summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis1.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis1.v')
-rw-r--r--theories/Reals/Ranalysis1.v362
1 files changed, 181 insertions, 181 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 3075bee8..2f54ee94 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -10,7 +10,7 @@ Require Import Rbase.
Require Import Rfunctions.
Require Export Rlimit.
Require Export Rderiv.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Implicit Type f : R -> R.
(****************************************************)
@@ -43,7 +43,7 @@ Notation "- x" := (opp_fct x) : Rfun_scope.
Infix "*" := mult_fct : Rfun_scope.
Infix "-" := minus_fct : Rfun_scope.
Infix "/" := div_fct : Rfun_scope.
-Notation Local "f1 'o' f2" := (comp f1 f2)
+Local Notation "f1 'o' f2" := (comp f1 f2)
(at level 20, right associativity) : Rfun_scope.
Notation "/ x" := (inv_fct x) : Rfun_scope.
@@ -82,14 +82,14 @@ Lemma continuity_pt_plus :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0.
Proof.
- unfold continuity_pt, plus_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, plus_fct; unfold continue_in; intros;
apply limit_plus; assumption.
Qed.
Lemma continuity_pt_opp :
forall f (x0:R), continuity_pt f x0 -> continuity_pt (- f) x0.
Proof.
- unfold continuity_pt, opp_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, opp_fct; unfold continue_in; intros;
apply limit_Ropp; assumption.
Qed.
@@ -97,7 +97,7 @@ Lemma continuity_pt_minus :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0.
Proof.
- unfold continuity_pt, minus_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, minus_fct; unfold continue_in; intros;
apply limit_minus; assumption.
Qed.
@@ -105,17 +105,17 @@ Lemma continuity_pt_mult :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0.
Proof.
- unfold continuity_pt, mult_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, mult_fct; unfold continue_in; intros;
apply limit_mul; assumption.
Qed.
Lemma continuity_pt_const : forall f (x0:R), constant f -> continuity_pt f x0.
Proof.
- unfold constant, continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold constant, continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
intros; exists 1; split;
[ apply Rlt_0_1
- | intros; generalize (H x x0); intro; rewrite H2; simpl in |- *;
+ | intros; generalize (H x x0); intro; rewrite H2; simpl;
rewrite R_dist_eq; assumption ].
Qed.
@@ -123,9 +123,9 @@ Lemma continuity_pt_scal :
forall f (a x0:R),
continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0.
Proof.
- unfold continuity_pt, mult_real_fct in |- *; unfold continue_in in |- *;
+ unfold continuity_pt, mult_real_fct; unfold continue_in;
intros; apply (limit_mul (fun x:R => a) f (D_x no_cond x0) a (f x0) x0).
- unfold limit1_in in |- *; unfold limit_in in |- *; intros; exists 1; split.
+ unfold limit1_in; unfold limit_in; intros; exists 1; split.
apply Rlt_0_1.
intros; rewrite R_dist_eq; assumption.
assumption.
@@ -136,9 +136,9 @@ Lemma continuity_pt_inv :
Proof.
intros.
replace (/ f)%F with (fun x:R => / f x).
- unfold continuity_pt in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt; unfold continue_in; intros;
apply limit_inv; assumption.
- unfold inv_fct in |- *; reflexivity.
+ unfold inv_fct; reflexivity.
Qed.
Lemma div_eq_inv : forall f1 f2, (f1 / f2)%F = (f1 * / f2)%F.
@@ -159,8 +159,8 @@ Lemma continuity_pt_comp :
forall f1 f2 (x:R),
continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) x.
Proof.
- unfold continuity_pt in |- *; unfold continue_in in |- *; intros;
- unfold comp in |- *.
+ unfold continuity_pt; unfold continue_in; intros;
+ unfold comp.
cut
(limit1_in (fun x0:R => f2 (f1 x0))
(Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (
@@ -170,23 +170,23 @@ Proof.
eapply limit_comp.
apply H.
apply H0.
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
assert (H3 := H1 eps H2).
elim H3; intros.
exists x0.
split.
elim H4; intros; assumption.
intros; case (Req_dec (f1 x) (f1 x1)); intro.
- rewrite H6; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
elim H4; intros; apply H8.
split.
- unfold Dgf, D_x, no_cond in |- *.
+ unfold Dgf, D_x, no_cond.
split.
split.
trivial.
- elim H5; unfold D_x, no_cond in |- *; intros.
+ elim H5; unfold D_x, no_cond; intros.
elim H9; intros; assumption.
split.
trivial.
@@ -198,44 +198,44 @@ Qed.
Lemma continuity_plus :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 + f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_plus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_opp : forall f, continuity f -> continuity (- f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_opp f x (H x)).
+ unfold continuity; intros; apply (continuity_pt_opp f x (H x)).
Qed.
Lemma continuity_minus :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 - f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_minus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_mult :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 * f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_mult f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_const : forall f, constant f -> continuity f.
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_const f x H).
+ unfold continuity; intros; apply (continuity_pt_const f x H).
Qed.
Lemma continuity_scal :
forall f (a:R), continuity f -> continuity (mult_real_fct a f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_scal f a x (H x)).
+ unfold continuity; intros; apply (continuity_pt_scal f a x (H x)).
Qed.
Lemma continuity_inv :
forall f, continuity f -> (forall x:R, f x <> 0) -> continuity (/ f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_inv f x (H x) (H0 x)).
+ unfold continuity; intros; apply (continuity_pt_inv f x (H x) (H0 x)).
Qed.
Lemma continuity_div :
@@ -243,14 +243,14 @@ Lemma continuity_div :
continuity f1 ->
continuity f2 -> (forall x:R, f2 x <> 0) -> continuity (f1 / f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)).
Qed.
Lemma continuity_comp :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f2 o f1).
Proof.
- unfold continuity in |- *; intros.
+ unfold continuity; intros.
apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))).
Qed.
@@ -307,23 +307,23 @@ Proof.
apply
(single_limit (fun h:R => (f (x + h) - f x) / h) (
fun h:R => h <> 0) l1 l2 0); try assumption.
- unfold adhDa in |- *; intros; exists (alp / 2).
+ unfold adhDa; intros; exists (alp / 2).
split.
- unfold Rdiv in |- *; apply prod_neq_R0.
- red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
+ unfold Rdiv; apply prod_neq_R0.
+ red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
apply Rinv_neq_0_compat; discrR.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
+ rewrite Rplus_0_r; unfold Rdiv; rewrite Rabs_mult.
replace (Rabs (/ 2)) with (/ 2).
replace (Rabs alp) with alp.
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ idtac | discrR ]; rewrite Rmult_1_r; rewrite double;
- pattern alp at 1 in |- *; replace alp with (alp + 0);
+ pattern alp at 1; replace alp with (alp + 0);
[ idtac | ring ]; apply Rplus_lt_compat_l; assumption.
- symmetry in |- *; apply Rabs_right; left; assumption.
- symmetry in |- *; apply Rabs_right; left; change (0 < / 2) in |- *;
+ symmetry ; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; change (0 < / 2);
apply Rinv_0_lt_compat; prove_sup0.
Qed.
@@ -332,14 +332,14 @@ Lemma uniqueness_step2 :
derivable_pt_lim f x l ->
limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0.
Proof.
- unfold derivable_pt_lim in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; intros.
+ unfold derivable_pt_lim; intros; unfold limit1_in;
+ unfold limit_in; intros.
assert (H1 := H eps H0).
elim H1; intros.
exists (pos x0).
split.
apply (cond_pos x0).
- simpl in |- *; unfold R_dist in |- *; intros.
+ simpl; unfold R_dist; intros.
elim H3; intros.
apply H2;
[ assumption
@@ -352,15 +352,15 @@ Lemma uniqueness_step3 :
limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 ->
derivable_pt_lim f x l.
Proof.
- unfold limit1_in, derivable_pt_lim in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; intros.
+ unfold limit1_in, derivable_pt_lim; unfold limit_in;
+ unfold dist; simpl; intros.
elim (H eps H0).
intros; elim H1; intros.
exists (mkposreal x0 H2).
- simpl in |- *; intros; unfold R_dist in H3; apply (H3 h).
+ simpl; intros; unfold R_dist in H3; apply (H3 h).
split;
[ assumption
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; assumption ].
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assumption ].
Qed.
Lemma uniqueness_limite :
@@ -383,8 +383,8 @@ Proof.
assumption.
intro; assert (H1 := proj2_sig pr); unfold derivable_pt_abs in H1.
assert (H2 := uniqueness_limite _ _ _ _ H H1).
- unfold derive_pt in |- *; unfold derivable_pt_abs in |- *.
- symmetry in |- *; assumption.
+ unfold derive_pt; unfold derivable_pt_abs.
+ symmetry ; assumption.
Qed.
(**********)
@@ -414,25 +414,25 @@ Lemma derive_pt_D_in :
D_in f df no_cond x <-> derive_pt f x pr = df x.
Proof.
intros; split.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
apply derive_pt_eq_0.
- unfold derivable_pt_lim in |- *.
+ unfold derivable_pt_lim.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
| split;
- [ unfold D_x in |- *; split;
- [ unfold no_cond in |- *; trivial
+ [ unfold D_x; split;
+ [ unfold no_cond; trivial
| apply Rminus_not_eq_right; rewrite H7; assumption ]
| rewrite H7; assumption ] ]
| ring ].
intro.
assert (H0 := derive_pt_eq_1 f x (df x) pr H).
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
elim (H0 eps H1); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -448,24 +448,24 @@ Lemma derivable_pt_lim_D_in :
D_in f df no_cond x <-> derivable_pt_lim f x (df x).
Proof.
intros; split.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
- unfold derivable_pt_lim in |- *.
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
+ unfold derivable_pt_lim.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
| split;
- [ unfold D_x in |- *; split;
- [ unfold no_cond in |- *; trivial
+ [ unfold D_x; split;
+ [ unfold no_cond; trivial
| apply Rminus_not_eq_right; rewrite H7; assumption ]
| rewrite H7; assumption ] ]
| ring ].
intro.
unfold derivable_pt_lim in H.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
elim (H eps H0); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -486,7 +486,7 @@ Lemma derivable_derive :
forall f (x:R) (pr:derivable_pt f x), exists l : R, derive_pt f x pr = l.
Proof.
intros; exists (proj1_sig pr).
- unfold derive_pt in |- *; reflexivity.
+ unfold derive_pt; reflexivity.
Qed.
Theorem derivable_continuous_pt :
@@ -501,14 +501,14 @@ Proof.
generalize (derive_pt_D_in f (fct_cte l) x); intro.
elim (H2 X); intros.
generalize (H4 H1); intro.
- unfold continuity_pt in |- *.
+ unfold continuity_pt.
apply (cont_deriv f (fct_cte l) no_cond x H5).
- unfold fct_cte in |- *; reflexivity.
+ unfold fct_cte; reflexivity.
Qed.
Theorem derivable_continuous : forall f, derivable f -> continuity f.
Proof.
- unfold derivable, continuity in |- *; intros f X x.
+ unfold derivable, continuity; intros f X x.
apply (derivable_continuous_pt f x (X x)).
Qed.
@@ -524,7 +524,7 @@ Lemma derivable_pt_lim_plus :
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
- unfold plus_fct in |- *.
+ unfold plus_fct.
cut
(forall h:R,
(f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h =
@@ -533,15 +533,15 @@ Lemma derivable_pt_lim_plus :
generalize
(limit_plus (fun h':R => (f1 (x + h') - f1 x) / h')
(fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H4 eps H5); intros.
exists x0.
elim H6; intros.
split.
assumption.
intros; rewrite H3; apply H8; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_opp :
@@ -550,20 +550,20 @@ Proof.
intros.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
- unfold opp_fct in |- *.
+ unfold opp_fct.
cut (forall h:R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)).
intro.
generalize
(limit_Ropp (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 H1).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H2 eps H3); intros.
exists x0.
elim H4; intros.
split.
assumption.
intros; rewrite H0; apply H6; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_minus :
@@ -575,7 +575,7 @@ Proof.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
- unfold minus_fct in |- *.
+ unfold minus_fct.
cut
(forall h:R,
(f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h =
@@ -584,15 +584,15 @@ Proof.
generalize
(limit_minus (fun h':R => (f1 (x + h') - f1 x) / h')
(fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H4 eps H5); intros.
exists x0.
elim H6; intros.
split.
assumption.
intros; rewrite <- H3; apply H8; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_mult :
@@ -615,15 +615,15 @@ Proof.
elim H1; intros.
clear H1 H3.
apply H2.
- unfold mult_fct in |- *.
+ unfold mult_fct.
apply (Dmult no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption.
Qed.
Lemma derivable_pt_lim_const : forall a x:R, derivable_pt_lim (fct_cte a) x 0.
Proof.
- intros; unfold fct_cte, derivable_pt_lim in |- *.
- intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus in |- *;
- rewrite Rplus_opp_r; unfold Rdiv in |- *; rewrite Rmult_0_l;
+ intros; unfold fct_cte, derivable_pt_lim.
+ intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus;
+ rewrite Rplus_opp_r; unfold Rdiv; rewrite Rmult_0_l;
rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
Qed.
@@ -636,34 +636,34 @@ Proof.
replace (mult_real_fct a f) with (fct_cte a * f)%F.
replace (a * l) with (0 * f x + a * l); [ idtac | ring ].
apply (derivable_pt_lim_mult (fct_cte a) f x 0 l); assumption.
- unfold mult_real_fct, mult_fct, fct_cte in |- *; reflexivity.
+ unfold mult_real_fct, mult_fct, fct_cte; reflexivity.
Qed.
Lemma derivable_pt_lim_id : forall x:R, derivable_pt_lim id x 1.
Proof.
- intro; unfold derivable_pt_lim in |- *.
+ intro; unfold derivable_pt_lim.
intros eps Heps; exists (mkposreal eps Heps); intros h H1 H2;
- unfold id in |- *; replace ((x + h - x) / h - 1) with 0.
+ unfold id; replace ((x + h - x) / h - 1) with 0.
rewrite Rabs_R0; apply Rle_lt_trans with (Rabs h).
apply Rabs_pos.
assumption.
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite (Rplus_comm x);
+ unfold Rminus; rewrite Rplus_assoc; rewrite (Rplus_comm x);
rewrite Rplus_assoc.
- rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv in |- *;
+ rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv;
rewrite <- Rinv_r_sym.
- symmetry in |- *; apply Rplus_opp_r.
+ symmetry ; apply Rplus_opp_r.
assumption.
Qed.
Lemma derivable_pt_lim_Rsqr : forall x:R, derivable_pt_lim Rsqr x (2 * x).
Proof.
- intro; unfold derivable_pt_lim in |- *.
- unfold Rsqr in |- *; intros eps Heps; exists (mkposreal eps Heps);
+ intro; unfold derivable_pt_lim.
+ unfold Rsqr; intros eps Heps; exists (mkposreal eps Heps);
intros h H1 H2; replace (((x + h) * (x + h) - x * x) / h - 2 * x) with h.
assumption.
replace ((x + h) * (x + h) - x * x) with (2 * x * h + h * h);
[ idtac | ring ].
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_r.
+ unfold Rdiv; rewrite Rmult_plus_distr_r.
repeat rewrite Rmult_assoc.
repeat rewrite <- Rinv_r_sym; [ idtac | assumption ].
ring.
@@ -684,7 +684,7 @@ Proof.
assert (H1 := derivable_pt_lim_D_in (f2 o f1)%F (fun y:R => l2 * l1) x).
elim H1; intros.
clear H1 H3; apply H2.
- unfold comp in |- *;
+ unfold comp;
cut
(D_in (fun x0:R => f2 (f1 x0)) (fun y:R => l2 * l1)
(Dgf no_cond no_cond f1) x ->
@@ -693,14 +693,14 @@ Proof.
rewrite Rmult_comm;
apply (Dcomp no_cond no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x);
assumption.
- unfold Dgf, D_in, no_cond in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold dist in |- *; simpl in |- *;
- unfold R_dist in |- *; intros.
+ unfold Dgf, D_in, no_cond; unfold limit1_in;
+ unfold limit_in; unfold dist; simpl;
+ unfold R_dist; intros.
elim (H1 eps H3); intros.
exists x0; intros; split.
elim H5; intros; assumption.
intros; elim H5; intros; apply H9; split.
- unfold D_x in |- *; split.
+ unfold D_x; split.
split; trivial.
elim H6; intros; unfold D_x in H10; elim H10; intros; assumption.
elim H6; intros; assumption.
@@ -710,7 +710,7 @@ Lemma derivable_pt_plus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 + x1).
@@ -720,7 +720,7 @@ Qed.
Lemma derivable_pt_opp :
forall f (x:R), derivable_pt f x -> derivable_pt (- f) x.
Proof.
- unfold derivable_pt in |- *; intros f x X.
+ unfold derivable_pt; intros f x X.
elim X; intros.
exists (- x0).
apply derivable_pt_lim_opp; assumption.
@@ -730,7 +730,7 @@ Lemma derivable_pt_minus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 - x1).
@@ -741,7 +741,7 @@ Lemma derivable_pt_mult :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 * f2 x + f1 x * x1).
@@ -750,7 +750,7 @@ Qed.
Lemma derivable_pt_const : forall a x:R, derivable_pt (fct_cte a) x.
Proof.
- intros; unfold derivable_pt in |- *.
+ intros; unfold derivable_pt.
exists 0.
apply derivable_pt_lim_const.
Qed.
@@ -758,7 +758,7 @@ Qed.
Lemma derivable_pt_scal :
forall f (a x:R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x.
Proof.
- unfold derivable_pt in |- *; intros f1 a x X.
+ unfold derivable_pt; intros f1 a x X.
elim X; intros.
exists (a * x0).
apply derivable_pt_lim_scal; assumption.
@@ -766,14 +766,14 @@ Qed.
Lemma derivable_pt_id : forall x:R, derivable_pt id x.
Proof.
- unfold derivable_pt in |- *; intro.
+ unfold derivable_pt; intro.
exists 1.
apply derivable_pt_lim_id.
Qed.
Lemma derivable_pt_Rsqr : forall x:R, derivable_pt Rsqr x.
Proof.
- unfold derivable_pt in |- *; intro; exists (2 * x).
+ unfold derivable_pt; intro; exists (2 * x).
apply derivable_pt_lim_Rsqr.
Qed.
@@ -781,7 +781,7 @@ Lemma derivable_pt_comp :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x1 * x0).
@@ -791,57 +791,57 @@ Qed.
Lemma derivable_plus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 + f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_plus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_opp : forall f, derivable f -> derivable (- f).
Proof.
- unfold derivable in |- *; intros f X x.
+ unfold derivable; intros f X x.
apply (derivable_pt_opp _ x (X _)).
Qed.
Lemma derivable_minus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 - f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_minus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_mult :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 * f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_mult _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_const : forall a:R, derivable (fct_cte a).
Proof.
- unfold derivable in |- *; intros.
+ unfold derivable; intros.
apply derivable_pt_const.
Qed.
Lemma derivable_scal :
forall f (a:R), derivable f -> derivable (mult_real_fct a f).
Proof.
- unfold derivable in |- *; intros f a X x.
+ unfold derivable; intros f a X x.
apply (derivable_pt_scal _ a x (X _)).
Qed.
Lemma derivable_id : derivable id.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_id.
+ unfold derivable; intro; apply derivable_pt_id.
Qed.
Lemma derivable_Rsqr : derivable Rsqr.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_Rsqr.
+ unfold derivable; intro; apply derivable_pt_Rsqr.
Qed.
Lemma derivable_comp :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f2 o f1).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_comp _ _ x (X _) (X0 _)).
Qed.
@@ -996,13 +996,13 @@ Proof.
elim (lt_irrefl _ H).
cut (n = 0%nat \/ (0 < n)%nat).
intro; elim H0; intro.
- rewrite H1; simpl in |- *.
+ rewrite H1; simpl.
replace (fun y:R => y * 1) with (id * fct_cte 1)%F.
replace (1 * 1) with (1 * fct_cte 1 x + id x * 0).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte, id in |- *; ring.
+ unfold fct_cte, id; ring.
reflexivity.
replace (fun y:R => y ^ S n) with (fun y:R => y * y ^ n).
replace (pred (S n)) with n; [ idtac | reflexivity ].
@@ -1011,13 +1011,13 @@ Proof.
replace (INR (S n) * x ^ n) with (1 * f x + id x * (INR n * x ^ pred n)).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_id.
- unfold f in |- *; apply Hrecn; assumption.
- unfold f in |- *.
- pattern n at 1 5 in |- *; replace n with (S (pred n)).
- unfold id in |- *; rewrite S_INR; simpl in |- *.
+ unfold f; apply Hrecn; assumption.
+ unfold f.
+ pattern n at 1 5; replace n with (S (pred n)).
+ unfold id; rewrite S_INR; simpl.
ring.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
- unfold mult_fct, id in |- *; reflexivity.
+ symmetry ; apply S_pred with 0%nat; assumption.
+ unfold mult_fct, id; reflexivity.
reflexivity.
inversion H.
left; reflexivity.
@@ -1033,7 +1033,7 @@ Lemma derivable_pt_lim_pow :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
rewrite Rmult_0_l.
replace (fun _:R => 1) with (fct_cte 1);
[ apply derivable_pt_lim_const | reflexivity ].
@@ -1044,14 +1044,14 @@ Qed.
Lemma derivable_pt_pow :
forall (n:nat) (x:R), derivable_pt (fun y:R => y ^ n) x.
Proof.
- intros; unfold derivable_pt in |- *.
+ intros; unfold derivable_pt.
exists (INR n * x ^ pred n).
apply derivable_pt_lim_pow.
Qed.
Lemma derivable_pow : forall n:nat, derivable (fun y:R => y ^ n).
Proof.
- intro; unfold derivable in |- *; intro; apply derivable_pt_pow.
+ intro; unfold derivable; intro; apply derivable_pt_pow.
Qed.
Lemma derive_pt_pow :
@@ -1073,7 +1073,7 @@ Proof.
elim pr2; intros.
unfold derivable_pt_abs in p.
unfold derivable_pt_abs in p0.
- simpl in |- *.
+ simpl.
apply (uniqueness_limite f x x0 x1 p p0).
Qed.
@@ -1094,7 +1094,7 @@ Proof.
assert (H5 := derive_pt_eq_1 f c l pr H4).
cut (0 < l / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H5 (l / 2) H6); intros delta H7.
cut (0 < (b - c) / 2).
@@ -1119,7 +1119,7 @@ Proof.
(Rabs
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2).
- unfold Rabs in |- *;
+ unfold Rabs;
case
(Rcase_abs
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
@@ -1157,7 +1157,7 @@ Proof.
(Rlt_le_trans 0
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2)) 0 H22 H16)).
- pattern l at 2 in |- *; rewrite double_var.
+ pattern l at 2; rewrite double_var.
ring.
ring.
intro.
@@ -1183,7 +1183,7 @@ Proof.
l +
-
((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) /
- Rmin (delta / 2) ((b + - c) / 2))) in |- *; apply Rplus_lt_le_0_compat;
+ Rmin (delta / 2) ((b + - c) / 2))); apply Rplus_lt_le_0_compat;
[ assumption
| rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; assumption ].
unfold Rminus; ring.
@@ -1195,13 +1195,13 @@ Proof.
((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) /
Rmin (delta / 2) ((b - c) / 2))).
rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge;
- unfold Rdiv in |- *; apply Rmult_le_pos;
+ unfold Rdiv; apply Rmult_le_pos;
[ generalize
(Rplus_le_compat_r (- f (c + Rmin (delta * / 2) ((b - c) * / 2)))
(f (c + Rmin (delta * / 2) ((b - c) * / 2))) (
f c) H15); rewrite Rplus_opp_r; intro; assumption
| left; apply Rinv_0_lt_compat; assumption ].
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
repeat rewrite <- (Rmult_comm (/ Rmin (delta * / 2) ((b - c) * / 2))).
apply Rmult_eq_reg_l with (Rmin (delta * / 2) ((b - c) * / 2)).
@@ -1209,9 +1209,9 @@ Proof.
rewrite <- Rinv_r_sym.
repeat rewrite Rmult_1_l.
ring.
- red in |- *; intro.
+ red; intro.
unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12).
- red in |- *; intro.
+ red; intro.
unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12).
assert (H14 := Rmin_r (delta / 2) ((b - c) / 2)).
assert
@@ -1225,7 +1225,7 @@ Proof.
replace (2 * b) with (b + b).
apply Rplus_lt_compat_r; assumption.
ring.
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_l.
+ unfold Rdiv; rewrite Rmult_plus_distr_l.
repeat rewrite (Rmult_comm 2).
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
@@ -1233,51 +1233,51 @@ Proof.
discrR.
apply Rlt_trans with c.
assumption.
- pattern c at 1 in |- *; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l;
+ pattern c at 1; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l;
assumption.
cut (0 < delta / 2).
intro;
apply
(Rmin_stable_in_posreal (mkposreal (delta / 2) H12)
(mkposreal ((b - c) / 2) H8)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rabs in |- *; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))).
+ unfold Rabs; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))).
intro.
cut (0 < delta / 2).
intro.
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H10)
- (mkposreal ((b - c) / 2) H8)); simpl in |- *; intro;
+ (mkposreal ((b - c) / 2) H8)); simpl; intro;
elim (Rlt_irrefl 0 (Rlt_trans 0 (Rmin (delta / 2) ((b - c) / 2)) 0 H11 r)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
intro; apply Rle_lt_trans with (delta / 2).
apply Rmin_l.
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
replace (2 * delta) with (delta + delta).
- pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
+ pattern delta at 2; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l.
rewrite Rplus_0_r; apply (cond_pos delta).
- symmetry in |- *; apply double.
+ symmetry ; apply double.
discrR.
cut (0 < delta / 2).
intro;
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H9)
- (mkposreal ((b - c) / 2) H8)); simpl in |- *;
- intro; red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ (mkposreal ((b - c) / 2) H8)); simpl;
+ intro; red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
generalize (Rplus_lt_compat_r (- c) c b H0); rewrite Rplus_opp_r; intro;
assumption.
apply Rinv_0_lt_compat; prove_sup0.
elim H2; intro.
- symmetry in |- *; assumption.
+ symmetry ; assumption.
generalize (derivable_derive f c pr); intro; elim H4; intros l H5.
rewrite H5 in H3; generalize (derive_pt_eq_1 f c l pr H5); intro;
cut (0 < - (l / 2)).
@@ -1307,7 +1307,7 @@ Proof.
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
Rmax (- (delta / 2)) ((a + - c) / 2) + - l) <
- (l / 2)).
- unfold Rabs in |- *;
+ unfold Rabs;
case
(Rcase_abs
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
@@ -1339,12 +1339,12 @@ Proof.
Rmax (- (delta / 2)) ((a - c) / 2)) 0 H17 H23)).
rewrite <- (Ropp_involutive (l / 2)); rewrite <- Ropp_0;
apply Ropp_lt_gt_contravar; assumption.
- pattern l at 3 in |- *; rewrite double_var.
+ pattern l at 3; rewrite double_var.
ring.
assumption.
apply Rplus_le_lt_0_compat; assumption.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
- unfold Rdiv in |- *;
+ unfold Rdiv;
replace
((f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) *
/ Rmax (- (delta * / 2)) ((a - c) * / 2)) with
@@ -1361,7 +1361,7 @@ Proof.
ring.
left; apply Rinv_0_lt_compat; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar;
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_inv_permute.
rewrite Rmult_opp_opp.
reflexivity.
@@ -1380,7 +1380,7 @@ Proof.
apply Rplus_lt_compat_l; assumption.
field; discrR.
assumption.
- unfold Rabs in |- *; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))).
+ unfold Rabs; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))).
intro; generalize (RmaxLess1 (- (delta / 2)) ((a - c) / 2)); intro;
generalize
(Ropp_le_ge_contravar (- (delta / 2)) (Rmax (- (delta / 2)) ((a - c) / 2))
@@ -1390,10 +1390,10 @@ Proof.
assumption.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double.
- pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
+ pattern delta at 2; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l; rewrite Rplus_0_r; apply (cond_pos delta).
discrR.
cut (- (delta / 2) < 0).
@@ -1401,7 +1401,7 @@ Proof.
intros;
generalize
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13)
- (mknegreal ((a - c) / 2) H12)); simpl in |- *;
+ (mknegreal ((a - c) / 2) H12)); simpl;
intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r);
intro;
elim
@@ -1410,41 +1410,41 @@ Proof.
rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2));
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
- rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *;
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta)
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
- red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
+ red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
cut ((a - c) / 2 < 0).
intro; cut (- (delta / 2) < 0).
intro;
apply
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H11)
(mknegreal ((a - c) / 2) H10)).
- rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *;
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta)
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2));
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ generalize (Rplus_lt_compat_r (- a) a c H); rewrite Rplus_opp_r; intro;
assumption
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
replace (- (l / 2)) with (- l / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ].
- unfold Rdiv in |- *; apply Ropp_mult_distr_l_reverse.
+ unfold Rdiv; apply Ropp_mult_distr_l_reverse.
Qed.
Theorem deriv_minimum :
@@ -1460,7 +1460,7 @@ Proof.
cut (forall x:R, a < x -> x < b -> (- f)%F x <= (- f)%F c).
intro.
apply (deriv_maximum (- f)%F a b c (derivable_pt_opp _ _ pr) H H0 H2).
- intros; unfold opp_fct in |- *; apply Ropp_ge_le_contravar; apply Rle_ge.
+ intros; unfold opp_fct; apply Ropp_ge_le_contravar; apply Rle_ge.
apply (H1 x H2 H3).
Qed.
@@ -1493,7 +1493,7 @@ Proof.
intro; decompose [and] H7; intros; generalize (H6 (delta / 2) H8 H11);
cut (0 <= (f (x + delta / 2) - f x) / (delta / 2)).
intro; cut (0 <= (f (x + delta / 2) - f x) / (delta / 2) - l).
- intro; unfold Rabs in |- *;
+ intro; unfold Rabs;
case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intro;
elim
@@ -1502,7 +1502,7 @@ Proof.
intros;
generalize
(Rplus_lt_compat_r l ((f (x + delta / 2) - f x) / (delta / 2) - l)
- (- (l / 2)) H13); unfold Rminus in |- *;
+ (- (l / 2)) H13); unfold Rminus;
replace (- (l / 2) + l) with (l / 2).
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; intro;
generalize
@@ -1512,50 +1512,50 @@ Proof.
rewrite <- Ropp_0 in H5;
generalize (Ropp_lt_gt_contravar (-0) (- (l / 2)) H5);
repeat rewrite Ropp_involutive; intro; assumption.
- pattern l at 3 in |- *; rewrite double_var.
+ pattern l at 3; rewrite double_var.
ring.
- unfold Rminus in |- *; apply Rplus_le_le_0_compat.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rminus; apply Rplus_le_le_0_compat.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H x (x + delta * / 2) H12); intro;
generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H13);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
left; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H x (x + delta * / 2) H9); intro;
generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H12);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
split.
- unfold Rdiv in |- *; apply prod_neq_R0.
- generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H7;
+ unfold Rdiv; apply prod_neq_R0.
+ generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H7;
elim (Rlt_irrefl 0 H7).
apply Rinv_neq_0_compat; discrR.
split.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
replace (Rabs (delta / 2)) with (delta / 2).
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (Rmult_comm 2).
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
- pattern (pos delta) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (pos delta) at 1; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply (cond_pos delta).
- symmetry in |- *; apply Rabs_right.
- left; change (0 < delta / 2) in |- *; unfold Rdiv in |- *;
+ symmetry ; apply Rabs_right.
+ left; change (0 < delta / 2); unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse;
+ unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse;
apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with l.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption.
apply Rinv_0_lt_compat; prove_sup0.
Qed.