summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis5.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis5.v')
-rw-r--r--theories/Reals/Ranalysis5.v1348
1 files changed, 1348 insertions, 0 deletions
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v
new file mode 100644
index 00000000..c8a2e1a8
--- /dev/null
+++ b/theories/Reals/Ranalysis5.v
@@ -0,0 +1,1348 @@
+Require Import Rbase.
+Require Import Ranalysis_reg.
+Require Import Rfunctions.
+Require Import Rseries.
+Require Import Fourier.
+Require Import RiemannInt.
+Require Import SeqProp.
+Require Import Max.
+Local Open Scope R_scope.
+
+(** * Preliminaries lemmas *)
+
+Lemma f_incr_implies_g_incr_interv : forall f g:R->R, forall lb ub,
+ lb < ub ->
+ (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
+ (forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ (forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y).
+Proof.
+intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub.
+ assert (x_encad : f lb <= x <= f ub).
+ split ; [assumption | apply Rle_trans with (r2:=y) ; [apply Rlt_le|] ; assumption].
+ assert (y_encad : f lb <= y <= f ub).
+ split ; [apply Rle_trans with (r2:=x) ; [|apply Rlt_le] ; assumption | assumption].
+ assert (Temp1 : lb <= lb) by intuition ; assert (Temp2 : ub <= ub) by intuition.
+ assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)).
+ assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)).
+ clear Temp1 Temp2.
+ case (Rlt_dec (g x) (g y)).
+ intuition.
+ intros Hfalse.
+ assert (Temp := Rnot_lt_le _ _ Hfalse).
+ assert (Hcontradiction : y <= x).
+ replace y with (id y) by intuition ; replace x with (id x) by intuition ;
+ rewrite <- f_eq_g. rewrite <- f_eq_g.
+ assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y).
+ intros m n lb_le_m m_le_n n_lt_ub.
+ case (m_le_n).
+ intros ; apply Rlt_le ; apply f_incr ; [| | apply Rlt_le] ; assumption.
+ intros Hyp ; rewrite Hyp ; apply Req_le ; reflexivity.
+ apply f_incr2.
+ intuition. intuition.
+ Focus 3. intuition.
+ Focus 2. intuition.
+ Focus 2. intuition. Focus 2. intuition.
+ assert (Temp2 : g x <> ub).
+ intro Hf.
+ assert (Htemp : (comp f g) x = f ub).
+ unfold comp ; rewrite Hf ; reflexivity.
+ rewrite f_eq_g in Htemp ; unfold id in Htemp.
+ assert (Htemp2 : x < f ub).
+ apply Rlt_le_trans with (r2:=y) ; intuition.
+ clear -Htemp Htemp2. fourier.
+ intuition. intuition.
+ clear -Temp2 gx_encad.
+ case (proj2 gx_encad).
+ intuition.
+ intro Hfalse ; apply False_ind ; apply Temp2 ; assumption.
+ apply False_ind. clear - Hcontradiction x_lt_y. fourier.
+Qed.
+
+Lemma derivable_pt_id_interv : forall (lb ub x:R),
+ lb <= x <= ub ->
+ derivable_pt id x.
+Proof.
+intros.
+ reg.
+Qed.
+
+Lemma pr_nu_var2_interv : forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x)
+ (pr2 : derivable_pt g x),
+ lb < ub ->
+ lb < x < ub ->
+ (forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
+Proof.
+intros f g lb ub x Prf Prg lb_lt_ub x_encad local_eq.
+assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs g x l)).
+ intros a l a_encad.
+ unfold derivable_pt_abs, derivable_pt_lim.
+ split.
+ intros Hyp eps eps_pos.
+ elim (Hyp eps eps_pos) ; intros delta Hyp2.
+ assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
+ clear-a lb ub a_encad delta.
+ apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
+ exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
+ intros h h_neq h_encad.
+ replace (g (a + h) - g a) with (f (a + h) - f a).
+ apply Hyp2 ; intuition.
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
+ assumption. apply Rmin_l.
+ assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
+ intros ; apply Ropp_eq_compat ; intuition.
+ rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
+ assumption.
+ assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
+ intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
+ apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
+ apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
+ split.
+ assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Sublemma2. rewrite Rabs_Ropp.
+ apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ assert (Sublemma : forall x y z, y < z - x -> x + y < z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Sublemma2.
+ apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ intros Hyp eps eps_pos.
+ elim (Hyp eps eps_pos) ; intros delta Hyp2.
+ assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0).
+ clear-a lb ub a_encad delta.
+ apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition.
+ exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond).
+ intros h h_neq h_encad.
+ replace (f (a + h) - f a) with (g (a + h) - g a).
+ apply Hyp2 ; intuition.
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))).
+ assumption. apply Rmin_l.
+ assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h).
+ intros ; apply Ropp_eq_compat ; intuition.
+ rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity.
+ assumption.
+ assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
+ intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
+ apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
+ apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
+ split.
+ assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Sublemma2. rewrite Rabs_Ropp.
+ apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ assert (Sublemma : forall x y z, y < z - x -> x + y < z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Sublemma2.
+ apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
+ unfold derivable_pt in Prf.
+ unfold derivable_pt in Prg.
+ elim Prf; intros.
+ elim Prg; intros.
+ assert (Temp := p); rewrite H in Temp.
+ unfold derivable_pt_abs in p.
+ unfold derivable_pt_abs in p0.
+ simpl in |- *.
+ apply (uniqueness_limite g x x0 x1 Temp p0).
+ assumption.
+Qed.
+
+
+(* begin hide *)
+Lemma leftinv_is_rightinv : forall (f g:R->R),
+ (forall x y, x < y -> f x < f y) ->
+ (forall x, (comp f g) x = id x) ->
+ (forall x, (comp g f) x = id x).
+Proof.
+intros f g f_incr Hyp x.
+ assert (forall x, f (g (f x)) = f x).
+ intros ; apply Hyp.
+ assert(f_inj : forall x y, f x = f y -> x = y).
+ intros a b fa_eq_fb.
+ case(total_order_T a b).
+ intro s ; case s ; clear s.
+ intro Hf.
+ assert (Hfalse := f_incr a b Hf).
+ apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
+ intuition.
+ intro Hf. assert (Hfalse := f_incr b a Hf).
+ apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
+ apply f_inj. unfold comp.
+ unfold comp in Hyp.
+ rewrite Hyp.
+ unfold id.
+ reflexivity.
+Qed.
+(* end hide *)
+
+Lemma leftinv_is_rightinv_interv : forall (f g:R->R) (lb ub:R),
+ (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall y, f lb <= y -> y <= f ub -> (comp f g) y = id y) ->
+ (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ forall x,
+ lb <= x <= ub ->
+ (comp g f) x = id x.
+Proof.
+intros f g lb ub f_incr_interv Hyp g_wf x x_encad.
+ assert(f_inj : forall x y, lb <= x <= ub -> lb <= y <= ub -> f x = f y -> x = y).
+ intros a b a_encad b_encad fa_eq_fb.
+ case(total_order_T a b).
+ intro s ; case s ; clear s.
+ intro Hf.
+ assert (Hfalse := f_incr_interv a b (proj1 a_encad) Hf (proj2 b_encad)).
+ apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption.
+ intuition.
+ intro Hf. assert (Hfalse := f_incr_interv b a (proj1 b_encad) Hf (proj2 a_encad)).
+ apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption.
+ assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
+ intros m n cond1 cond2 cond3.
+ case cond2.
+ intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
+ intro cond ; right ; rewrite cond ; reflexivity.
+ assert (Hyp2:forall x, lb <= x <= ub -> f (g (f x)) = f x).
+ intros ; apply Hyp. apply f_incr_interv2 ; intuition.
+ apply f_incr_interv2 ; intuition.
+ unfold comp ; unfold comp in Hyp.
+ apply f_inj.
+ apply g_wf ; apply f_incr_interv2 ; intuition.
+ unfold id ; assumption.
+ apply Hyp2 ; unfold id ; assumption.
+Qed.
+
+
+(** Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary *)
+
+Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat),
+ x < y ->
+ x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y.
+Proof.
+assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub).
+ intros x y lb ub Hyp.
+ split.
+ replace lb with ((lb + lb) * /2) by field.
+ unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
+ replace ub with ((ub + ub) * /2) by field.
+ unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
+intros x y P N x_lt_y.
+induction N.
+ simpl ; intuition.
+ simpl.
+ case (P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2)).
+ split. apply Sublemma ; intuition.
+ intuition.
+ split. intuition.
+ apply Sublemma ; intuition.
+Qed.
+
+Lemma IVT_interv_prelim1 : forall (x y x0:R) (D : R -> bool),
+ x < y ->
+ Un_cv (dicho_up x y D) x0 ->
+ x <= x0 <= y.
+Proof.
+intros x y x0 D x_lt_y bnd.
+ assert (Main : forall n, x <= dicho_up x y D n <= y).
+ intro n. unfold dicho_up.
+ apply (proj1 (IVT_interv_prelim0 x y D n x_lt_y)).
+ split.
+ apply Rle_cv_lim with (Vn:=dicho_up x y D) (Un:=fun n => x).
+ intro n ; exact (proj1 (Main n)).
+ unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (x -x) with 0 by field ; rewrite Rabs_R0 ; assumption.
+ assumption.
+ apply Rle_cv_lim with (Un:=dicho_up x y D) (Vn:=fun n => y).
+ intro n ; exact (proj2 (Main n)).
+ assumption.
+ unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption.
+Qed.
+
+Lemma IVT_interv : forall (f : R -> R) (x y : R),
+ (forall a, x <= a <= y -> continuity_pt f a) ->
+ x < y ->
+ f x < 0 ->
+ 0 < f y ->
+ {z : R | x <= z <= y /\ f z = 0}.
+Proof.
+intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*)
+ cut (x <= y).
+ intro.
+ generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3).
+ generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3).
+ intros X X0.
+ elim X; intros.
+ elim X0; intros.
+ assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p).
+ rewrite H4 in p0.
+ exists x0.
+ split.
+ split.
+ apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
+ simpl in |- *.
+ right; reflexivity.
+ apply growing_ineq.
+ apply dicho_lb_growing; assumption.
+ assumption.
+ apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0).
+ apply decreasing_ineq.
+ apply dicho_up_decreasing; assumption.
+ assumption.
+ right; reflexivity.
+ 2: left; assumption.
+ set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n).
+ set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n).
+ cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0).
+ cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0).
+ intros.
+ cut (forall n:nat, f (Vn n) <= 0).
+ cut (forall n:nat, 0 <= f (Wn n)).
+ intros.
+ assert (H9 := H6 H8).
+ assert (H10 := H5 H7).
+ apply Rle_antisym; assumption.
+ intro.
+ unfold Wn in |- *.
+ cut (forall z:R, cond_positivity z = true <-> 0 <= z).
+ intro.
+ assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
+ elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros.
+ apply H9.
+ apply H8.
+ elim (H7 (f y)); intros.
+ apply H12.
+ left; assumption.
+ intro.
+ unfold cond_positivity in |- *.
+ case (Rle_dec 0 z); intro.
+ split.
+ intro; assumption.
+ intro; reflexivity.
+ split.
+ intro feqt;discriminate feqt.
+ intro.
+ elim n0; assumption.
+ unfold Vn in |- *.
+ cut (forall z:R, cond_positivity z = false <-> z < 0).
+ intros.
+ assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
+ left.
+ elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros.
+ apply H9.
+ apply H8.
+ elim (H7 (f x)); intros.
+ apply H12.
+ assumption.
+ intro.
+ unfold cond_positivity in |- *.
+ case (Rle_dec 0 z); intro.
+ split.
+ intro feqt; discriminate feqt.
+ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)).
+ split.
+ intro; auto with real.
+ intro; reflexivity.
+ cut (Un_cv Wn x0).
+ intros.
+ assert (Temp : x <= x0 <= y).
+ apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
+ assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5).
+ case (total_order_T 0 (f x0)); intro.
+ elim s; intro.
+ left; assumption.
+ rewrite <- b; right; reflexivity.
+ unfold Un_cv in H7; unfold R_dist in H7.
+ cut (0 < - f x0).
+ intro.
+ elim (H7 (- f x0) H8); intros.
+ cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ assert (H11 := H9 x2 H10).
+ rewrite Rabs_right in H11.
+ pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
+ unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11.
+ assert (H12 := Rplus_lt_reg_r _ _ _ H11).
+ assert (H13 := H6 x2).
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
+ apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat.
+ apply H6.
+ exact H8.
+ apply Ropp_0_gt_lt_contravar; assumption.
+ unfold Wn in |- *; assumption.
+ cut (Un_cv Vn x0).
+ intros.
+ assert (Temp : x <= x0 <= y).
+ apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption.
+ assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5).
+ case (total_order_T 0 (f x0)); intro.
+ elim s; intro.
+ unfold Un_cv in H7; unfold R_dist in H7.
+ elim (H7 (f x0) a); intros.
+ cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ assert (H10 := H8 x2 H9).
+ rewrite Rabs_left in H10.
+ pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
+ rewrite Ropp_minus_distr' in H10.
+ unfold Rminus in H10.
+ assert (H11 := Rplus_lt_reg_r _ _ _ H10).
+ assert (H12 := H6 x2).
+ cut (0 < f (Vn x2)).
+ intro.
+ elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)).
+ rewrite <- (Ropp_involutive (f (Vn x2))).
+ apply Ropp_0_gt_lt_contravar; assumption.
+ apply Rplus_lt_reg_r with (f x0 - f (Vn x2)).
+ rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
+ [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
+ assumption.
+ apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
+ right; rewrite <- b; reflexivity.
+ left; assumption.
+ unfold Vn in |- *; assumption.
+Qed.
+
+(* begin hide *)
+Ltac case_le H :=
+ let t := type of H in
+ let h' := fresh in
+ match t with ?x <= ?y => case (total_order_T x y);
+ [intros h'; case h'; clear h' |
+ intros h'; clear -H h'; elimtype False; fourier ] end.
+(* end hide *)
+
+
+Lemma f_interv_is_interv : forall (f:R->R) (lb ub y:R),
+ lb < ub ->
+ f lb <= y <= f ub ->
+ (forall x, lb <= x <= ub -> continuity_pt f x) ->
+ {x | lb <= x <= ub /\ f x = y}.
+Proof.
+intros f lb ub y lb_lt_ub y_encad f_cont_interv.
+ case y_encad ; intro y_encad1.
+ case_le y_encad1 ; intros y_encad2 y_encad3 ; case_le y_encad3.
+ intro y_encad4.
+ clear y_encad y_encad1 y_encad3.
+ assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => f x - y) a).
+ intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist.
+ intros eps eps_pos. elim (f_cont_interv a a_encad eps eps_pos).
+ intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp).
+ exists alpha. split.
+ assumption. intros x x_cond.
+ replace (f x - y - (f a - y)) with (f x - f a) by field.
+ exact (Temp x x_cond).
+ assert (H1 : (fun x : R => f x - y) lb < 0).
+ apply Rlt_minus. assumption.
+ assert (H2 : 0 < (fun x : R => f x - y) ub).
+ apply Rgt_minus ; assumption.
+ destruct (IVT_interv (fun x => f x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx).
+ exists x.
+ destruct Hx as (Hyp,Result).
+ intuition.
+ intro H ; exists ub ; intuition.
+ intro H ; exists lb ; intuition.
+ intro H ; exists ub ; intuition.
+Qed.
+
+(** ** The derivative of a reciprocal function *)
+
+
+(** * Continuity of the reciprocal function *)
+
+Lemma continuity_pt_recip_prelim : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
+ (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall x, lb <= x <= ub -> (comp g f) x = id x) ->
+ (forall a, lb <= a <= ub -> continuity_pt f a) ->
+ forall b,
+ f lb < b < f ub ->
+ continuity_pt g b.
+Proof.
+assert (Sublemma : forall x y z, Rmax x y < z <-> x < z /\ y < z).
+ intros x y z. split.
+ unfold Rmax. case (Rle_dec x y) ; intros Hyp Hyp2.
+ split. apply Rle_lt_trans with (r2:=y) ; assumption. assumption.
+ split. assumption. apply Rlt_trans with (r2:=x).
+ assert (Temp : forall x y, ~ x <= y -> x > y).
+ intros m n Hypmn. intuition.
+ apply Temp ; clear Temp ; assumption.
+ assumption.
+ intros Hyp.
+ unfold Rmax. case (Rle_dec x y).
+ intro ; exact (proj2 Hyp).
+ intro ; exact (proj1 Hyp).
+assert (Sublemma2 : forall x y z, Rmin x y > z <-> x > z /\ y > z).
+ intros x y z. split.
+ unfold Rmin. case (Rle_dec x y) ; intros Hyp Hyp2.
+ split. assumption.
+ apply Rlt_le_trans with (r2:=x) ; intuition.
+ split.
+ apply Rlt_trans with (r2:=y). intuition.
+ assert (Temp : forall x y, ~ x <= y -> x > y).
+ intros m n Hypmn. intuition.
+ apply Temp ; clear Temp ; assumption.
+ assumption.
+ intros Hyp.
+ unfold Rmin. case (Rle_dec x y).
+ intro ; exact (proj1 Hyp).
+ intro ; exact (proj2 Hyp).
+assert (Sublemma3 : forall x y, x <= y /\ x <> y -> x < y).
+ intros m n Hyp. unfold Rle in Hyp.
+ destruct Hyp as (Hyp1,Hyp2).
+ case Hyp1.
+ intuition.
+ intro Hfalse ; apply False_ind ; apply Hyp2 ; exact Hfalse.
+intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
+ assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y).
+ intros m n cond1 cond2 cond3.
+ case cond2.
+ intro cond. apply Rlt_le ; apply f_incr_interv ; assumption.
+ intro cond ; right ; rewrite cond ; reflexivity.
+ unfold continuity_pt, continue_in, limit1_in, limit_in ; intros eps eps_pos.
+ unfold dist ; simpl ; unfold R_dist.
+ assert (b_encad_e : f lb <= b <= f ub) by intuition.
+ elim (f_interv_is_interv f lb ub b lb_lt_ub b_encad_e f_cont_interv) ; intros x Temp.
+ destruct Temp as (x_encad,f_x_b).
+ assert (lb_lt_x : lb < x).
+ assert (Temp : x <> lb).
+ intro Hfalse.
+ assert (Temp' : b = f lb).
+ rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
+ assert (Temp'' : b <> f lb).
+ apply Rgt_not_eq ; exact (proj1 b_encad).
+ apply Temp'' ; exact Temp'.
+ apply Sublemma3.
+ split. exact (proj1 x_encad).
+ assert (Temp2 : forall x y:R, x <> y <-> y <> x).
+ intros m n. split ; intuition.
+ rewrite Temp2 ; assumption.
+ assert (x_lt_ub : x < ub).
+ assert (Temp : x <> ub).
+ intro Hfalse.
+ assert (Temp' : b = f ub).
+ rewrite <- f_x_b ; rewrite Hfalse ; reflexivity.
+ assert (Temp'' : b <> f ub).
+ apply Rlt_not_eq ; exact (proj2 b_encad).
+ apply Temp'' ; exact Temp'.
+ apply Sublemma3.
+ split ; [exact (proj2 x_encad) | assumption].
+ pose (x1 := Rmax (x - eps) lb).
+ pose (x2 := Rmin (x + eps) ub).
+ assert (Hx1 : x1 = Rmax (x - eps) lb) by intuition.
+ assert (Hx2 : x2 = Rmin (x + eps) ub) by intuition.
+ assert (x1_encad : lb <= x1 <= ub).
+ split. apply RmaxLess2.
+ apply Rlt_le. rewrite Hx1. rewrite Sublemma.
+ split. apply Rlt_trans with (r2:=x) ; fourier.
+ assumption.
+ assert (x2_encad : lb <= x2 <= ub).
+ split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2.
+ split. apply Rgt_trans with (r2:=x) ; fourier.
+ assumption.
+ apply Rmin_r.
+ assert (x_lt_x2 : x < x2).
+ rewrite Hx2.
+ apply Rgt_lt. rewrite Sublemma2.
+ split ; fourier.
+ assert (x1_lt_x : x1 < x).
+ rewrite Hx1.
+ rewrite Sublemma.
+ split ; fourier.
+ exists (Rmin (f x - f x1) (f x2 - f x)).
+ split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; fourier.
+ apply f_incr_interv ; intuition.
+ intros y Temp.
+ destruct Temp as (_,y_cond).
+ rewrite <- f_x_b in y_cond.
+ assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2).
+ intros.
+ split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. fourier.
+ apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)).
+ replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs.
+ rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive.
+ intuition.
+ apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
+ apply Rmin_l.
+ assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. fourier.
+ apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs.
+ apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
+ apply Rmin_r.
+ assert (Temp' := Temp (f x) y (f x - f x1) (f x2 - f x)).
+ replace (f x - (f x - f x1)) with (f x1) in Temp' by field.
+ replace (f x + (f x2 - f x)) with (f x2) in Temp' by field.
+ assert (T : f x - f x1 > 0).
+ apply Rgt_minus. apply f_incr_interv ; intuition.
+ assert (T' : f x2 - f x > 0).
+ apply Rgt_minus. apply f_incr_interv ; intuition.
+ assert (Main := Temp' T T' y_cond).
+ clear Temp Temp' T T'.
+ assert (x1_lt_x2 : x1 < x2).
+ apply Rlt_trans with (r2:=x) ; assumption.
+ assert (f_cont_myinterv : forall a : R, x1 <= a <= x2 -> continuity_pt f a).
+ intros ; apply f_cont_interv ; split.
+ apply Rle_trans with (r2 := x1) ; intuition.
+ apply Rle_trans with (r2 := x2) ; intuition.
+ elim (f_interv_is_interv f x1 x2 y x1_lt_x2 Main f_cont_myinterv) ; intros x' Temp.
+ destruct Temp as (x'_encad,f_x'_y).
+ rewrite <- f_x_b ; rewrite <- f_x'_y.
+ unfold comp in f_eq_g. rewrite f_eq_g. rewrite f_eq_g.
+ unfold id.
+ assert (x'_encad2 : x - eps <= x' <= x + eps).
+ split.
+ apply Rle_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
+ apply Rle_trans with (r2:=x2) ; [ | apply Rmin_l] ; intuition.
+ assert (x1_lt_x' : x1 < x').
+ apply Sublemma3.
+ assert (x1_neq_x' : x1 <> x').
+ intro Hfalse. rewrite Hfalse, f_x'_y in y_cond.
+ assert (Hf : Rabs (y - f x) < f x - y).
+ apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). fourier.
+ apply Rmin_l.
+ assert(Hfin : f x - y < f x - y).
+ apply Rle_lt_trans with (r2:=Rabs (y - f x)).
+ replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs.
+ rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. fourier.
+ apply (Rlt_irrefl (f x - y)) ; assumption.
+ split ; intuition.
+ assert (x'_lb : x - eps < x').
+ apply Sublemma3.
+ split. intuition. apply Rlt_not_eq.
+ apply Rle_lt_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition.
+ assert (x'_lt_x2 : x' < x2).
+ apply Sublemma3.
+ assert (x1_neq_x' : x' <> x2).
+ intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond.
+ assert (Hf : Rabs (y - f x) < y - f x).
+ apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). fourier.
+ apply Rmin_r.
+ assert(Hfin : y - f x < y - f x).
+ apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. fourier.
+ apply (Rlt_irrefl (y - f x)) ; assumption.
+ split ; intuition.
+ assert (x'_ub : x' < x + eps).
+ apply Sublemma3.
+ split. intuition. apply Rlt_not_eq.
+ apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition.
+ apply Rabs_def1 ; fourier.
+ assumption.
+ split. apply Rle_trans with (r2:=x1) ; intuition.
+ apply Rle_trans with (r2:=x2) ; intuition.
+Qed.
+
+Lemma continuity_pt_recip_interv : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub),
+ (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
+ (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ (forall a, lb <= a <= ub -> continuity_pt f a) ->
+ forall b,
+ f lb < b < f ub ->
+ continuity_pt g b.
+Proof.
+intros f g lb ub lb_lt_ub f_incr_interv f_eq_g g_wf.
+assert (g_eq_f_prelim := leftinv_is_rightinv_interv f g lb ub f_incr_interv f_eq_g).
+assert (g_eq_f : forall x, lb <= x <= ub -> (comp g f) x = id x).
+intro x ; apply g_eq_f_prelim ; assumption.
+apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f).
+Qed.
+
+(** * Derivability of the reciprocal function *)
+
+Lemma derivable_pt_lim_recip_interv : forall (f g:R->R) (lb ub x:R)
+ (Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a) (Prg : continuity_pt g x),
+ lb < ub ->
+ lb < x < ub ->
+ forall (Prg_incr:g lb <= g x <= g ub),
+ (forall x, lb <= x <= ub -> (comp f g) x = id x) ->
+ derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
+ derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
+Proof.
+intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
+ assert (x_encad2 : lb <= x <= ub).
+ split ; apply Rlt_le ; intuition.
+ elim (Prf (g x)); simpl; intros l Hl.
+ unfold derivable_pt_lim.
+ intros eps eps_pos.
+ pose (y := g x).
+ assert (Hlinv := limit_inv).
+ assert (Hf_deriv : forall eps:R,
+ 0 < eps ->
+ exists delta : posreal,
+ (forall h:R,
+ h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps)).
+ intros eps0 eps0_pos.
+ red in Hl ; red in Hl. elim (Hl eps0 eps0_pos).
+ intros deltatemp Htemp.
+ exists deltatemp ; exact Htemp.
+ elim (Hf_deriv eps eps_pos).
+ intros deltatemp Htemp.
+ red in Hlinv ; red in Hlinv ; simpl dist in Hlinv ; unfold R_dist in Hlinv.
+ assert (Hlinv' := Hlinv (fun h => (f (y+h) - f y)/h) (fun h => h <>0) l 0).
+ unfold limit1_in, limit_in, dist in Hlinv' ; simpl in Hlinv'. unfold R_dist in Hlinv'.
+ assert (Premisse : (forall eps : R,
+ eps > 0 ->
+ exists alp : R,
+ alp > 0 /\
+ (forall x : R,
+ (fun h => h <>0) x /\ Rabs (x - 0) < alp ->
+ Rabs ((f (y + x) - f y) / x - l) < eps))).
+ intros eps0 eps0_pos.
+ elim (Hf_deriv eps0 eps0_pos).
+ intros deltatemp' Htemp'.
+ exists deltatemp'.
+ split.
+ exact deltatemp'.(cond_pos).
+ intros htemp cond.
+ apply (Htemp' htemp).
+ exact (proj1 cond).
+ replace (htemp) with (htemp - 0).
+ exact (proj2 cond).
+ intuition.
+ assert (Premisse2 : l <> 0).
+ intro l_null.
+ rewrite l_null in Hl.
+ apply df_neq.
+ rewrite derive_pt_eq.
+ exact Hl.
+ elim (Hlinv' Premisse Premisse2 eps eps_pos).
+ intros alpha cond.
+ assert (alpha_pos := proj1 cond) ; assert (inv_cont := proj2 cond) ; clear cond.
+ unfold derivable, derivable_pt, derivable_pt_abs, derivable_pt_lim in Prf.
+ elim (Hl eps eps_pos).
+ intros delta f_deriv.
+ assert (g_cont := g_cont_pur).
+ unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont.
+ pose (mydelta := Rmin delta alpha).
+ assert (mydelta_pos : mydelta > 0).
+ unfold mydelta, Rmin.
+ case (Rle_dec delta alpha).
+ intro ; exact (delta.(cond_pos)).
+ intro ; exact alpha_pos.
+ elim (g_cont mydelta mydelta_pos).
+ intros delta' new_g_cont.
+ assert(delta'_pos := proj1 (new_g_cont)).
+ clear g_cont ; assert (g_cont := proj2 (new_g_cont)) ; clear new_g_cont.
+ pose (mydelta'' := Rmin delta' (Rmin (x - lb) (ub - x))).
+ assert(mydelta''_pos : mydelta'' > 0).
+ unfold mydelta''.
+ apply Rmin_pos ; [intuition | apply Rmin_pos] ; apply Rgt_minus ; intuition.
+ pose (delta'' := mkposreal mydelta'' mydelta''_pos: posreal).
+ exists delta''.
+ intros h h_neq h_le_delta'.
+ assert (lb <= x +h <= ub).
+ assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y).
+ intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n).
+ apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs.
+ apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
+ assert (lb <= x + h <= ub).
+ split.
+ assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
+ apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))).
+ apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r.
+ apply Rgt_minus. intuition.
+ assert (Sublemma : forall x y z, y <= z - x -> x + y <= z).
+ intros ; fourier.
+ apply Sublemma.
+ apply Rlt_le ; apply Sublemma2.
+ apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_r] ;
+ apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
+ apply Rlt_le_trans with (r2:=delta''). assumption.
+ apply Rle_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). intuition.
+ apply Rle_trans with (r2:=Rmin (x - lb) (ub - x)). apply Rmin_r. apply Rmin_r.
+ replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
+ assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
+ rewrite f_eq_g. rewrite f_eq_g ; unfold id. rewrite Rplus_comm ;
+ unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r. intuition. intuition.
+ assumption.
+ split ; [|intuition].
+ assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z).
+ intros ; fourier.
+ apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
+ apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
+ apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
+ apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption.
+ apply Rgt_minus. intuition.
+ field.
+ split. assumption.
+ intro Hfalse. assert (Hf : g (x+h) = g x) by intuition.
+ assert ((comp f g) (x+h) = (comp f g) x).
+ unfold comp ; rewrite Hf ; intuition.
+ assert (Main : x+h = x).
+ replace (x +h) with (id (x+h)) by intuition.
+ assert (Temp : x = id x) by intuition ; rewrite Temp at 2 ; clear Temp.
+ rewrite <- f_eq_g. rewrite <- f_eq_g. assumption.
+ intuition. assumption.
+ assert (h = 0).
+ apply Rplus_0_r_uniq with (r:=x) ; assumption.
+ apply h_neq ; assumption.
+ replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))).
+ assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x).
+ rewrite f_eq_g. rewrite f_eq_g. unfold id ; rewrite Rplus_comm ;
+ unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r ; intuition.
+ assumption. assumption.
+ rewrite Hrewr at 1.
+ unfold comp.
+ replace (g(x+h)) with (g x + (g (x+h) - g(x))) by field.
+ pose (h':=g (x+h) - g x).
+ replace (g (x+h) - g x) with h' by intuition.
+ replace (g x + h' - g x) with h' by field.
+ assert (h'_neq : h' <> 0).
+ unfold h'.
+ intro Hfalse.
+ unfold Rminus in Hfalse ; apply Rminus_diag_uniq in Hfalse.
+ assert (Hfalse' : (comp f g) (x+h) = (comp f g) x).
+ intros ; unfold comp ; rewrite Hfalse ; trivial.
+ rewrite f_eq_g in Hfalse' ; rewrite f_eq_g in Hfalse'.
+ unfold id in Hfalse'.
+ apply Rplus_0_r_uniq in Hfalse'.
+ apply h_neq ; exact Hfalse'. assumption. assumption. assumption.
+ unfold Rdiv at 1 3; rewrite Rmult_1_l ; rewrite Rmult_1_l.
+ apply inv_cont.
+ split.
+ exact h'_neq.
+ rewrite Rminus_0_r.
+ unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont_pur.
+ elim (g_cont_pur mydelta mydelta_pos).
+ intros delta3 cond3.
+ unfold dist in cond3 ; simpl in cond3 ; unfold R_dist in cond3.
+ unfold h'.
+ assert (mydelta_le_alpha : mydelta <= alpha).
+ unfold mydelta, Rmin ; case (Rle_dec delta alpha).
+ trivial.
+ intro ; intuition.
+ apply Rlt_le_trans with (r2:=mydelta).
+ unfold dist in g_cont ; simpl in g_cont ; unfold R_dist in g_cont ; apply g_cont.
+ split.
+ unfold D_x ; simpl.
+ split.
+ unfold no_cond ; trivial.
+ intro Hfalse ; apply h_neq.
+ apply (Rplus_0_r_uniq x).
+ symmetry ; assumption.
+ replace (x + h - x) with h by field.
+ apply Rlt_le_trans with (r2:=delta'').
+ assumption ; unfold delta''. intuition.
+ apply Rle_trans with (r2:=mydelta''). apply Req_le. unfold delta''. intuition.
+ apply Rmin_l. assumption.
+ field ; split.
+ assumption.
+ intro Hfalse ; apply h_neq.
+ apply (Rplus_0_r_uniq x).
+ assert (Hfin : (comp f g) (x+h) = (comp f g) x).
+ apply Rminus_diag_uniq in Hfalse.
+ unfold comp.
+ rewrite Hfalse ; reflexivity.
+ rewrite f_eq_g in Hfin. rewrite f_eq_g in Hfin. unfold id in Hfin. exact Hfin.
+ assumption. assumption.
+Qed.
+
+Lemma derivable_pt_recip_interv_prelim0 : forall (f g : R -> R) (lb ub x : R)
+ (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a),
+ continuity_pt g x ->
+ lb < ub ->
+ lb < x < ub ->
+ forall Prg_incr : g lb <= g x <= g ub,
+ (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) ->
+ derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 ->
+ derivable_pt g x.
+Proof.
+intros f g lb ub x Prf g_cont_pt lb_lt_ub x_encad Prg_incr f_eq_g Df_neq.
+unfold derivable_pt, derivable_pt_abs.
+exists (1 / derive_pt f (g x) (Prf (g x) Prg_incr)).
+apply derivable_pt_lim_recip_interv ; assumption.
+Qed.
+
+Lemma derivable_pt_recip_interv_prelim1 :forall (f g:R->R) (lb ub x : R),
+ lb < ub ->
+ f lb < x < f ub ->
+ (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) ->
+ (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall a : R, lb <= a <= ub -> derivable_pt f a) ->
+ derivable_pt f (g x).
+Proof.
+intros f g lb ub x lb_lt_ub x_encad f_eq_g g_ok f_incr f_derivable.
+ apply f_derivable.
+ assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_ok).
+ replace lb with ((comp g f) lb).
+ replace ub with ((comp g f) ub).
+ unfold comp.
+ assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_ok).
+ split ; apply Rlt_le ; apply Temp ; intuition.
+ apply Left_inv ; intuition.
+ apply Left_inv ; intuition.
+Qed.
+
+Lemma derivable_pt_recip_interv : forall (f g:R->R) (lb ub x : R)
+ (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
+ (f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x)
+ (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
+ (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
+ (f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a),
+ derive_pt f (g x)
+ (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub
+ x_encad f_eq_g g_wf f_incr f_derivable)
+ <> 0 ->
+ derivable_pt g x.
+Proof.
+intros f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable Df_neq.
+ assert(g_incr : g (f lb) < g x < g (f ub)).
+ assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
+ split ; apply Temp ; intuition.
+ exact (proj1 x_encad). apply Rlt_le ; exact (proj2 x_encad).
+ apply Rlt_le ; exact (proj1 x_encad). exact (proj2 x_encad).
+ assert(g_incr2 : g (f lb) <= g x <= g (f ub)).
+ split ; apply Rlt_le ; intuition.
+ assert (g_eq_f := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
+ unfold comp, id in g_eq_f.
+ assert (f_derivable2 : forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a).
+ intros a a_encad ; apply f_derivable.
+ rewrite g_eq_f in a_encad ; rewrite g_eq_f in a_encad ; intuition.
+ apply derivable_pt_recip_interv_prelim0 with (f:=f) (lb:=f lb) (ub:=f ub)
+ (Prf:=f_derivable2) (Prg_incr:=g_incr2).
+ apply continuity_pt_recip_interv with (f:=f) (lb:=lb) (ub:=ub) ; intuition.
+ apply derivable_continuous_pt ; apply f_derivable ; intuition.
+ exact (proj1 x_encad). exact (proj2 x_encad). apply f_incr ; intuition.
+ assumption.
+ intros x0 x0_encad ; apply f_eq_g ; intuition.
+ rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad
+ f_eq_g g_wf f_incr f_derivable) ; [| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition.
+Qed.
+
+(****************************************************)
+(** * Value of the derivative of the reciprocal function *)
+(****************************************************)
+
+Lemma derive_pt_recip_interv_prelim0 : forall (f g:R->R) (lb ub x:R)
+ (Prf:derivable_pt f (g x)) (Prg:derivable_pt g x),
+ lb < ub ->
+ lb < x < ub ->
+ (forall x, lb < x < ub -> (comp f g) x = id x) ->
+ derive_pt f (g x) Prf <> 0 ->
+ derive_pt g x Prg = 1 / (derive_pt f (g x) Prf).
+Proof.
+intros f g lb ub x Prf Prg lb_lt_ub x_encad local_recip Df_neq.
+ replace (derive_pt g x Prg) with
+ ((derive_pt g x Prg) * (derive_pt f (g x) Prf) * / (derive_pt f (g x) Prf)).
+ unfold Rdiv.
+ rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
+ rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)).
+ apply Rmult_eq_compat_l.
+ rewrite Rmult_comm.
+ rewrite <- derive_pt_comp.
+ assert (x_encad2 : lb <= x <= ub) by intuition.
+ rewrite pr_nu_var2_interv with (g:=id) (pr2:= derivable_pt_id_interv lb ub x x_encad2) (lb:=lb) (ub:=ub) ; [reg| | |] ; assumption.
+ rewrite Rmult_assoc, Rinv_r.
+ intuition.
+ assumption.
+Qed.
+
+Lemma derive_pt_recip_interv_prelim1_0 : forall (f g:R->R) (lb ub x:R),
+ lb < ub ->
+ f lb < x < f ub ->
+ (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
+ lb < g x < ub.
+Proof.
+intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
+ assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf).
+ assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf).
+ unfold comp, id in Left_inv.
+ split ; [rewrite <- Left_inv with (x:=lb) | rewrite <- Left_inv ].
+ apply Temp ; intuition.
+ intuition.
+ apply Temp ; intuition.
+ intuition.
+Qed.
+
+Lemma derive_pt_recip_interv_prelim1_1 : forall (f g:R->R) (lb ub x:R),
+ lb < ub ->
+ f lb < x < f ub ->
+ (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) ->
+ (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) ->
+ (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) ->
+ lb <= g x <= ub.
+Proof.
+intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g.
+ assert (Temp := derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
+ split ; apply Rlt_le ; intuition.
+Qed.
+
+Lemma derive_pt_recip_interv : forall (f g:R->R) (lb ub x:R)
+ (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)
+ (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)
+ (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)
+ (Prf:forall a : R, lb <= a <= ub -> derivable_pt f a)
+ (f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x)
+ (Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x
+ lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0),
+ derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g
+ g_wf f_incr Prf Df_neq)
+ =
+ 1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x
+ lb_lt_ub x_encad f_incr g_wf f_eq_g))).
+Proof.
+intros.
+ assert(g_incr := (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub
+ x_encad f_incr g_wf f_eq_g)).
+ apply derive_pt_recip_interv_prelim0 with (lb:=f lb) (ub:=f ub) ;
+ [intuition |assumption | intuition |].
+ intro Hfalse ; apply Df_neq. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub)
+ (pr2:= (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad
+ f_incr g_wf f_eq_g))) ;
+ [intuition | intuition | | intuition].
+ exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g).
+Qed.
+
+(****************************************************)
+(** * Existence of the derivative of a function which is the limit of a sequence of functions *)
+(****************************************************)
+
+(* begin hide *)
+Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2.
+Proof.
+intros x ub lb lb_lt_x x_lt_ub.
+ assert (T : 0 < ub - lb).
+ fourier.
+ unfold Rdiv ; apply Rlt_mult_inv_pos ; intuition.
+Qed.
+
+Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal.
+ apply (mkposreal ((ub-lb)/2) (ub_lt_2_pos x ub lb lb_lt_x x_lt_ub)).
+Defined.
+(* end hide *)
+
+Definition boule_of_interval x y (h : x < y) :
+ {c :R & {r : posreal | c - r = x /\ c + r = y}}.
+exists ((x + y)/2).
+assert (radius : 0 < (y - x)/2).
+ unfold Rdiv; apply Rmult_lt_0_compat; fourier.
+ exists (mkposreal _ radius).
+ simpl; split; unfold Rdiv; field.
+Qed.
+
+Definition boule_in_interval x y z (h : x < z < y) :
+ {c : R & {r | Boule c r z /\ x < c - r /\ c + r < y}}.
+Proof.
+assert (cmp : x * /2 + z * /2 < z * /2 + y * /2).
+destruct h as [h1 h2]; fourier.
+destruct (boule_of_interval _ _ cmp) as [c [r [P1 P2]]].
+exists c, r; split.
+ destruct h; unfold Boule; simpl; apply Rabs_def1; fourier.
+destruct h; split; fourier.
+Qed.
+
+Lemma Ball_in_inter : forall c1 c2 r1 r2 x,
+ Boule c1 r1 x -> Boule c2 r2 x ->
+ {r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}.
+intros c1 c2 [r1 r1p] [r2 r2p] x; unfold Boule; simpl; intros in1 in2.
+assert (Rmax (c1 - r1)(c2 - r2) < x).
+ apply Rmax_lub_lt;[revert in1 | revert in2]; intros h;
+ apply Rabs_def2 in h; destruct h; fourier.
+assert (x < Rmin (c1 + r1) (c2 + r2)).
+ apply Rmin_glb_lt;[revert in1 | revert in2]; intros h;
+ apply Rabs_def2 in h; destruct h; fourier.
+assert (t: 0 < Rmin (x - Rmax (c1 - r1) (c2 - r2))
+ (Rmin (c1 + r1) (c2 + r2) - x)).
+ apply Rmin_glb_lt; fourier.
+exists (mkposreal _ t).
+apply Rabs_def2 in in1; destruct in1.
+apply Rabs_def2 in in2; destruct in2.
+assert (c1 - r1 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_l.
+assert (c2 - r2 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_r.
+assert (Rmin (c1 + r1) (c2 + r2) <= c1 + r1) by apply Rmin_l.
+assert (Rmin (c1 + r1) (c2 + r2) <= c2 + r2) by apply Rmin_r.
+assert (Rmin (x - Rmax (c1 - r1) (c2 - r2))
+ (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2))
+ by apply Rmin_l.
+assert (Rmin (x - Rmax (c1 - r1) (c2 - r2))
+ (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x)
+ by apply Rmin_r.
+simpl.
+intros y h; apply Rabs_def2 in h; destruct h;split; apply Rabs_def1; fourier.
+Qed.
+
+Lemma Boule_center : forall x r, Boule x r x.
+Proof.
+intros x [r rpos]; unfold Boule, Rminus; simpl; rewrite Rplus_opp_r.
+rewrite Rabs_pos_eq;[assumption | apply Rle_refl].
+Qed.
+
+Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R)
+ (x:R) c r, Boule c r x ->
+ (forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) ->
+ (forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) ->
+ (CVU fn' g c r) ->
+ (forall y, Boule c r y -> continuity_pt g y) ->
+ derivable_pt_lim f x (g x).
+Proof.
+intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos.
+assert (eps_8_pos : 0 < eps / 8) by fourier.
+elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ;
+intros delta1 (delta1_pos, g_cont).
+destruct (Ball_in_inter _ _ _ _ _ xinb
+ (Boule_center x (mkposreal _ delta1_pos)))
+ as [delta Pdelta].
+exists delta; intros h hpos hinbdelta.
+assert (eps'_pos : 0 < (Rabs h) * eps / 4).
+ unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat.
+ apply Rabs_pos_lt ; assumption.
+fourier.
+destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx].
+assert (xhinbxdelta : Boule x delta (x + h)).
+ clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl.
+ destruct hinbdelta; apply Rabs_def1; fourier.
+assert (t : Boule c' r (x + h)).
+ apply Pdelta in xhinbxdelta; tauto.
+destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh].
+clear fn_CV_f t.
+destruct (fn'_CVU_g (eps/8) eps_8_pos) as [N3 fn'c_CVU_gc].
+pose (N := ((N1 + N2) + N3)%nat).
+assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn N x - h * (g x))) < (Rabs h)*eps).
+ apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs ((fn N (x + h) - fn N x - h * g x))).
+ solve[apply Rabs_triang].
+ apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)).
+ solve[apply Rplus_le_compat_r ; apply Rabs_triang].
+ rewrite Rabs_Ropp.
+ case (Rlt_le_dec h 0) ; intro sgn_h.
+ assert (pr1 : forall c : R, x + h < c < x -> derivable_pt (fn N) c).
+ intros c c_encad ; unfold derivable_pt.
+ exists (fn' N c) ; apply Dfn_eq_fn'.
+ assert (t : Boule x delta c).
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c).
+ solve[intros; apply derivable_id].
+ assert (xh_x : x+h < x) by fourier.
+ assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c).
+ intros c c_encad ; apply derivable_continuous_pt.
+ exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
+ assert (t : Boule x delta c).
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c).
+ solve[intros; apply derivable_continuous ; apply derivable_id].
+ destruct (MVT (fn N) id (x+h) x pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
+ assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = (fn N (x+h) - fn N x)).
+ apply Rmult_eq_reg_l with (-1).
+ replace (-1 * (h * derive_pt (fn N) c (pr1 c P))) with (-h * derive_pt (fn N) c (pr1 c P)) by field.
+ replace (-1 * (fn N (x + h) - fn N x)) with (- (fn N (x + h) - fn N x)) by field.
+ replace (-h) with (id x - id (x + h)) by (unfold id; field).
+ rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
+ replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field.
+ assumption.
+ solve[apply Rlt_not_eq ; intuition].
+ rewrite <- Hc'; clear Hc Hc'.
+ replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
+ replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
+ rewrite Rabs_mult.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
+ apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
+ rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
+ unfold N; omega.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
+ apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
+ unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
+ unfold N ; omega.
+ replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
+ apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
+ Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
+ apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
+ rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
+ solve[apply Rabs_pos].
+ solve[apply Rabs_triang].
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
+ Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
+ apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
+ unfold N ; omega.
+ assert (t : Boule x delta c).
+ destruct P.
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
+ Rabs h * (eps / 8)).
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
+ apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
+ rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
+ solve[unfold no_cond ; intuition].
+ apply Rgt_not_eq ; exact (proj2 P).
+ apply Rlt_trans with (Rabs h).
+ apply Rabs_def1.
+ apply Rlt_trans with 0.
+ destruct P; fourier.
+ apply Rabs_pos_lt ; assumption.
+ rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | fourier].
+ destruct P; fourier.
+ clear -Pdelta xhinbxdelta.
+ apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
+ apply Rabs_def2 in P'; simpl in P'; destruct P';
+ apply Rabs_def1; fourier.
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
+ replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
+ (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
+ apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ fourier.
+ assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
+ assert (Temp : l = fn' N c).
+ assert (bc'rc : Boule c' r c).
+ assert (t : Boule x delta c).
+ clear - xhinbxdelta P.
+ destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (Hl' := Dfn_eq_fn' c N bc'rc).
+ unfold derivable_pt_abs in Hl; clear -Hl Hl'.
+ apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
+ rewrite <- Temp.
+ assert (Hl' : derivable_pt (fn N) c).
+ exists l ; apply Hl.
+ rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
+ elim Hl' ; clear Hl' ; intros l' Hl'.
+ assert (Main : l = l').
+ apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
+ rewrite Main ; reflexivity.
+ reflexivity.
+ assert (h_pos : h > 0).
+ case sgn_h ; intro Hyp.
+ assumption.
+ apply False_ind ; apply hpos ; symmetry ; assumption.
+ clear sgn_h.
+ assert (pr1 : forall c : R, x < c < x + h -> derivable_pt (fn N) c).
+ intros c c_encad ; unfold derivable_pt.
+ exists (fn' N c) ; apply Dfn_eq_fn'.
+ assert (t : Boule x delta c).
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c).
+ solve[intros; apply derivable_id].
+ assert (xh_x : x < x + h) by fourier.
+ assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c).
+ intros c c_encad ; apply derivable_continuous_pt.
+ exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
+ assert (t : Boule x delta c).
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c).
+ solve[intros; apply derivable_continuous ; apply derivable_id].
+ destruct (MVT (fn N) id x (x+h) pr1 pr2 xh_x pr3 pr4) as [c [P Hc]].
+ assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = fn N (x+h) - fn N x).
+ pattern h at 1; replace h with (id (x + h) - id x) by (unfold id; field).
+ rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
+ assumption.
+ rewrite <- Hc'; clear Hc Hc'.
+ replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
+ replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
+ rewrite Rabs_mult.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)).
+ apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ;
+ rewrite Rabs_minus_sym ; apply fnxh_CV_fxh.
+ unfold N; omega.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)).
+ apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l.
+ unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx.
+ unfold N ; omega.
+ replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field.
+ apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
+ Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)).
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
+ apply Rplus_le_compat_l ; apply Rplus_le_compat_l ;
+ rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l.
+ solve[apply Rabs_pos].
+ solve[apply Rabs_triang].
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 +
+ Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)).
+ apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ rewrite Rabs_minus_sym ; apply fn'c_CVU_gc.
+ unfold N ; omega.
+ assert (t : Boule x delta c).
+ destruct P.
+ apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
+ Rabs h * (eps / 8)).
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ;
+ apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ;
+ rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |].
+ solve[unfold no_cond ; intuition].
+ apply Rlt_not_eq ; exact (proj1 P).
+ apply Rlt_trans with (Rabs h).
+ apply Rabs_def1.
+ destruct P; rewrite Rabs_pos_eq;fourier.
+ apply Rle_lt_trans with 0.
+ assert (t := Rabs_pos h); clear -t; fourier.
+ clear -P; destruct P; fourier.
+ clear -Pdelta xhinbxdelta.
+ apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
+ apply Rabs_def2 in P'; simpl in P'; destruct P';
+ apply Rabs_def1; fourier.
+ rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
+ replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
+ (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
+ apply Rmult_lt_compat_l.
+ apply Rabs_pos_lt ; assumption.
+ fourier.
+ assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
+ assert (Temp : l = fn' N c).
+ assert (bc'rc : Boule c' r c).
+ assert (t : Boule x delta c).
+ clear - xhinbxdelta P.
+ destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
+ apply Rabs_def1; fourier.
+ apply Pdelta in t; tauto.
+ assert (Hl' := Dfn_eq_fn' c N bc'rc).
+ unfold derivable_pt_abs in Hl; clear -Hl Hl'.
+ apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
+ rewrite <- Temp.
+ assert (Hl' : derivable_pt (fn N) c).
+ exists l ; apply Hl.
+ rewrite pr_nu_var with (g:= fn N) (pr2:=Hl').
+ elim Hl' ; clear Hl' ; intros l' Hl'.
+ assert (Main : l = l').
+ apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption.
+ rewrite Main ; reflexivity.
+ reflexivity.
+ replace ((f (x + h) - f x) / h - g x) with ((/h) * ((f (x + h) - f x) - h * g x)).
+ rewrite Rabs_mult ; rewrite Rabs_Rinv.
+ replace eps with (/ Rabs h * (Rabs h * eps)).
+ apply Rmult_lt_compat_l.
+ apply Rinv_0_lt_compat ; apply Rabs_pos_lt ; assumption.
+ replace (f (x + h) - f x - h * g x) with (f (x + h) - fn N (x + h) - (f x - fn N x) +
+ (fn N (x + h) - fn N x - h * g x)) by field.
+ assumption.
+ field ; apply Rgt_not_eq ; apply Rabs_pos_lt ; assumption.
+ assumption.
+ field. assumption.
+Qed. \ No newline at end of file