summaryrefslogtreecommitdiff
path: root/theories/Reals/Rgeom.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rgeom.v')
-rw-r--r--theories/Reals/Rgeom.v32
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Reals/Rgeom.v b/theories/Reals/Rgeom.v
index bda64e77..ffa11608 100644
--- a/theories/Reals/Rgeom.v
+++ b/theories/Reals/Rgeom.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,9 +9,9 @@
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
-Require Import Rtrigo.
+Require Import Rtrigo1.
Require Import R_sqrt.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
(** * Distance *)
@@ -20,23 +20,23 @@ Definition dist_euc (x0 y0 x1 y1:R) : R :=
Lemma distance_refl : forall x0 y0:R, dist_euc x0 y0 x0 y0 = 0.
Proof.
- intros x0 y0; unfold dist_euc in |- *; apply Rsqr_inj;
+ intros x0 y0; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat;
[ apply Rle_0_sqr | apply Rle_0_sqr ]
| right; reflexivity
| rewrite Rsqr_0; rewrite Rsqr_sqrt;
- [ unfold Rsqr in |- *; ring
+ [ unfold Rsqr; ring
| apply Rplus_le_le_0_compat; [ apply Rle_0_sqr | apply Rle_0_sqr ] ] ].
Qed.
Lemma distance_symm :
forall x0 y0 x1 y1:R, dist_euc x0 y0 x1 y1 = dist_euc x1 y1 x0 y0.
Proof.
- intros x0 y0 x1 y1; unfold dist_euc in |- *; apply Rsqr_inj;
+ intros x0 y0 x1 y1; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;
- [ unfold Rsqr in |- *; ring
+ [ unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ] ]; apply Rle_0_sqr.
Qed.
@@ -49,8 +49,8 @@ Lemma law_cosines :
a * c * cos ac = (x0 - x1) * (x2 - x1) + (y0 - y1) * (y2 - y1) ->
Rsqr b = Rsqr c + Rsqr a - 2 * (a * c * cos ac).
Proof.
- unfold dist_euc in |- *; intros; repeat rewrite Rsqr_sqrt;
- [ rewrite H; unfold Rsqr in |- *; ring
+ unfold dist_euc; intros; repeat rewrite Rsqr_sqrt;
+ [ rewrite H; unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ]; apply Rle_0_sqr.
@@ -60,7 +60,7 @@ Lemma triangle :
forall x0 y0 x1 y1 x2 y2:R,
dist_euc x0 y0 x1 y1 <= dist_euc x0 y0 x2 y2 + dist_euc x2 y2 x1 y1.
Proof.
- intros; unfold dist_euc in |- *; apply Rsqr_incr_0;
+ intros; unfold dist_euc; apply Rsqr_incr_0;
[ rewrite Rsqr_plus; repeat rewrite Rsqr_sqrt;
[ replace (Rsqr (x0 - x1)) with
(Rsqr (x0 - x2) + Rsqr (x2 - x1) + 2 * (x0 - x2) * (x2 - x1));
@@ -112,7 +112,7 @@ Definition yt (y ty:R) : R := y + ty.
Lemma translation_0 : forall x y:R, xt x 0 = x /\ yt y 0 = y.
Proof.
- intros x y; split; [ unfold xt in |- * | unfold yt in |- * ]; ring.
+ intros x y; split; [ unfold xt | unfold yt ]; ring.
Qed.
Lemma isometric_translation :
@@ -120,7 +120,7 @@ Lemma isometric_translation :
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xt x1 tx - xt x2 tx) + Rsqr (yt y1 ty - yt y2 ty).
Proof.
- intros; unfold Rsqr, xt, yt in |- *; ring.
+ intros; unfold Rsqr, xt, yt; ring.
Qed.
(******************************************************************)
@@ -132,13 +132,13 @@ Definition yr (x y theta:R) : R := - x * sin theta + y * cos theta.
Lemma rotation_0 : forall x y:R, xr x y 0 = x /\ yr x y 0 = y.
Proof.
- intros x y; unfold xr, yr in |- *; split; rewrite cos_0; rewrite sin_0; ring.
+ intros x y; unfold xr, yr; split; rewrite cos_0; rewrite sin_0; ring.
Qed.
Lemma rotation_PI2 :
forall x y:R, xr x y (PI / 2) = y /\ yr x y (PI / 2) = - x.
Proof.
- intros x y; unfold xr, yr in |- *; split; rewrite cos_PI2; rewrite sin_PI2;
+ intros x y; unfold xr, yr; split; rewrite cos_PI2; rewrite sin_PI2;
ring.
Qed.
@@ -148,7 +148,7 @@ Lemma isometric_rotation_0 :
Rsqr (xr x1 y1 theta - xr x2 y2 theta) +
Rsqr (yr x1 y1 theta - yr x2 y2 theta).
Proof.
- intros; unfold xr, yr in |- *;
+ intros; unfold xr, yr;
replace
(x1 * cos theta + y1 * sin theta - (x2 * cos theta + y2 * sin theta)) with
(cos theta * (x1 - x2) + sin theta * (y1 - y2));
@@ -168,7 +168,7 @@ Lemma isometric_rotation :
dist_euc (xr x1 y1 theta) (yr x1 y1 theta) (xr x2 y2 theta)
(yr x2 y2 theta).
Proof.
- unfold dist_euc in |- *; intros; apply Rsqr_inj;
+ unfold dist_euc; intros; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;