summaryrefslogtreecommitdiff
path: root/theories/Reals/ArithProp.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/ArithProp.v')
-rw-r--r--theories/Reals/ArithProp.v50
1 files changed, 25 insertions, 25 deletions
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
index 620561dc..c817bdfa 100644
--- a/theories/Reals/ArithProp.v
+++ b/theories/Reals/ArithProp.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,12 +12,12 @@ Require Import Even.
Require Import Div2.
Require Import ArithRing.
-Open Local Scope Z_scope.
-Open Local Scope R_scope.
+Local Open Scope Z_scope.
+Local Open Scope R_scope.
Lemma minus_neq_O : forall n i:nat, (i < n)%nat -> (n - i)%nat <> 0%nat.
Proof.
- intros; red in |- *; intro.
+ intros; red; intro.
cut (forall n m:nat, (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
intro; assert (H2 := H1 _ _ (lt_le_weak _ _ H) H0); rewrite H2 in H;
elim (lt_irrefl _ H).
@@ -27,11 +27,11 @@ Proof.
forall n0 m:nat, (m <= n0)%nat -> (n0 - m)%nat = 0%nat -> n0 = m).
intro; apply H1.
apply nat_double_ind.
- unfold R in |- *; intros; inversion H2; reflexivity.
- unfold R in |- *; intros; simpl in H3; assumption.
- unfold R in |- *; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
+ unfold R; intros; inversion H2; reflexivity.
+ unfold R; intros; simpl in H3; assumption.
+ unfold R; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
assert (H6 := H2 H5 H4); rewrite H6; reflexivity.
- unfold R in |- *; intros; apply H1; assumption.
+ unfold R; intros; apply H1; assumption.
Qed.
Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat.
@@ -41,20 +41,20 @@ Proof.
((forall m n:nat, R m n) -> forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat).
intro; apply H.
apply nat_double_ind.
- unfold R in |- *; intros; simpl in |- *; apply le_n.
- unfold R in |- *; intros; simpl in |- *; apply le_n.
- unfold R in |- *; intros; simpl in |- *; apply le_trans with n.
+ unfold R; intros; simpl; apply le_n.
+ unfold R; intros; simpl; apply le_n.
+ unfold R; intros; simpl; apply le_trans with n.
apply H0; apply le_S_n; assumption.
apply le_n_Sn.
- unfold R in |- *; intros; apply H; assumption.
+ unfold R; intros; apply H; assumption.
Qed.
Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat.
Proof.
- intros n m; pattern n, m in |- *; apply nat_double_ind;
+ intros n m; pattern n, m; apply nat_double_ind;
[ intros; rewrite <- minus_n_O; assumption
| intros; elim (lt_n_O _ H)
- | intros; simpl in |- *; apply H; apply lt_S_n; assumption ].
+ | intros; simpl; apply H; apply lt_S_n; assumption ].
Qed.
Lemma even_odd_cor :
@@ -73,7 +73,7 @@ Proof.
apply H3; assumption.
right.
apply H4; assumption.
- unfold double in |- *;ring.
+ unfold double;ring.
Qed.
(* 2m <= 2n => m<=n *)
@@ -105,9 +105,9 @@ Proof.
exists (x - IZR k0 * y).
split.
ring.
- unfold k0 in |- *; case (Rcase_abs y); intro.
- assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl in |- *;
- unfold Rminus in |- *.
+ unfold k0; case (Rcase_abs y); intro.
+ assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl;
+ unfold Rminus.
replace (- ((1 + - IZR (up (x / - y))) * y)) with
((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
split.
@@ -118,7 +118,7 @@ Proof.
rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ].
apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y).
- rewrite Rplus_0_r; unfold Rdiv in |- *; pattern (/ - y) at 4 in |- *;
+ rewrite Rplus_0_r; unfold Rdiv; pattern (/ - y) at 4;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
replace
(IZR (up (x * / - y)) - x * - / y +
@@ -138,11 +138,11 @@ Proof.
replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1)))
with (- (x * / y)); [ idtac | ring ].
rewrite <- Ropp_mult_distr_r_reverse; rewrite (Ropp_inv_permute _ H); elim H0;
- unfold Rdiv in |- *; intros H1 _; exact H1.
+ unfold Rdiv; intros H1 _; exact H1.
apply Ropp_neq_0_compat; assumption.
- assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl in |- *;
+ assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl;
cut (0 < y).
- intro; unfold Rminus in |- *;
+ intro; unfold Rminus;
replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y);
[ idtac | ring ].
split.
@@ -152,7 +152,7 @@ Proof.
rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_r | assumption ];
apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y);
- rewrite Rplus_0_r; unfold Rdiv in |- *;
+ rewrite Rplus_0_r; unfold Rdiv;
replace
(IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
@@ -166,12 +166,12 @@ Proof.
replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y)));
[ idtac | ring ];
replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
- (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *;
+ (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv;
intros H2 _; exact H2.
case (total_order_T 0 y); intro.
elim s; intro.
assumption.
- elim H; symmetry in |- *; exact b.
+ elim H; symmetry ; exact b.
assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)).
Qed.