summaryrefslogtreecommitdiff
path: root/theories/Reals/PSeries_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/PSeries_reg.v')
-rw-r--r--theories/Reals/PSeries_reg.v62
1 files changed, 31 insertions, 31 deletions
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
index aa588e38..d4d91137 100644
--- a/theories/Reals/PSeries_reg.v
+++ b/theories/Reals/PSeries_reg.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,7 +12,7 @@ Require Import SeqSeries.
Require Import Ranalysis1.
Require Import Max.
Require Import Even.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.
@@ -44,7 +44,7 @@ Lemma CVN_CVU :
(cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
Proof.
- intros; unfold CVU in |- *; intros.
+ intros; unfold CVU; intros.
unfold CVN_r in X.
elim X; intros An X0.
elim X0; intros s H0.
@@ -58,7 +58,7 @@ Proof.
rewrite Ropp_minus_distr';
rewrite (Rabs_right (s - sum_f_R0 (fun k:nat => Rabs (An k)) n)).
eapply sum_maj1.
- unfold SFL in |- *; case (cv y); intro.
+ unfold SFL; case (cv y); intro.
trivial.
apply H1.
intro; elim H0; intros.
@@ -69,7 +69,7 @@ Proof.
apply H8; apply H6.
apply Rle_ge;
apply Rplus_le_reg_l with (sum_f_R0 (fun k:nat => Rabs (An k)) n).
- rewrite Rplus_0_r; unfold Rminus in |- *; rewrite (Rplus_comm s);
+ rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm s);
rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l;
apply sum_incr.
apply H1.
@@ -77,10 +77,10 @@ Proof.
unfold R_dist in H4; unfold Rminus in H4; rewrite Ropp_0 in H4.
assert (H7 := H4 n H5).
rewrite Rplus_0_r in H7; apply H7.
- unfold Un_cv in H1; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H1; unfold Un_cv; intros.
elim (H1 _ H3); intros.
exists x; intros.
- unfold R_dist in |- *; unfold R_dist in H4.
+ unfold R_dist; unfold R_dist in H4.
rewrite Rminus_0_r; apply H4; assumption.
Qed.
@@ -91,13 +91,13 @@ Lemma CVU_continuity :
(forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
forall y:R, Boule x r y -> continuity_pt f y.
Proof.
- intros; unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ intros; unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
unfold CVU in H.
cut (0 < eps / 3);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H _ H3); intros N0 H4.
assert (H5 := H0 N0 y H1).
@@ -110,7 +110,7 @@ Proof.
set (del := Rmin del1 del2).
exists del; intros.
split.
- unfold del in |- *; unfold Rmin in |- *; case (Rle_dec del1 del2); intro.
+ unfold del; unfold Rmin; case (Rle_dec del1 del2); intro.
apply (cond_pos del1).
elim H8; intros; assumption.
intros;
@@ -130,27 +130,27 @@ Proof.
elim H9; intros.
apply Rlt_le_trans with del.
assumption.
- unfold del in |- *; apply Rmin_l.
+ unfold del; apply Rmin_l.
elim H8; intros.
apply H11.
split.
elim H9; intros; assumption.
elim H9; intros; apply Rlt_le_trans with del.
assumption.
- unfold del in |- *; apply Rmin_r.
+ unfold del; apply Rmin_r.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H4.
apply le_n.
assumption.
apply Rmult_eq_reg_l with 3.
- do 2 rewrite Rmult_plus_distr_l; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ do 2 rewrite Rmult_plus_distr_l; unfold Rdiv; rewrite <- Rmult_assoc;
rewrite Rinv_r_simpl_m.
ring.
discrR.
discrR.
cut (0 < r - Rabs (x - y)).
intro; exists (mkposreal _ H6).
- simpl in |- *; intros.
- unfold Boule in |- *; replace (y + h - x) with (h + (y - x));
+ simpl; intros.
+ unfold Boule; replace (y + h - x) with (h + (y - x));
[ idtac | ring ]; apply Rle_lt_trans with (Rabs h + Rabs (y - x)).
apply Rabs_triang.
apply Rplus_lt_reg_r with (- Rabs (x - y)).
@@ -173,8 +173,8 @@ Lemma continuity_pt_finite_SF :
continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply (H 0%nat); apply le_n.
- simpl in |- *;
+ simpl; apply (H 0%nat); apply le_n.
+ simpl;
replace (fun y:R => sum_f_R0 (fun k:nat => fn k y) N + fn (S N) y) with
((fun y:R => sum_f_R0 (fun k:nat => fn k y) N) + (fun y:R => fn (S N) y))%F;
[ idtac | reflexivity ].
@@ -197,7 +197,7 @@ Proof.
intros; eapply CVU_continuity.
apply CVN_CVU.
apply X.
- intros; unfold SP in |- *; apply continuity_pt_finite_SF.
+ intros; unfold SP; apply continuity_pt_finite_SF.
intros; apply H.
apply H1.
apply H0.
@@ -208,7 +208,7 @@ Lemma SFL_continuity :
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
Proof.
- intros; unfold continuity in |- *; intro.
+ intros; unfold continuity; intro.
cut (0 < Rabs x + 1);
[ intro | apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ] ].
cut (Boule 0 (mkposreal _ H0) x).
@@ -216,8 +216,8 @@ Proof.
apply X.
intros; apply (H n y).
apply H1.
- unfold Boule in |- *; simpl in |- *; rewrite Rminus_0_r;
- pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r;
+ unfold Boule; simpl; rewrite Rminus_0_r;
+ pattern (Rabs x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1.
Qed.
@@ -227,10 +227,10 @@ Lemma CVN_R_CVS :
CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Proof.
intros; apply R_complete.
- unfold SP in |- *; set (An := fun N:nat => fn N x).
- change (Cauchy_crit_series An) in |- *.
+ unfold SP; set (An := fun N:nat => fn N x).
+ change (Cauchy_crit_series An).
apply cauchy_abs.
- unfold Cauchy_crit_series in |- *; apply CV_Cauchy.
+ unfold Cauchy_crit_series; apply CV_Cauchy.
unfold CVN_R in X; cut (0 < Rabs x + 1).
intro; assert (H0 := X (mkposreal _ H)).
unfold CVN_r in H0; elim H0; intros Bn H1.
@@ -239,13 +239,13 @@ Proof.
apply Rseries_CV_comp with Bn.
intro; split.
apply Rabs_pos.
- unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
+ unfold An; apply H4; unfold Boule; simpl;
rewrite Rminus_0_r.
- pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
apply Rlt_0_1.
exists l.
cut (forall n:nat, 0 <= Bn n).
- intro; unfold Un_cv in H3; unfold Un_cv in |- *; intros.
+ intro; unfold Un_cv in H3; unfold Un_cv; intros.
elim (H3 _ H6); intros.
exists x0; intros.
replace (sum_f_R0 Bn n) with (sum_f_R0 (fun k:nat => Rabs (Bn k)) n).
@@ -253,8 +253,8 @@ Proof.
apply sum_eq; intros; apply Rabs_right; apply Rle_ge; apply H5.
intro; apply Rle_trans with (Rabs (An n)).
apply Rabs_pos.
- unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
- rewrite Rminus_0_r; pattern (Rabs x) at 1 in |- *;
+ unfold An; apply H4; unfold Boule; simpl;
+ rewrite Rminus_0_r; pattern (Rabs x) at 1;
rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1.
apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ].
Qed.