summaryrefslogtreecommitdiff
path: root/theories/Reals/Alembert.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Alembert.v')
-rw-r--r--theories/Reals/Alembert.v726
1 files changed, 726 insertions, 0 deletions
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
new file mode 100644
index 00000000..a691b189
--- /dev/null
+++ b/theories/Reals/Alembert.v
@@ -0,0 +1,726 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Alembert.v,v 1.14.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Rseries.
+Require Import SeqProp.
+Require Import PartSum.
+Require Import Max.
+
+Open Local Scope R_scope.
+
+(***************************************************)
+(* Various versions of the criterion of D'Alembert *)
+(***************************************************)
+
+Lemma Alembert_C1 :
+ forall An:nat -> R,
+ (forall n:nat, 0 < An n) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros An H H0.
+cut
+ (sigT (fun l:R => is_lub (EUn (fun N:nat => sum_f_R0 An N)) l) ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+intro; apply X.
+apply completeness.
+unfold Un_cv in H0; unfold bound in |- *; cut (0 < / 2);
+ [ intro | apply Rinv_0_lt_compat; prove_sup0 ].
+elim (H0 (/ 2) H1); intros.
+exists (sum_f_R0 An x + 2 * An (S x)).
+unfold is_upper_bound in |- *; intros; unfold EUn in H3; elim H3; intros.
+rewrite H4; assert (H5 := lt_eq_lt_dec x1 x).
+elim H5; intros.
+elim a; intro.
+replace (sum_f_R0 An x) with
+ (sum_f_R0 An x1 + sum_f_R0 (fun i:nat => An (S x1 + i)%nat) (x - S x1)).
+pattern (sum_f_R0 An x1) at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite Rplus_assoc; apply Rplus_le_compat_l.
+left; apply Rplus_lt_0_compat.
+apply tech1; intros; apply H.
+apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
+symmetry in |- *; apply tech2; assumption.
+rewrite b; pattern (sum_f_R0 An x) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l.
+left; apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
+replace (sum_f_R0 An x1) with
+ (sum_f_R0 An x + sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x)).
+apply Rplus_le_compat_l.
+cut
+ (sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x) <=
+ An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)).
+intro;
+ apply Rle_trans with
+ (An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)).
+assumption.
+rewrite <- (Rmult_comm (An (S x))); apply Rmult_le_compat_l.
+left; apply H.
+rewrite tech3.
+replace (1 - / 2) with (/ 2).
+unfold Rdiv in |- *; rewrite Rinv_involutive.
+pattern 2 at 3 in |- *; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2);
+ apply Rmult_le_compat_l.
+left; prove_sup0.
+left; apply Rplus_lt_reg_r with ((/ 2) ^ S (x1 - S x)).
+replace ((/ 2) ^ S (x1 - S x) + (1 - (/ 2) ^ S (x1 - S x))) with 1;
+ [ idtac | ring ].
+rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_lt_compat_l.
+apply pow_lt; apply Rinv_0_lt_compat; prove_sup0.
+discrR.
+apply Rmult_eq_reg_l with 2.
+rewrite Rmult_minus_distr_l; rewrite <- Rinv_r_sym.
+ring.
+discrR.
+discrR.
+pattern 1 at 3 in |- *; replace 1 with (/ 1);
+ [ apply tech7; discrR | apply Rinv_1 ].
+replace (An (S x)) with (An (S x + 0)%nat).
+apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)).
+left; apply Rinv_0_lt_compat; prove_sup0.
+intro; cut (forall n:nat, (n >= x)%nat -> An (S n) < / 2 * An n).
+intro; replace (S x + S i)%nat with (S (S x + i)).
+apply H6; unfold ge in |- *; apply tech8.
+apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
+intros; unfold R_dist in H2; apply Rmult_lt_reg_l with (/ An n).
+apply Rinv_0_lt_compat; apply H.
+do 2 rewrite (Rmult_comm (/ An n)); rewrite Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r;
+ replace (An (S n) * / An n) with (Rabs (Rabs (An (S n) / An n) - 0)).
+apply H2; assumption.
+unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ rewrite Rabs_Rabsolu; rewrite Rabs_right.
+unfold Rdiv in |- *; reflexivity.
+left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *;
+ apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply H ].
+red in |- *; intro; assert (H8 := H n); rewrite H7 in H8;
+ elim (Rlt_irrefl _ H8).
+replace (S x + 0)%nat with (S x); [ reflexivity | ring ].
+symmetry in |- *; apply tech2; assumption.
+exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
+intro; elim X; intros.
+apply existT with x; apply tech10;
+ [ unfold Un_growing in |- *; intro; rewrite tech5;
+ pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l; left; apply H
+ | apply p ].
+Qed.
+
+Lemma Alembert_C2 :
+ forall An:nat -> R,
+ (forall n:nat, An n <> 0) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros.
+set (Vn := fun i:nat => (2 * Rabs (An i) + An i) / 2).
+set (Wn := fun i:nat => (2 * Rabs (An i) - An i) / 2).
+cut (forall n:nat, 0 < Vn n).
+intro; cut (forall n:nat, 0 < Wn n).
+intro; cut (Un_cv (fun n:nat => Rabs (Vn (S n) / Vn n)) 0).
+intro; cut (Un_cv (fun n:nat => Rabs (Wn (S n) / Wn n)) 0).
+intro; assert (H5 := Alembert_C1 Vn H1 H3).
+assert (H6 := Alembert_C1 Wn H2 H4).
+elim H5; intros.
+elim H6; intros.
+apply existT with (x - x0); unfold Un_cv in |- *; unfold Un_cv in p;
+ unfold Un_cv in p0; intros; cut (0 < eps / 2).
+intro; elim (p (eps / 2) H8); clear p; intros.
+elim (p0 (eps / 2) H8); clear p0; intros.
+set (N := max x1 x2).
+exists N; intros;
+ replace (sum_f_R0 An n) with (sum_f_R0 Vn n - sum_f_R0 Wn n).
+unfold R_dist in |- *;
+ replace (sum_f_R0 Vn n - sum_f_R0 Wn n - (x - x0)) with
+ (sum_f_R0 Vn n - x + - (sum_f_R0 Wn n - x0)); [ idtac | ring ];
+ apply Rle_lt_trans with
+ (Rabs (sum_f_R0 Vn n - x) + Rabs (- (sum_f_R0 Wn n - x0))).
+apply Rabs_triang.
+rewrite Rabs_Ropp; apply Rlt_le_trans with (eps / 2 + eps / 2).
+apply Rplus_lt_compat.
+unfold R_dist in H9; apply H9; unfold ge in |- *; apply le_trans with N;
+ [ unfold N in |- *; apply le_max_l | assumption ].
+unfold R_dist in H10; apply H10; unfold ge in |- *; apply le_trans with N;
+ [ unfold N in |- *; apply le_max_r | assumption ].
+right; symmetry in |- *; apply double_var.
+symmetry in |- *; apply tech11; intro; unfold Vn, Wn in |- *;
+ unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ 2));
+ apply Rmult_eq_reg_l with 2.
+rewrite Rmult_minus_distr_l; repeat rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+ring.
+discrR.
+discrR.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
+cut (forall n:nat, / 2 * Rabs (An n) <= Wn n <= 3 * / 2 * Rabs (An n)).
+intro; cut (forall n:nat, / Wn n <= 2 * / Rabs (An n)).
+intro; cut (forall n:nat, Wn (S n) / Wn n <= 3 * Rabs (An (S n) / An n)).
+intro; unfold Un_cv in |- *; intros; unfold Un_cv in H0; cut (0 < eps / 3).
+intro; elim (H0 (eps / 3) H8); intros.
+exists x; intros.
+assert (H11 := H9 n H10).
+unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H11;
+ unfold Rminus in H11; rewrite Ropp_0 in H11; rewrite Rplus_0_r in H11;
+ rewrite Rabs_Rabsolu in H11; rewrite Rabs_right.
+apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)).
+apply H6.
+apply Rmult_lt_reg_l with (/ 3).
+apply Rinv_0_lt_compat; prove_sup0.
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
+ rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H11;
+ exact H11.
+left; change (0 < Wn (S n) / Wn n) in |- *; unfold Rdiv in |- *;
+ apply Rmult_lt_0_compat.
+apply H2.
+apply Rinv_0_lt_compat; apply H2.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
+intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc;
+ replace 3 with (2 * (3 * / 2));
+ [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
+ apply Rle_trans with (Wn (S n) * 2 * / Rabs (An n)).
+rewrite Rmult_assoc; apply Rmult_le_compat_l.
+left; apply H2.
+apply H5.
+rewrite Rabs_Rinv.
+replace (Wn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Wn (S n));
+ [ idtac | ring ];
+ replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with
+ (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n))));
+ [ idtac | ring ]; apply Rmult_le_compat_l.
+left; apply Rmult_lt_0_compat.
+prove_sup0.
+apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H.
+elim (H4 (S n)); intros; assumption.
+apply H.
+intro; apply Rmult_le_reg_l with (Wn n).
+apply H2.
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (Rabs (An n)).
+apply Rabs_pos_lt; apply H.
+rewrite Rmult_1_r;
+ replace (Rabs (An n) * (Wn n * (2 * / Rabs (An n)))) with
+ (2 * Wn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ];
+ rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2).
+apply Rinv_0_lt_compat; prove_sup0.
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l; elim (H4 n); intros; assumption.
+discrR.
+apply Rabs_no_R0; apply H.
+red in |- *; intro; assert (H6 := H2 n); rewrite H5 in H6;
+ elim (Rlt_irrefl _ H6).
+intro; split.
+unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; prove_sup0.
+pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double;
+ unfold Rminus in |- *; rewrite Rplus_assoc; apply Rplus_le_compat_l.
+apply Rplus_le_reg_l with (An n).
+rewrite Rplus_0_r; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
+ rewrite Rplus_opp_l; rewrite Rplus_0_r; apply RRle_abs.
+unfold Wn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2));
+ repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; prove_sup0.
+unfold Rminus in |- *; rewrite double;
+ replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
+ [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l.
+rewrite <- Rabs_Ropp; apply RRle_abs.
+cut (forall n:nat, / 2 * Rabs (An n) <= Vn n <= 3 * / 2 * Rabs (An n)).
+intro; cut (forall n:nat, / Vn n <= 2 * / Rabs (An n)).
+intro; cut (forall n:nat, Vn (S n) / Vn n <= 3 * Rabs (An (S n) / An n)).
+intro; unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / 3).
+intro; elim (H0 (eps / 3) H7); intros.
+exists x; intros.
+assert (H10 := H8 n H9).
+unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H10;
+ unfold Rminus in H10; rewrite Ropp_0 in H10; rewrite Rplus_0_r in H10;
+ rewrite Rabs_Rabsolu in H10; rewrite Rabs_right.
+apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)).
+apply H5.
+apply Rmult_lt_reg_l with (/ 3).
+apply Rinv_0_lt_compat; prove_sup0.
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
+ rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H10;
+ exact H10.
+left; change (0 < Vn (S n) / Vn n) in |- *; unfold Rdiv in |- *;
+ apply Rmult_lt_0_compat.
+apply H1.
+apply Rinv_0_lt_compat; apply H1.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
+intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc;
+ replace 3 with (2 * (3 * / 2));
+ [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
+ apply Rle_trans with (Vn (S n) * 2 * / Rabs (An n)).
+rewrite Rmult_assoc; apply Rmult_le_compat_l.
+left; apply H1.
+apply H4.
+rewrite Rabs_Rinv.
+replace (Vn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Vn (S n));
+ [ idtac | ring ];
+ replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with
+ (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n))));
+ [ idtac | ring ]; apply Rmult_le_compat_l.
+left; apply Rmult_lt_0_compat.
+prove_sup0.
+apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H.
+elim (H3 (S n)); intros; assumption.
+apply H.
+intro; apply Rmult_le_reg_l with (Vn n).
+apply H1.
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (Rabs (An n)).
+apply Rabs_pos_lt; apply H.
+rewrite Rmult_1_r;
+ replace (Rabs (An n) * (Vn n * (2 * / Rabs (An n)))) with
+ (2 * Vn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ];
+ rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2).
+apply Rinv_0_lt_compat; prove_sup0.
+rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l; elim (H3 n); intros; assumption.
+discrR.
+apply Rabs_no_R0; apply H.
+red in |- *; intro; assert (H5 := H1 n); rewrite H4 in H5;
+ elim (Rlt_irrefl _ H5).
+intro; split.
+unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; prove_sup0.
+pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double;
+ rewrite Rplus_assoc; apply Rplus_le_compat_l.
+apply Rplus_le_reg_l with (- An n); rewrite Rplus_0_r;
+ rewrite <- (Rplus_comm (An n)); rewrite <- Rplus_assoc;
+ rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite <- Rabs_Ropp;
+ apply RRle_abs.
+unfold Vn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2));
+ repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; prove_sup0.
+unfold Rminus in |- *; rewrite double;
+ replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
+ [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l;
+ apply RRle_abs.
+intro; unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2));
+ rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
+apply Rinv_0_lt_compat; prove_sup0.
+apply Rplus_lt_reg_r with (An n); rewrite Rplus_0_r; unfold Rminus in |- *;
+ rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
+ rewrite Rplus_opp_l; rewrite Rplus_0_r;
+ apply Rle_lt_trans with (Rabs (An n)).
+apply RRle_abs.
+rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
+intro; unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2));
+ rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
+apply Rinv_0_lt_compat; prove_sup0.
+apply Rplus_lt_reg_r with (- An n); rewrite Rplus_0_r; unfold Rminus in |- *;
+ rewrite (Rplus_comm (- An n)); rewrite Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_r;
+ apply Rle_lt_trans with (Rabs (An n)).
+rewrite <- Rabs_Ropp; apply RRle_abs.
+rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
+Qed.
+
+Lemma AlembertC3_step1 :
+ forall (An:nat -> R) (x:R),
+ x <> 0 ->
+ (forall n:nat, An n <> 0) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
+ sigT (fun l:R => Pser An x l).
+intros; set (Bn := fun i:nat => An i * x ^ i).
+cut (forall n:nat, Bn n <> 0).
+intro; cut (Un_cv (fun n:nat => Rabs (Bn (S n) / Bn n)) 0).
+intro; assert (H4 := Alembert_C2 Bn H2 H3).
+elim H4; intros.
+apply existT with x0; unfold Bn in p; apply tech12; assumption.
+unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x).
+intro; elim (H1 (eps / Rabs x) H4); intros.
+exists x0; intros; unfold R_dist in |- *; unfold Rminus in |- *;
+ rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
+ unfold Bn in |- *;
+ replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
+rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs x).
+apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
+rewrite <- (Rmult_comm (Rabs x)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H5;
+ replace (Rabs (An (S n) / An n)) with (R_dist (Rabs (An (S n) * / An n)) 0).
+apply H5; assumption.
+unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv in |- *;
+ reflexivity.
+apply Rabs_no_R0; assumption.
+replace (S n) with (n + 1)%nat; [ idtac | ring ]; rewrite pow_add;
+ unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+replace (An (n + 1)%nat * (x ^ n * x ^ 1) * (/ An n * / x ^ n)) with
+ (An (n + 1)%nat * x ^ 1 * / An n * (x ^ n * / x ^ n));
+ [ idtac | ring ]; rewrite <- Rinv_r_sym.
+simpl in |- *; ring.
+apply pow_nonzero; assumption.
+apply H0.
+apply pow_nonzero; assumption.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
+intro; unfold Bn in |- *; apply prod_neq_R0;
+ [ apply H0 | apply pow_nonzero; assumption ].
+Qed.
+
+Lemma AlembertC3_step2 :
+ forall (An:nat -> R) (x:R), x = 0 -> sigT (fun l:R => Pser An x l).
+intros; apply existT with (An 0%nat).
+unfold Pser in |- *; unfold infinit_sum in |- *; intros; exists 0%nat; intros;
+ replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat).
+unfold R_dist in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite Rabs_R0; assumption.
+induction n as [| n Hrecn].
+simpl in |- *; ring.
+rewrite tech5; rewrite Hrecn;
+ [ rewrite H; simpl in |- *; ring | unfold ge in |- *; apply le_O_n ].
+Qed.
+
+(* An useful criterion of convergence for power series *)
+Theorem Alembert_C3 :
+ forall (An:nat -> R) (x:R),
+ (forall n:nat, An n <> 0) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
+ sigT (fun l:R => Pser An x l).
+intros; case (total_order_T x 0); intro.
+elim s; intro.
+cut (x <> 0).
+intro; apply AlembertC3_step1; assumption.
+red in |- *; intro; rewrite H1 in a; elim (Rlt_irrefl _ a).
+apply AlembertC3_step2; assumption.
+cut (x <> 0).
+intro; apply AlembertC3_step1; assumption.
+red in |- *; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
+Qed.
+
+Lemma Alembert_C4 :
+ forall (An:nat -> R) (k:R),
+ 0 <= k < 1 ->
+ (forall n:nat, 0 < An n) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros An k Hyp H H0.
+cut
+ (sigT (fun l:R => is_lub (EUn (fun N:nat => sum_f_R0 An N)) l) ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+intro; apply X.
+apply completeness.
+assert (H1 := tech13 _ _ Hyp H0).
+elim H1; intros.
+elim H2; intros.
+elim H4; intros.
+unfold bound in |- *; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)).
+unfold is_upper_bound in |- *; intros; unfold EUn in H6.
+elim H6; intros.
+rewrite H7.
+assert (H8 := lt_eq_lt_dec x2 x0).
+elim H8; intros.
+elim a; intro.
+replace (sum_f_R0 An x0) with
+ (sum_f_R0 An x2 + sum_f_R0 (fun i:nat => An (S x2 + i)%nat) (x0 - S x2)).
+pattern (sum_f_R0 An x2) at 1 in |- *; rewrite <- Rplus_0_r.
+rewrite Rplus_assoc; apply Rplus_le_compat_l.
+left; apply Rplus_lt_0_compat.
+apply tech1.
+intros; apply H.
+apply Rmult_lt_0_compat.
+apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
+ replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
+apply H.
+symmetry in |- *; apply tech2; assumption.
+rewrite b; pattern (sum_f_R0 An x0) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l.
+left; apply Rmult_lt_0_compat.
+apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
+ replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
+apply H.
+replace (sum_f_R0 An x2) with
+ (sum_f_R0 An x0 + sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0)).
+apply Rplus_le_compat_l.
+cut
+ (sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0) <=
+ An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)).
+intro;
+ apply Rle_trans with (An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)).
+assumption.
+rewrite <- (Rmult_comm (An (S x0))); apply Rmult_le_compat_l.
+left; apply H.
+rewrite tech3.
+unfold Rdiv in |- *; apply Rmult_le_reg_l with (1 - x).
+apply Rplus_lt_reg_r with x; rewrite Rplus_0_r.
+replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
+do 2 rewrite (Rmult_comm (1 - x)).
+rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; apply Rplus_le_reg_l with (x ^ S (x2 - S x0)).
+replace (x ^ S (x2 - S x0) + (1 - x ^ S (x2 - S x0))) with 1;
+ [ idtac | ring ].
+rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l.
+left; apply pow_lt.
+apply Rle_lt_trans with k.
+elim Hyp; intros; assumption.
+elim H3; intros; assumption.
+apply Rminus_eq_contra.
+red in |- *; intro.
+elim H3; intros.
+rewrite H10 in H12; elim (Rlt_irrefl _ H12).
+red in |- *; intro.
+elim H3; intros.
+rewrite H10 in H12; elim (Rlt_irrefl _ H12).
+replace (An (S x0)) with (An (S x0 + 0)%nat).
+apply (tech6 (fun i:nat => An (S x0 + i)%nat) x).
+left; apply Rle_lt_trans with k.
+elim Hyp; intros; assumption.
+elim H3; intros; assumption.
+intro.
+cut (forall n:nat, (n >= x0)%nat -> An (S n) < x * An n).
+intro.
+replace (S x0 + S i)%nat with (S (S x0 + i)).
+apply H9.
+unfold ge in |- *.
+apply tech8.
+ apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR;
+ ring.
+intros.
+apply Rmult_lt_reg_l with (/ An n).
+apply Rinv_0_lt_compat; apply H.
+do 2 rewrite (Rmult_comm (/ An n)).
+rewrite Rmult_assoc.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r.
+replace (An (S n) * / An n) with (Rabs (An (S n) / An n)).
+apply H5; assumption.
+rewrite Rabs_right.
+unfold Rdiv in |- *; reflexivity.
+left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *;
+ apply Rmult_lt_0_compat.
+apply H.
+apply Rinv_0_lt_compat; apply H.
+red in |- *; intro.
+assert (H11 := H n).
+rewrite H10 in H11; elim (Rlt_irrefl _ H11).
+replace (S x0 + 0)%nat with (S x0); [ reflexivity | ring ].
+symmetry in |- *; apply tech2; assumption.
+exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
+intro; elim X; intros.
+apply existT with x; apply tech10;
+ [ unfold Un_growing in |- *; intro; rewrite tech5;
+ pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l; left; apply H
+ | apply p ].
+Qed.
+
+Lemma Alembert_C5 :
+ forall (An:nat -> R) (k:R),
+ 0 <= k < 1 ->
+ (forall n:nat, An n <> 0) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros.
+cut
+ (sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+intro Hyp0; apply Hyp0.
+apply cv_cauchy_2.
+apply cauchy_abs.
+apply cv_cauchy_1.
+cut
+ (sigT
+ (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l) ->
+ sigT
+ (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l)).
+intro Hyp; apply Hyp.
+apply (Alembert_C4 (fun i:nat => Rabs (An i)) k).
+assumption.
+intro; apply Rabs_pos_lt; apply H0.
+unfold Un_cv in |- *.
+unfold Un_cv in H1.
+unfold Rdiv in |- *.
+intros.
+elim (H1 eps H2); intros.
+exists x; intros.
+rewrite <- Rabs_Rinv.
+rewrite <- Rabs_mult.
+rewrite Rabs_Rabsolu.
+unfold Rdiv in H3; apply H3; assumption.
+apply H0.
+intro.
+elim X; intros.
+apply existT with x.
+assumption.
+intro.
+elim X; intros.
+apply existT with x.
+assumption.
+Qed.
+
+(* Convergence of power series in D(O,1/k) *)
+(* k=0 is described in Alembert_C3 *)
+Lemma Alembert_C6 :
+ forall (An:nat -> R) (x k:R),
+ 0 < k ->
+ (forall n:nat, An n <> 0) ->
+ Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
+ Rabs x < / k -> sigT (fun l:R => Pser An x l).
+intros.
+cut
+ (sigT
+ (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l)).
+intro.
+elim X; intros.
+apply existT with x0.
+apply tech12; assumption.
+case (total_order_T x 0); intro.
+elim s; intro.
+eapply Alembert_C5 with (k * Rabs x).
+split.
+unfold Rdiv in |- *; apply Rmult_le_pos.
+left; assumption.
+left; apply Rabs_pos_lt.
+red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+apply Rmult_lt_reg_l with (/ k).
+apply Rinv_0_lt_compat; assumption.
+rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+rewrite Rmult_1_r; assumption.
+red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
+intro; apply prod_neq_R0.
+apply H0.
+apply pow_nonzero.
+red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+unfold Un_cv in |- *; unfold Un_cv in H1.
+intros.
+cut (0 < eps / Rabs x).
+intro.
+elim (H1 (eps / Rabs x) H4); intros.
+exists x0.
+intros.
+replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
+unfold R_dist in |- *.
+rewrite Rabs_mult.
+replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
+ (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
+rewrite Rabs_mult.
+rewrite Rabs_Rabsolu.
+apply Rmult_lt_reg_l with (/ Rabs x).
+apply Rinv_0_lt_compat; apply Rabs_pos_lt.
+red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+rewrite <- (Rmult_comm eps).
+unfold R_dist in H5.
+unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption.
+apply Rabs_no_R0.
+red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+rewrite pow_add.
+simpl in |- *.
+rewrite Rmult_1_r.
+rewrite Rinv_mult_distr.
+replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
+ (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n));
+ [ idtac | ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; reflexivity.
+apply pow_nonzero.
+red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+apply H0.
+apply pow_nonzero.
+red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+assumption.
+apply Rinv_0_lt_compat; apply Rabs_pos_lt.
+red in |- *; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
+apply existT with (An 0%nat).
+unfold Un_cv in |- *.
+intros.
+exists 0%nat.
+intros.
+unfold R_dist in |- *.
+replace (sum_f_R0 (fun i:nat => An i * x ^ i) n) with (An 0%nat).
+unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+induction n as [| n Hrecn].
+simpl in |- *; ring.
+rewrite tech5.
+rewrite <- Hrecn.
+rewrite b; simpl in |- *; ring.
+unfold ge in |- *; apply le_O_n.
+eapply Alembert_C5 with (k * Rabs x).
+split.
+unfold Rdiv in |- *; apply Rmult_le_pos.
+left; assumption.
+left; apply Rabs_pos_lt.
+red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+apply Rmult_lt_reg_l with (/ k).
+apply Rinv_0_lt_compat; assumption.
+rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+rewrite Rmult_1_r; assumption.
+red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
+intro; apply prod_neq_R0.
+apply H0.
+apply pow_nonzero.
+red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+unfold Un_cv in |- *; unfold Un_cv in H1.
+intros.
+cut (0 < eps / Rabs x).
+intro.
+elim (H1 (eps / Rabs x) H4); intros.
+exists x0.
+intros.
+replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
+unfold R_dist in |- *.
+rewrite Rabs_mult.
+replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
+ (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
+rewrite Rabs_mult.
+rewrite Rabs_Rabsolu.
+apply Rmult_lt_reg_l with (/ Rabs x).
+apply Rinv_0_lt_compat; apply Rabs_pos_lt.
+red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+rewrite <- (Rmult_comm eps).
+unfold R_dist in H5.
+unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption.
+apply Rabs_no_R0.
+red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+rewrite pow_add.
+simpl in |- *.
+rewrite Rmult_1_r.
+rewrite Rinv_mult_distr.
+replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
+ (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n));
+ [ idtac | ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; reflexivity.
+apply pow_nonzero.
+red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+apply H0.
+apply pow_nonzero.
+red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+assumption.
+apply Rinv_0_lt_compat; apply Rabs_pos_lt.
+red in |- *; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r).
+Qed. \ No newline at end of file