summaryrefslogtreecommitdiff
path: root/theories/Reals/PSeries_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/PSeries_reg.v')
-rw-r--r--theories/Reals/PSeries_reg.v259
1 files changed, 259 insertions, 0 deletions
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
new file mode 100644
index 00000000..0c19c8da
--- /dev/null
+++ b/theories/Reals/PSeries_reg.v
@@ -0,0 +1,259 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: PSeries_reg.v,v 1.12.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import SeqSeries.
+Require Import Ranalysis1.
+Require Import Max.
+Require Import Even. Open Local Scope R_scope.
+
+Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.
+
+(* Uniform convergence *)
+Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
+ (r:posreal) : Prop :=
+ forall eps:R,
+ 0 < eps ->
+ exists N : nat,
+ (forall (n:nat) (y:R),
+ (N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).
+
+(* Normal convergence *)
+Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type :=
+ sigT
+ (fun An:nat -> R =>
+ sigT
+ (fun l:R =>
+ Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
+ (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n))).
+
+Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.
+
+Definition SFL (fn:nat -> R -> R)
+ (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
+ (y:R) : R := match cv y with
+ | existT a b => a
+ end.
+
+(* In a complete space, normal convergence implies uniform convergence *)
+Lemma CVN_CVU :
+ forall (fn:nat -> R -> R)
+ (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
+ (r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
+intros; unfold CVU in |- *; intros.
+unfold CVN_r in X.
+elim X; intros An X0.
+elim X0; intros s H0.
+elim H0; intros.
+cut (Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n - s) 0).
+intro; unfold Un_cv in H3.
+elim (H3 eps H); intros N0 H4.
+exists N0; intros.
+apply Rle_lt_trans with (Rabs (sum_f_R0 (fun k:nat => Rabs (An k)) n - s)).
+rewrite <- (Rabs_Ropp (sum_f_R0 (fun k:nat => Rabs (An k)) n - s));
+ rewrite Ropp_minus_distr';
+ rewrite (Rabs_right (s - sum_f_R0 (fun k:nat => Rabs (An k)) n)).
+eapply sum_maj1.
+unfold SFL in |- *; case (cv y); intro.
+trivial.
+apply H1.
+intro; elim H0; intros.
+rewrite (Rabs_right (An n0)).
+apply H8; apply H6.
+apply Rle_ge; apply Rle_trans with (Rabs (fn n0 y)).
+apply Rabs_pos.
+apply H8; apply H6.
+apply Rle_ge;
+ apply Rplus_le_reg_l with (sum_f_R0 (fun k:nat => Rabs (An k)) n).
+rewrite Rplus_0_r; unfold Rminus in |- *; rewrite (Rplus_comm s);
+ rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l;
+ apply sum_incr.
+apply H1.
+intro; apply Rabs_pos.
+unfold R_dist in H4; unfold Rminus in H4; rewrite Ropp_0 in H4.
+assert (H7 := H4 n H5).
+rewrite Rplus_0_r in H7; apply H7.
+unfold Un_cv in H1; unfold Un_cv in |- *; intros.
+elim (H1 _ H3); intros.
+exists x; intros.
+unfold R_dist in |- *; unfold R_dist in H4.
+rewrite Rminus_0_r; apply H4; assumption.
+Qed.
+
+(* Each limit of a sequence of functions which converges uniformly is continue *)
+Lemma CVU_continuity :
+ forall (fn:nat -> R -> R) (f:R -> R) (x:R) (r:posreal),
+ CVU fn f x r ->
+ (forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
+ forall y:R, Boule x r y -> continuity_pt f y.
+intros; unfold continuity_pt in |- *; unfold continue_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros.
+unfold CVU in H.
+cut (0 < eps / 3);
+ [ intro
+ | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
+elim (H _ H3); intros N0 H4.
+assert (H5 := H0 N0 y H1).
+cut (exists del : posreal, (forall h:R, Rabs h < del -> Boule x r (y + h))).
+intro.
+elim H6; intros del1 H7.
+unfold continuity_pt in H5; unfold continue_in in H5; unfold limit1_in in H5;
+ unfold limit_in in H5; simpl in H5; unfold R_dist in H5.
+elim (H5 _ H3); intros del2 H8.
+set (del := Rmin del1 del2).
+exists del; intros.
+split.
+unfold del in |- *; unfold Rmin in |- *; case (Rle_dec del1 del2); intro.
+apply (cond_pos del1).
+elim H8; intros; assumption.
+intros;
+ apply Rle_lt_trans with (Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y)).
+replace (f x0 - f y) with (f x0 - fn N0 x0 + (fn N0 x0 - f y));
+ [ apply Rabs_triang | ring ].
+apply Rle_lt_trans with
+ (Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)).
+rewrite Rplus_assoc; apply Rplus_le_compat_l.
+replace (fn N0 x0 - f y) with (fn N0 x0 - fn N0 y + (fn N0 y - f y));
+ [ apply Rabs_triang | ring ].
+replace eps with (eps / 3 + eps / 3 + eps / 3).
+repeat apply Rplus_lt_compat.
+apply H4.
+apply le_n.
+replace x0 with (y + (x0 - y)); [ idtac | ring ]; apply H7.
+elim H9; intros.
+apply Rlt_le_trans with del.
+assumption.
+unfold del in |- *; apply Rmin_l.
+elim H8; intros.
+apply H11.
+split.
+elim H9; intros; assumption.
+elim H9; intros; apply Rlt_le_trans with del.
+assumption.
+unfold del in |- *; apply Rmin_r.
+rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H4.
+apply le_n.
+assumption.
+apply Rmult_eq_reg_l with 3.
+do 2 rewrite Rmult_plus_distr_l; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ rewrite Rinv_r_simpl_m.
+ring.
+discrR.
+discrR.
+cut (0 < r - Rabs (x - y)).
+intro; exists (mkposreal _ H6).
+simpl in |- *; intros.
+unfold Boule in |- *; replace (y + h - x) with (h + (y - x));
+ [ idtac | ring ]; apply Rle_lt_trans with (Rabs h + Rabs (y - x)).
+apply Rabs_triang.
+apply Rplus_lt_reg_r with (- Rabs (x - y)).
+rewrite <- (Rabs_Ropp (y - x)); rewrite Ropp_minus_distr'.
+replace (- Rabs (x - y) + r) with (r - Rabs (x - y)).
+replace (- Rabs (x - y) + (Rabs h + Rabs (x - y))) with (Rabs h).
+apply H7.
+ring.
+ring.
+unfold Boule in H1; rewrite <- (Rabs_Ropp (x - y)); rewrite Ropp_minus_distr';
+ apply Rplus_lt_reg_r with (Rabs (y - x)).
+rewrite Rplus_0_r; replace (Rabs (y - x) + (r - Rabs (y - x))) with (pos r);
+ [ apply H1 | ring ].
+Qed.
+
+(**********)
+Lemma continuity_pt_finite_SF :
+ forall (fn:nat -> R -> R) (N:nat) (x:R),
+ (forall n:nat, (n <= N)%nat -> continuity_pt (fn n) x) ->
+ continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
+intros; induction N as [| N HrecN].
+simpl in |- *; apply (H 0%nat); apply le_n.
+simpl in |- *;
+ replace (fun y:R => sum_f_R0 (fun k:nat => fn k y) N + fn (S N) y) with
+ ((fun y:R => sum_f_R0 (fun k:nat => fn k y) N) + (fun y:R => fn (S N) y))%F;
+ [ idtac | reflexivity ].
+apply continuity_pt_plus.
+apply HrecN.
+intros; apply H.
+apply le_trans with N; [ assumption | apply le_n_Sn ].
+apply (H (S N)); apply le_n.
+Qed.
+
+(* Continuity and normal convergence *)
+Lemma SFL_continuity_pt :
+ forall (fn:nat -> R -> R)
+ (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
+ (r:posreal),
+ CVN_r fn r ->
+ (forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y) ->
+ forall y:R, Boule 0 r y -> continuity_pt (SFL fn cv) y.
+intros; eapply CVU_continuity.
+apply CVN_CVU.
+apply X.
+intros; unfold SP in |- *; apply continuity_pt_finite_SF.
+intros; apply H.
+apply H1.
+apply H0.
+Qed.
+
+Lemma SFL_continuity :
+ forall (fn:nat -> R -> R)
+ (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)),
+ CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
+intros; unfold continuity in |- *; intro.
+cut (0 < Rabs x + 1);
+ [ intro | apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ] ].
+cut (Boule 0 (mkposreal _ H0) x).
+intro; eapply SFL_continuity_pt with (mkposreal _ H0).
+apply X.
+intros; apply (H n y).
+apply H1.
+unfold Boule in |- *; simpl in |- *; rewrite Rminus_0_r;
+ pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_lt_compat_l; apply Rlt_0_1.
+Qed.
+
+(* As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *)
+Lemma CVN_R_CVS :
+ forall fn:nat -> R -> R,
+ CVN_R fn -> forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l).
+intros; apply R_complete.
+unfold SP in |- *; set (An := fun N:nat => fn N x).
+change (Cauchy_crit_series An) in |- *.
+apply cauchy_abs.
+unfold Cauchy_crit_series in |- *; apply CV_Cauchy.
+unfold CVN_R in X; cut (0 < Rabs x + 1).
+intro; assert (H0 := X (mkposreal _ H)).
+unfold CVN_r in H0; elim H0; intros Bn H1.
+elim H1; intros l H2.
+elim H2; intros.
+apply Rseries_CV_comp with Bn.
+intro; split.
+apply Rabs_pos.
+unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
+ rewrite Rminus_0_r.
+pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ apply Rlt_0_1.
+apply existT with l.
+cut (forall n:nat, 0 <= Bn n).
+intro; unfold Un_cv in H3; unfold Un_cv in |- *; intros.
+elim (H3 _ H6); intros.
+exists x0; intros.
+replace (sum_f_R0 Bn n) with (sum_f_R0 (fun k:nat => Rabs (Bn k)) n).
+apply H7; assumption.
+apply sum_eq; intros; apply Rabs_right; apply Rle_ge; apply H5.
+intro; apply Rle_trans with (Rabs (An n)).
+apply Rabs_pos.
+unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
+ rewrite Rminus_0_r; pattern (Rabs x) at 1 in |- *;
+ rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1.
+apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ].
+Qed.