P7 with a r r3; [ right; assumption | assumption ].
clear H H0 Hreclf1 r0; unfold adapted_couple in H1; decompose [and] H1;
- intros; simpl in H4; rewrite H4; unfold Rmin in |- *;
+ intros; simpl in H4; rewrite H4; unfold Rmin in |- *;
case (Rle_dec a b); intro; [ assumption | reflexivity ].
unfold adapted_couple in H1; decompose [and] H1; intros; apply Rle_antisym.
apply (H3 0%nat); simpl in |- *; apply lt_O_Sn.
@@ -299,14 +299,14 @@ Qed.
Lemma StepFun_P9 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple f a b l lf -> a <> b -> (2 <= Rlength l)%nat.
-Proof.
+Proof.
intros; unfold adapted_couple in H; decompose [and] H; clear H;
induction l as [| r l Hrecl];
[ simpl in H4; discriminate
| induction l as [| r0 l Hrecl0];
[ simpl in H3; simpl in H2; generalize H3; generalize H2;
- unfold Rmin, Rmax in |- *; case (Rle_dec a b);
- intros; elim H0; rewrite <- H5; rewrite <- H7;
+ unfold Rmin, Rmax in |- *; case (Rle_dec a b);
+ intros; elim H0; rewrite <- H5; rewrite <- H7;
reflexivity
| simpl in |- *; do 2 apply le_n_S; apply le_O_n ] ].
Qed.
@@ -317,13 +317,13 @@ Lemma StepFun_P10 :
adapted_couple f a b l lf ->
exists l' : Rlist,
(exists lf' : Rlist, adapted_couple_opt f a b l' lf').
-Proof.
+Proof.
simple induction l.
intros; unfold adapted_couple in H0; decompose [and] H0; simpl in H4;
discriminate.
intros; case (Req_dec a b); intro.
exists (cons a nil); exists nil; unfold adapted_couple_opt in |- *;
- unfold adapted_couple in |- *; unfold ordered_Rlist in |- *;
+ unfold adapted_couple in |- *; unfold ordered_Rlist in |- *;
repeat split; try (intros; simpl in H3; elim (lt_n_O _ H3)).
simpl in |- *; rewrite <- H2; unfold Rmin in |- *; case (Rle_dec a a); intro;
reflexivity.
@@ -341,7 +341,7 @@ Proof.
replace a with t2.
apply H6.
rewrite <- Hyp_eq; rewrite H3 in H1; unfold adapted_couple in H1;
- decompose [and] H1; clear H1; simpl in H9; rewrite H9;
+ decompose [and] H1; clear H1; simpl in H9; rewrite H9;
unfold Rmin in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
elim H6; clear H6; intros l' [lf' H6]; case (Req_dec t2 b); intro.
@@ -360,7 +360,7 @@ Proof.
decompose [and] H1; apply (H16 0%nat).
simpl in |- *; apply lt_O_Sn.
unfold open_interval in |- *; simpl in |- *; rewrite H7; simpl in H13;
- rewrite H13; unfold Rmin in |- *; case (Rle_dec a b);
+ rewrite H13; unfold Rmin in |- *; case (Rle_dec a b);
intro; [ assumption | elim n; assumption ].
elim (le_Sn_O _ H10).
intros; simpl in H8; elim (lt_n_O _ H8).
@@ -377,7 +377,7 @@ Proof.
clear Hreclf'; case (Req_dec r1 r2); intro.
case (Req_dec (f t2) r1); intro.
exists (cons t1 (cons s2 s3)); exists (cons r1 lf'); rewrite H3 in H1;
- rewrite H9 in H6; unfold adapted_couple in H6, H1;
+ rewrite H9 in H6; unfold adapted_couple in H6, H1;
decompose [and] H1; decompose [and] H6; clear H1 H6;
unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
repeat split.
@@ -417,7 +417,7 @@ Proof.
change
(pos_Rl (cons r2 lf') i <> pos_Rl (cons r2 lf') (S i) \/
f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r2 lf') i)
- in |- *; rewrite <- H9; elim H8; intros; apply H6;
+ in |- *; rewrite <- H9; elim H8; intros; apply H6;
simpl in |- *; apply H1.
intros; induction i as [| i Hreci].
simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
@@ -427,7 +427,7 @@ Proof.
elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl in |- *;
simpl in H1; apply H1.
exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
- rewrite H3 in H1; unfold adapted_couple in H1, H6;
+ rewrite H3 in H1; unfold adapted_couple in H1, H6;
decompose [and] H6; decompose [and] H1; clear H6 H1;
unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
repeat split.
@@ -438,7 +438,7 @@ Proof.
simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
change
(pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
- in |- *; apply (H12 i); simpl in |- *; apply lt_S_n;
+ in |- *; apply (H12 i); simpl in |- *; apply lt_S_n;
assumption.
simpl in |- *; simpl in H19; apply H19.
rewrite H9; simpl in |- *; simpl in H13; rewrite H13; unfold Rmax in |- *;
@@ -470,7 +470,7 @@ Proof.
elim H8; intros; rewrite <- H9; apply (H21 i); rewrite H9; rewrite H9 in H1;
simpl in |- *; simpl in H1; apply lt_S_n; apply H1.
exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
- rewrite H3 in H1; unfold adapted_couple in H1, H6;
+ rewrite H3 in H1; unfold adapted_couple in H1, H6;
decompose [and] H6; decompose [and] H1; clear H6 H1;
unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
repeat split.
@@ -481,7 +481,7 @@ Proof.
simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity.
change
(pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
- in |- *; apply (H11 i); simpl in |- *; apply lt_S_n;
+ in |- *; apply (H11 i); simpl in |- *; apply lt_S_n;
assumption.
simpl in |- *; simpl in H18; apply H18.
rewrite H9; simpl in |- *; simpl in H12; rewrite H12; unfold Rmax in |- *;
@@ -518,14 +518,14 @@ Proof.
Qed.
Lemma StepFun_P11 :
- forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
(f:R -> R),
a < b ->
adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2) -> r1 <= s2.
-Proof.
+Proof.
intros; unfold adapted_couple_opt in H1; elim H1; clear H1; intros;
- unfold adapted_couple in H0, H1; decompose [and] H0;
+ unfold adapted_couple in H0, H1; decompose [and] H0;
decompose [and] H1; clear H0 H1; assert (H12 : r = s1).
simpl in H10; simpl in H5; rewrite H10; rewrite H5; reflexivity.
assert (H14 := H3 0%nat (lt_O_Sn _)); simpl in H14; elim H14; intro.
@@ -542,7 +542,7 @@ Proof.
clear Hreclf2; assert (H17 : r3 = r4).
set (x := (r + s2) / 2); assert (H17 := H8 0%nat (lt_O_Sn _));
assert (H18 := H13 0%nat (lt_O_Sn _));
- unfold constant_D_eq, open_interval in H17, H18; simpl in H17;
+ unfold constant_D_eq, open_interval in H17, H18; simpl in H17;
simpl in H18; rewrite <- (H17 x).
rewrite <- (H18 x).
reflexivity.
@@ -582,7 +582,7 @@ Proof.
| unfold open_interval in |- *; simpl in |- *; split; assumption ].
assert (H19 : r3 = r5).
assert (H19 := H7 1%nat); simpl in H19;
- assert (H20 := H19 (lt_n_S _ _ (lt_O_Sn _))); elim H20;
+ assert (H20 := H19 (lt_n_S _ _ (lt_O_Sn _))); elim H20;
intro.
set (x := (s2 + Rmin r1 r0) / 2); assert (H22 := H8 0%nat);
assert (H23 := H13 1%nat); simpl in H22; simpl in H23;
@@ -595,7 +595,7 @@ Proof.
| unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
- unfold Rmin in |- *; case (Rle_dec r1 r0); intro;
+ unfold Rmin in |- *; case (Rle_dec r1 r0); intro;
assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
@@ -616,7 +616,7 @@ Proof.
| unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
- unfold Rmin in |- *; case (Rle_dec r1 r0);
+ unfold Rmin in |- *; case (Rle_dec r1 r0);
intro; assumption
| discrR ] ] ].
apply Rmult_lt_reg_l with 2;
@@ -630,7 +630,7 @@ Proof.
| apply Rplus_le_compat_l; apply Rmin_l ]
| discrR ] ].
elim H2; clear H2; intros; assert (H23 := H22 1%nat); simpl in H23;
- assert (H24 := H23 (lt_n_S _ _ (lt_O_Sn _))); elim H24;
+ assert (H24 := H23 (lt_n_S _ _ (lt_O_Sn _))); elim H24;
assumption.
elim H2; intros; assert (H22 := H20 0%nat); simpl in H22;
assert (H23 := H22 (lt_O_Sn _)); elim H23; intro;
@@ -644,7 +644,7 @@ Qed.
Lemma StepFun_P12 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple_opt f a b l lf -> adapted_couple_opt f b a l lf.
-Proof.
+Proof.
unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; intros;
decompose [and] H; clear H; repeat split; try assumption.
rewrite H0; unfold Rmin in |- *; case (Rle_dec a b); intro;
@@ -658,12 +658,12 @@ Proof.
Qed.
Lemma StepFun_P13 :
- forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
(f:R -> R),
a <> b ->
adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2) -> r1 <= s2.
-Proof.
+Proof.
intros; case (total_order_T a b); intro.
elim s; intro.
eapply StepFun_P11; [ apply a0 | apply H0 | apply H1 ].
@@ -677,7 +677,7 @@ Lemma StepFun_P14 :
a <= b ->
adapted_couple f a b l1 lf1 ->
adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
-Proof.
+Proof.
simple induction l1.
intros l2 lf1 lf2 a b Hyp H H0; unfold adapted_couple in H; decompose [and] H;
clear H H0 H2 H3 H1 H6; simpl in H4; discriminate.
@@ -705,7 +705,7 @@ Proof.
clear H H2 H4 H5 H3 H6 H8 H7 H11; simpl in H9; discriminate.
clear Hreclf2; assert (H6 : r = s1).
unfold adapted_couple in H, H2; decompose [and] H; decompose [and] H2;
- clear H H2; simpl in H13; simpl in H8; rewrite H13;
+ clear H H2; simpl in H13; simpl in H8; rewrite H13;
rewrite H8; reflexivity.
assert (H7 : r3 = r4 \/ r = r1).
case (Req_dec r r1); intro.
@@ -718,7 +718,7 @@ Proof.
rewrite <- (H20 (lt_O_Sn _) x).
reflexivity.
assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21; intro;
- [ idtac | elim H7; assumption ]; unfold x in |- *;
+ [ idtac | elim H7; assumption ]; unfold x in |- *;
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
@@ -734,7 +734,7 @@ Proof.
apply Rplus_lt_compat_l; apply H
| discrR ] ].
rewrite <- H6; assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21;
- intro; [ idtac | elim H7; assumption ]; unfold x in |- *;
+ intro; [ idtac | elim H7; assumption ]; unfold x in |- *;
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
@@ -884,7 +884,7 @@ Lemma StepFun_P15 :
forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
adapted_couple f a b l1 lf1 ->
adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
-Proof.
+Proof.
intros; case (Rle_dec a b); intro;
[ apply (StepFun_P14 r H H0)
| assert (H1 : b <= a);
@@ -897,8 +897,8 @@ Lemma StepFun_P16 :
forall (f:R -> R) (l lf:Rlist) (a b:R),
adapted_couple f a b l lf ->
exists l' : Rlist,
- (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
-Proof.
+ (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
+Proof.
intros; case (Rle_dec a b); intro;
[ apply (StepFun_P10 r H)
| assert (H1 : b <= a);
@@ -912,14 +912,14 @@ Lemma StepFun_P17 :
forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
adapted_couple f a b l1 lf1 ->
adapted_couple f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
-Proof.
+Proof.
intros; elim (StepFun_P16 H); intros l' [lf' H1]; rewrite (StepFun_P15 H H1);
rewrite (StepFun_P15 H0 H1); reflexivity.
Qed.
Lemma StepFun_P18 :
forall a b c:R, RiemannInt_SF (mkStepFun (StepFun_P4 a b c)) = c * (b - a).
-Proof.
+Proof.
intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c)))
@@ -943,7 +943,7 @@ Lemma StepFun_P19 :
forall (l1:Rlist) (f g:R -> R) (l:R),
Int_SF (FF l1 (fun x:R => f x + l * g x)) l1 =
Int_SF (FF l1 f) l1 + l * Int_SF (FF l1 g) l1.
-Proof.
+Proof.
intros; induction l1 as [| r l1 Hrecl1];
[ simpl in |- *; ring
| induction l1 as [| r0 l1 Hrecl0]; simpl in |- *;
@@ -953,7 +953,7 @@ Qed.
Lemma StepFun_P20 :
forall (l:Rlist) (f:R -> R),
(0 < Rlength l)%nat -> Rlength l = S (Rlength (FF l f)).
-Proof.
+Proof.
intros l f H; induction l;
[ elim (lt_irrefl _ H)
| simpl in |- *; rewrite RList_P18; rewrite RList_P14; reflexivity ].
@@ -962,9 +962,9 @@ Qed.
Lemma StepFun_P21 :
forall (a b:R) (f:R -> R) (l:Rlist),
is_subdivision f a b l -> adapted_couple f a b l (FF l f).
-Proof.
+Proof.
intros; unfold adapted_couple in |- *; unfold is_subdivision in X;
- unfold adapted_couple in X; elim X; clear X; intros;
+ unfold adapted_couple in X; elim X; clear X; intros;
decompose [and] p; clear p; repeat split; try assumption.
apply StepFun_P20; rewrite H2; apply lt_O_Sn.
intros; assert (H5 := H4 _ H3); unfold constant_D_eq, open_interval in H5;
@@ -974,7 +974,7 @@ Proof.
unfold FF in |- *; rewrite RList_P12.
simpl in |- *;
change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i))) in |- *;
- rewrite RList_P13; try assumption; rewrite (H5 x0 H6);
+ rewrite RList_P13; try assumption; rewrite (H5 x0 H6);
rewrite H5.
reflexivity.
split.
@@ -990,7 +990,7 @@ Proof.
| unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
- rewrite (Rplus_comm (pos_Rl (cons r l) i));
+ rewrite (Rplus_comm (pos_Rl (cons r l) i));
apply Rplus_lt_compat_l; elim H6; intros; apply Rlt_trans with x0;
assumption
| discrR ] ].
@@ -1002,7 +1002,7 @@ Lemma StepFun_P22 :
a <= b ->
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
-Proof.
+Proof.
unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
@@ -1011,9 +1011,9 @@ Proof.
unfold Rmax in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
apply existT with (FF (cons_ORlist lf lg) f); unfold adapted_couple in p, p0;
- decompose [and] p; decompose [and] p0; clear p p0;
+ decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H6; rewrite Hyp_min in H1; rewrite Hyp_max in H0;
- rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ rewrite Hyp_max in H5; unfold adapted_couple in |- *;
repeat split.
apply RList_P2; assumption.
rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
@@ -1024,25 +1024,25 @@ Proof.
In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
- (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
+ (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
apply H10; exists 0%nat; split;
[ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
intros H12 _; assert (H13 := H12 H10); elim H13; intro.
elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
- intros H11 _; assert (H14 := H11 H8); elim H14; intros;
+ intros H11 _; assert (H14 := H11 H8); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H6;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption | apply le_O_n | assumption ].
elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H11 _;
- assert (H14 := H11 H8); elim H14; intros; elim H15;
- clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
+ assert (H14 := H11 H8); elim H14; intros; elim H15;
+ clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
intros; apply H17; [ assumption | apply le_O_n | assumption ].
induction lf as [| r lf Hreclf].
simpl in |- *; right; assumption.
assert (H8 : In a (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
- elim (RList_P3 (cons r lf) a); intros; apply H12;
+ elim (RList_P3 (cons r lf) a); intros; apply H12;
exists 0%nat; split;
[ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
apply RList_P5; [ apply RList_P2; assumption | assumption ].
@@ -1058,21 +1058,21 @@ Proof.
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
- exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros H10 _.
assert (H11 := H10 H8); elim H11; intro.
elim
(RList_P3 (cons r lf)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
- intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption
@@ -1081,8 +1081,8 @@ Proof.
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
- intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros.
rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))).
apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
@@ -1187,7 +1187,7 @@ Proof.
apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H5;
rewrite <- H6 in H11; rewrite <- H5 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
- exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval in |- *;
+ exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval in |- *;
intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (Rlength lf))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
apply lt_S_n; replace (S (pred (Rlength lf))) with (Rlength lf).
@@ -1232,7 +1232,7 @@ Proof.
clear b0; apply RList_P17; try assumption.
apply RList_P2; assumption.
elim (RList_P9 lf lg (pos_Rl lf (S x0))); intros; apply H25; left;
- elim (RList_P3 lf (pos_Rl lf (S x0))); intros; apply H27;
+ elim (RList_P3 lf (pos_Rl lf (S x0))); intros; apply H27;
exists (S x0); split; [ reflexivity | apply H22 ].
Qed.
@@ -1240,7 +1240,7 @@ Lemma StepFun_P23 :
forall (a b:R) (f g:R -> R) (lf lg:Rlist),
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
-Proof.
+Proof.
intros; case (Rle_dec a b); intro;
[ apply StepFun_P22 with g; assumption
| apply StepFun_P5; apply StepFun_P22 with g;
@@ -1254,7 +1254,7 @@ Lemma StepFun_P24 :
a <= b ->
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
-Proof.
+Proof.
unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
unfold Rmin in |- *; case (Rle_dec a b); intro;
@@ -1263,9 +1263,9 @@ Proof.
unfold Rmax in |- *; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
apply existT with (FF (cons_ORlist lf lg) g); unfold adapted_couple in p, p0;
- decompose [and] p; decompose [and] p0; clear p p0;
+ decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H1; rewrite Hyp_min in H6; rewrite Hyp_max in H0;
- rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ rewrite Hyp_max in H5; unfold adapted_couple in |- *;
repeat split.
apply RList_P2; assumption.
rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
@@ -1276,25 +1276,25 @@ Proof.
In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
- (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
+ (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
apply H10; exists 0%nat; split;
[ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
intros H12 _; assert (H13 := H12 H10); elim H13; intro.
elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
- intros H11 _; assert (H14 := H11 H8); elim H14; intros;
+ intros H11 _; assert (H14 := H11 H8); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H6;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption | apply le_O_n | assumption ].
elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H11 _;
- assert (H14 := H11 H8); elim H14; intros; elim H15;
- clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
+ assert (H14 := H11 H8); elim H14; intros; elim H15;
+ clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
intros; apply H17; [ assumption | apply le_O_n | assumption ].
induction lf as [| r lf Hreclf].
simpl in |- *; right; assumption.
assert (H8 : In a (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
- elim (RList_P3 (cons r lf) a); intros; apply H12;
+ elim (RList_P3 (cons r lf) a); intros; apply H12;
exists 0%nat; split;
[ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
apply RList_P5; [ apply RList_P2; assumption | assumption ].
@@ -1310,20 +1310,20 @@ Proof.
elim
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
- exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros H10 _; assert (H11 := H10 H8); elim H11; intro.
elim
(RList_P3 (cons r lf)
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
- intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption
@@ -1332,8 +1332,8 @@ Proof.
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
- (pred (Rlength (cons_ORlist (cons r lf) lg)))));
- intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15;
assert (H17 : Rlength lg = S (pred (Rlength lg))).
apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
@@ -1436,7 +1436,7 @@ Proof.
apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H0;
rewrite <- H1 in H11; rewrite <- H0 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
- exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval in |- *;
+ exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval in |- *;
intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (Rlength lg))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
apply lt_S_n; replace (S (pred (Rlength lg))) with (Rlength lg).
@@ -1481,7 +1481,7 @@ Proof.
clear b0; apply RList_P17; try assumption;
[ apply RList_P2; assumption
| elim (RList_P9 lf lg (pos_Rl lg (S x0))); intros; apply H25; right;
- elim (RList_P3 lg (pos_Rl lg (S x0))); intros;
+ elim (RList_P3 lg (pos_Rl lg (S x0))); intros;
apply H27; exists (S x0); split; [ reflexivity | apply H22 ] ].
Qed.
@@ -1489,7 +1489,7 @@ Lemma StepFun_P25 :
forall (a b:R) (f g:R -> R) (lf lg:Rlist),
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
-Proof.
+Proof.
intros a b f g lf lg H H0; case (Rle_dec a b); intro;
[ apply StepFun_P24 with f; assumption
| apply StepFun_P5; apply StepFun_P24 with f;
@@ -1504,12 +1504,12 @@ Lemma StepFun_P26 :
is_subdivision g a b l1 ->
is_subdivision (fun x:R => f x + l * g x) a b l1.
Proof.
- intros a b l f g l1 (x0,(H0,(H1,(H2,(H3,H4)))))
+ intros a b l f g l1 (x0,(H0,(H1,(H2,(H3,H4)))))
(x,(_,(_,(_,(_,H9))))).
exists (FF l1 (fun x:R => f x + l * g x)); repeat split; try assumption.
apply StepFun_P20; rewrite H3; auto with arith.
- intros i H8 x1 H10; unfold open_interval in H10, H9, H4;
- rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10);
+ intros i H8 x1 H10; unfold open_interval in H10, H9, H4;
+ rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10);
assert (H11 : l1 <> nil).
red in |- *; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8).
destruct (RList_P19 _ H11) as (r,(r0,H12));
@@ -1548,7 +1548,7 @@ Lemma StepFun_P27 :
is_subdivision f a b lf ->
is_subdivision g a b lg ->
is_subdivision (fun x:R => f x + l * g x) a b (cons_ORlist lf lg).
-Proof.
+Proof.
intros a b l f g lf lg H H0; apply StepFun_P26;
[ apply StepFun_P23 with g; assumption
| apply StepFun_P25 with f; assumption ].
@@ -1557,16 +1557,16 @@ Qed.
(** The set of step functions on [a,b] is a vectorial space *)
Lemma StepFun_P28 :
forall (a b l:R) (f g:StepFun a b), IsStepFun (fun x:R => f x + l * g x) a b.
-Proof.
+Proof.
intros a b l f g; unfold IsStepFun in |- *; assert (H := pre f);
- assert (H0 := pre g); unfold IsStepFun in H, H0; elim H;
- elim H0; intros; apply existT with (cons_ORlist x0 x);
+ assert (H0 := pre g); unfold IsStepFun in H, H0; elim H;
+ elim H0; intros; apply existT with (cons_ORlist x0 x);
apply StepFun_P27; assumption.
Qed.
Lemma StepFun_P29 :
forall (a b:R) (f:StepFun a b), is_subdivision f a b (subdivision f).
-Proof.
+Proof.
intros a b f; unfold is_subdivision in |- *;
apply existT with (subdivision_val f); apply StepFun_P1.
Qed.
@@ -1575,7 +1575,7 @@ Lemma StepFun_P30 :
forall (a b l:R) (f g:StepFun a b),
RiemannInt_SF (mkStepFun (StepFun_P28 l f g)) =
RiemannInt_SF f + l * RiemannInt_SF g.
-Proof.
+Proof.
intros a b l f g; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
(intro;
replace
@@ -1612,29 +1612,29 @@ Lemma StepFun_P31 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple f a b l lf ->
adapted_couple (fun x:R => Rabs (f x)) a b l (app_Rlist lf Rabs).
-Proof.
+Proof.
unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
repeat split; try assumption.
symmetry in |- *; rewrite H3; rewrite RList_P18; reflexivity.
intros; unfold constant_D_eq, open_interval in |- *;
- unfold constant_D_eq, open_interval in H5; intros;
+ unfold constant_D_eq, open_interval in H5; intros;
rewrite (H5 _ H _ H4); rewrite RList_P12;
[ reflexivity | rewrite H3 in H; simpl in H; apply H ].
Qed.
Lemma StepFun_P32 :
forall (a b:R) (f:StepFun a b), IsStepFun (fun x:R => Rabs (f x)) a b.
-Proof.
+Proof.
intros a b f; unfold IsStepFun in |- *; apply existT with (subdivision f);
unfold is_subdivision in |- *;
- apply existT with (app_Rlist (subdivision_val f) Rabs);
+ apply existT with (app_Rlist (subdivision_val f) Rabs);
apply StepFun_P31; apply StepFun_P1.
Qed.
Lemma StepFun_P33 :
forall l2 l1:Rlist,
ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (app_Rlist l2 Rabs) l1.
-Proof.
+Proof.
simple induction l2; intros.
simpl in |- *; rewrite Rabs_R0; right; reflexivity.
simpl in |- *; induction l1 as [| r1 l1 Hrecl1].
@@ -1653,14 +1653,14 @@ Lemma StepFun_P34 :
forall (a b:R) (f:StepFun a b),
a <= b ->
Rabs (RiemannInt_SF f) <= RiemannInt_SF (mkStepFun (StepFun_P32 f)).
-Proof.
+Proof.
intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P32 f)))
(subdivision (mkStepFun (StepFun_P32 f)))) with
(Int_SF (app_Rlist (subdivision_val f) Rabs) (subdivision f)).
apply StepFun_P33; assert (H0 := StepFun_P29 f); unfold is_subdivision in H0;
- elim H0; intros; unfold adapted_couple in p; decompose [and] p;
+ elim H0; intros; unfold adapted_couple in p; decompose [and] p;
assumption.
apply StepFun_P17 with (fun x:R => Rabs (f x)) a b;
[ apply StepFun_P31; apply StepFun_P1
@@ -1675,7 +1675,7 @@ Lemma StepFun_P35 :
pos_Rl l (pred (Rlength l)) = b ->
(forall x:R, a < x < b -> f x <= g x) ->
Int_SF (FF l f) l <= Int_SF (FF l g) l.
-Proof.
+Proof.
simple induction l; intros.
right; reflexivity.
simpl in |- *; induction r0 as [| r0 r1 Hrecr0].
@@ -1742,7 +1742,7 @@ Lemma StepFun_P36 :
is_subdivision g a b l ->
(forall x:R, a < x < b -> f x <= g x) ->
RiemannInt_SF f <= RiemannInt_SF g.
-Proof.
+Proof.
intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l).
replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l).
@@ -1768,7 +1768,7 @@ Lemma StepFun_P37 :
a <= b ->
(forall x:R, a < x < b -> f x <= g x) ->
RiemannInt_SF f <= RiemannInt_SF g.
-Proof.
+Proof.
intros; eapply StepFun_P36; try assumption.
eapply StepFun_P25; apply StepFun_P29.
eapply StepFun_P23; apply StepFun_P29.
@@ -1785,8 +1785,8 @@ Lemma StepFun_P38 :
(i < pred (Rlength l))%nat ->
constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i)))
(f (pos_Rl l i))) }.
-Proof.
- intros l a b f; generalize a; clear a; induction l.
+Proof.
+ intros l a b f; generalize a; clear a; induction l.
intros a H H0 H1; simpl in H0; simpl in H1;
exists (mkStepFun (StepFun_P4 a b (f b))); split.
reflexivity.
@@ -1812,7 +1812,7 @@ Proof.
rewrite <- H4; apply RList_P7; [ assumption | left; reflexivity ].
assert (H8 : IsStepFun g' a b).
unfold IsStepFun in |- *; assert (H8 := pre g); unfold IsStepFun in H8;
- elim H8; intros lg H9; unfold is_subdivision in H9;
+ elim H8; intros lg H9; unfold is_subdivision in H9;
elim H9; clear H9; intros lg2 H9; split with (cons a lg);
unfold is_subdivision in |- *; split with (cons (f a) lg2);
unfold adapted_couple in H9; decompose [and] H9; clear H9;
@@ -1896,7 +1896,7 @@ Proof.
assert (H11 : (i < pred (Rlength (cons r1 l)))%nat).
simpl in |- *; apply lt_S_n; assumption.
assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12;
- unfold constant_D_eq, co_interval in |- *; intros;
+ unfold constant_D_eq, co_interval in |- *; intros;
rewrite <- (H12 _ H13); simpl in |- *; unfold g' in |- *;
case (Rle_dec r1 x); intro.
reflexivity.
@@ -1913,7 +1913,7 @@ Qed.
Lemma StepFun_P39 :
forall (a b:R) (f:StepFun a b),
RiemannInt_SF f = - RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))).
-Proof.
+Proof.
intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); case (Rle_dec b a);
intros.
assert (H : adapted_couple f a b (subdivision f) (subdivision_val f));
@@ -1931,12 +1931,12 @@ Proof.
rewrite Ropp_involutive; eapply StepFun_P17;
[ apply StepFun_P1
| apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
- elim H; intros; unfold is_subdivision in |- *;
+ elim H; intros; unfold is_subdivision in |- *;
elim p; intros; apply p0 ].
apply Ropp_eq_compat; eapply StepFun_P17;
[ apply StepFun_P1
| apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
- elim H; intros; unfold is_subdivision in |- *;
+ elim H; intros; unfold is_subdivision in |- *;
elim p; intros; apply p0 ].
assert (H : a < b);
[ auto with real
@@ -1951,9 +1951,9 @@ Lemma StepFun_P40 :
adapted_couple f a b l1 lf1 ->
adapted_couple f b c l2 lf2 ->
adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f).
-Proof.
+Proof.
intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; unfold adapted_couple in H1, H2;
- unfold adapted_couple in |- *; decompose [and] H1;
+ unfold adapted_couple in |- *; decompose [and] H1;
decompose [and] H2; clear H1 H2; repeat split.
apply RList_P25; try assumption.
rewrite H10; rewrite H4; unfold Rmin, Rmax in |- *; case (Rle_dec a b);
@@ -2030,7 +2030,7 @@ Proof.
pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; rewrite H14;
change
(pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
- pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15;
+ pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15;
rewrite H15; assert (H18 := H8 (S i));
unfold constant_D_eq, open_interval in H18;
assert (H19 : (S i < pred (Rlength l1))%nat).
@@ -2112,11 +2112,11 @@ Proof.
rewrite H19 in H16; rewrite H19 in H17;
change
(pos_Rl (cons_Rlist (cons r2 r3) l2) i =
- pos_Rl l2 (S i - Rlength (cons r1 (cons r2 r3))))
+ pos_Rl l2 (S i - Rlength (cons r1 (cons r2 r3))))
in H16; rewrite H16;
change
(pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
- pos_Rl l2 (S (S i - Rlength (cons r1 (cons r2 r3)))))
+ pos_Rl l2 (S (S i - Rlength (cons r1 (cons r2 r3)))))
in H17; rewrite H17; assert (H20 := H13 (S i - Rlength l1)%nat);
unfold constant_D_eq, open_interval in H20;
assert (H21 : (S i - Rlength l1 < pred (Rlength l2))%nat).
@@ -2154,7 +2154,7 @@ Proof.
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite <- H19 in H16; rewrite <- H19 in H17; elim H2; intros;
- rewrite H19 in H25; rewrite H19 in H26; simpl in H25;
+ rewrite H19 in H25; rewrite H19 in H26; simpl in H25;
simpl in H16; rewrite H16 in H25; simpl in H26; simpl in H17;
rewrite H17 in H26; simpl in H24; rewrite H24 in H25;
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H25 H26)).
@@ -2189,7 +2189,7 @@ Lemma StepFun_P42 :
pos_Rl l1 (pred (Rlength l1)) = pos_Rl l2 0 ->
Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2) =
Int_SF (FF l1 f) l1 + Int_SF (FF l2 f) l2.
-Proof.
+Proof.
intros l1 l2 f; induction l1 as [| r l1 IHl1]; intros H;
[ simpl in |- *; ring
| destruct l1 as [| r0 r1];
@@ -2200,11 +2200,11 @@ Proof.
Qed.
Lemma StepFun_P43 :
- forall (f:R -> R) (a b c:R) (pr1:IsStepFun f a b)
+ forall (f:R -> R) (a b c:R) (pr1:IsStepFun f a b)
(pr2:IsStepFun f b c) (pr3:IsStepFun f a c),
RiemannInt_SF (mkStepFun pr1) + RiemannInt_SF (mkStepFun pr2) =
RiemannInt_SF (mkStepFun pr3).
-Proof.
+Proof.
intros f; intros.
pose proof pr1 as (l1,(lf1,H1)).
pose proof pr2 as (l2,(lf2,H2)).
@@ -2441,7 +2441,7 @@ Qed.
Lemma StepFun_P44 :
forall (f:R -> R) (a b c:R),
IsStepFun f a b -> a <= c <= b -> IsStepFun f a c.
-Proof.
+Proof.
intros f; intros; assert (H0 : a <= b).
elim H; intros; apply Rle_trans with c; assumption.
elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
@@ -2479,7 +2479,7 @@ Proof.
case (Rle_dec c r1); intro; [ left; assumption | right; auto with real ].
elim H1; intro.
split with (cons r (cons c nil)); split with (cons r3 nil);
- unfold adapted_couple in H; decompose [and] H; clear H;
+ unfold adapted_couple in H; decompose [and] H; clear H;
assert (H6 : r = a).
simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intro;
[ reflexivity
@@ -2497,7 +2497,7 @@ Proof.
assert (H12 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
simpl in |- *; apply lt_O_Sn.
apply (H10 H12); unfold open_interval in |- *; simpl in |- *;
- rewrite H11 in H9; simpl in H9; elim H9; clear H9;
+ rewrite H11 in H9; simpl in H9; elim H9; clear H9;
intros; split; try assumption.
apply Rlt_le_trans with c; assumption.
elim (le_Sn_O _ H11).
@@ -2505,8 +2505,8 @@ Proof.
cut (r1 <= c <= b).
intros.
elim (X0 _ _ _ _ _ H3 H2); intros l1' [lf1' H4]; split with (cons r l1');
- split with (cons r3 lf1'); unfold adapted_couple in H, H4;
- decompose [and] H; decompose [and] H4; clear H H4 X0;
+ split with (cons r3 lf1'); unfold adapted_couple in H, H4;
+ decompose [and] H; decompose [and] H4; clear H H4 X0;
assert (H14 : a <= b).
elim H0; intros; apply Rle_trans with c; assumption.
assert (H16 : r = a).
@@ -2538,7 +2538,7 @@ Proof.
assert (H18 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
simpl in |- *; apply lt_O_Sn.
apply (H17 H18); unfold open_interval in |- *; simpl in |- *; simpl in H4;
- elim H4; clear H4; intros; split; try assumption;
+ elim H4; clear H4; intros; split; try assumption;
replace r1 with r4.
assumption.
simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro;
@@ -2557,7 +2557,7 @@ Qed.
Lemma StepFun_P45 :
forall (f:R -> R) (a b c:R),
IsStepFun f a b -> a <= c <= b -> IsStepFun f c b.
-Proof.
+Proof.
intros f; intros; assert (H0 : a <= b).
elim H; intros; apply Rle_trans with c; assumption.
elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
@@ -2614,7 +2614,7 @@ Proof.
apply (H7 0%nat).
simpl in |- *; apply lt_O_Sn.
unfold open_interval in |- *; simpl in |- *; simpl in H6; elim H6; clear H6;
- intros; split; try assumption; apply Rle_lt_trans with c;
+ intros; split; try assumption; apply Rle_lt_trans with c;
try assumption; replace r with a.
elim H0; intros; assumption.
simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intros;
@@ -2634,7 +2634,7 @@ Qed.
Lemma StepFun_P46 :
forall (f:R -> R) (a b c:R),
IsStepFun f a b -> IsStepFun f b c -> IsStepFun f a c.
-Proof.
+Proof.
intros f; intros; case (Rle_dec a b); case (Rle_dec b c); intros.
apply StepFun_P41 with b; assumption.
case (Rle_dec a c); intro.