summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis1.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis1.v')
-rw-r--r--theories/Reals/Ranalysis1.v53
1 files changed, 27 insertions, 26 deletions
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 93a66e70..9414f7c9 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -6,12 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis1.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Ranalysis1.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Export Rlimit.
-Require Export Rderiv. Open Local Scope R_scope.
+Require Export Rderiv.
+Open Local Scope R_scope.
Implicit Type f : R -> R.
(****************************************************)
@@ -269,10 +270,10 @@ Definition derivable_pt_lim f (x l:R) : Prop :=
Definition derivable_pt_abs f (x l:R) : Prop := derivable_pt_lim f x l.
-Definition derivable_pt f (x:R) := sigT (derivable_pt_abs f x).
+Definition derivable_pt f (x:R) := { l:R | derivable_pt_abs f x l }.
Definition derivable f := forall x:R, derivable_pt f x.
-Definition derive_pt f (x:R) (pr:derivable_pt f x) := projT1 pr.
+Definition derive_pt f (x:R) (pr:derivable_pt f x) := proj1_sig pr.
Definition derive f (pr:derivable f) (x:R) := derive_pt f x (pr x).
Arguments Scope derivable_pt_lim [Rfun_scope R_scope].
@@ -380,9 +381,9 @@ Lemma derive_pt_eq :
derive_pt f x pr = l <-> derivable_pt_lim f x l.
Proof.
intros; split.
- intro; assert (H1 := projT2 pr); unfold derive_pt in H; rewrite H in H1;
+ intro; assert (H1 := proj2_sig pr); unfold derive_pt in H; rewrite H in H1;
assumption.
- intro; assert (H1 := projT2 pr); unfold derivable_pt_abs in H1.
+ intro; assert (H1 := proj2_sig pr); unfold derivable_pt_abs in H1.
assert (H2 := uniqueness_limite _ _ _ _ H H1).
unfold derive_pt in |- *; unfold derivable_pt_abs in |- *.
symmetry in |- *; assumption.
@@ -486,7 +487,7 @@ Qed.
Lemma derivable_derive :
forall f (x:R) (pr:derivable_pt f x), exists l : R, derive_pt f x pr = l.
Proof.
- intros; exists (projT1 pr).
+ intros; exists (proj1_sig pr).
unfold derive_pt in |- *; reflexivity.
Qed.
@@ -714,7 +715,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 + x1).
+ exists (x0 + x1).
apply derivable_pt_lim_plus; assumption.
Qed.
@@ -723,7 +724,7 @@ Lemma derivable_pt_opp :
Proof.
unfold derivable_pt in |- *; intros f x X.
elim X; intros.
- apply existT with (- x0).
+ exists (- x0).
apply derivable_pt_lim_opp; assumption.
Qed.
@@ -734,7 +735,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 - x1).
+ exists (x0 - x1).
apply derivable_pt_lim_minus; assumption.
Qed.
@@ -745,14 +746,14 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 * f2 x + f1 x * x1).
+ exists (x0 * f2 x + f1 x * x1).
apply derivable_pt_lim_mult; assumption.
Qed.
Lemma derivable_pt_const : forall a x:R, derivable_pt (fct_cte a) x.
Proof.
intros; unfold derivable_pt in |- *.
- apply existT with 0.
+ exists 0.
apply derivable_pt_lim_const.
Qed.
@@ -761,7 +762,7 @@ Lemma derivable_pt_scal :
Proof.
unfold derivable_pt in |- *; intros f1 a x X.
elim X; intros.
- apply existT with (a * x0).
+ exists (a * x0).
apply derivable_pt_lim_scal; assumption.
Qed.
@@ -774,7 +775,7 @@ Qed.
Lemma derivable_pt_Rsqr : forall x:R, derivable_pt Rsqr x.
Proof.
- unfold derivable_pt in |- *; intro; apply existT with (2 * x).
+ unfold derivable_pt in |- *; intro; exists (2 * x).
apply derivable_pt_lim_Rsqr.
Qed.
@@ -785,7 +786,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x1 * x0).
+ exists (x1 * x0).
apply derivable_pt_lim_comp; assumption.
Qed.
@@ -860,9 +861,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_plus; assumption.
Qed.
@@ -877,7 +878,7 @@ Proof.
elim H; clear H; intros l1 H.
elim H0; clear H0; intros l2 H0.
rewrite H; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
apply derivable_pt_lim_opp; assumption.
Qed.
@@ -896,9 +897,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_minus; assumption.
Qed.
@@ -917,9 +918,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_mult; assumption.
Qed.
@@ -944,7 +945,7 @@ Proof.
elim H; clear H; intros l1 H.
elim H0; clear H0; intros l2 H0.
rewrite H; apply derive_pt_eq_0.
- assert (H3 := projT2 pr).
+ assert (H3 := proj2_sig pr).
unfold derive_pt in H; rewrite H in H3.
apply derivable_pt_lim_scal; assumption.
Qed.
@@ -978,9 +979,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_comp; assumption.
Qed.
@@ -1046,7 +1047,7 @@ Lemma derivable_pt_pow :
forall (n:nat) (x:R), derivable_pt (fun y:R => y ^ n) x.
Proof.
intros; unfold derivable_pt in |- *.
- apply existT with (INR n * x ^ pred n).
+ exists (INR n * x ^ pred n).
apply derivable_pt_lim_pow.
Qed.