summaryrefslogtreecommitdiff
path: root/theories/QArith/Qcanon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/QArith/Qcanon.v')
-rw-r--r--theories/QArith/Qcanon.v120
1 files changed, 61 insertions, 59 deletions
diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v
index d966b050..9f9651d8 100644
--- a/theories/QArith/Qcanon.v
+++ b/theories/QArith/Qcanon.v
@@ -21,37 +21,30 @@ Bind Scope Qc_scope with Qc.
Arguments Qcmake this%Q _.
Open Scope Qc_scope.
+(** An alternative statement of [Qred q = q] via [Z.gcd] *)
+
Lemma Qred_identity :
forall q:Q, Z.gcd (Qnum q) (QDen q) = 1%Z -> Qred q = q.
Proof.
- unfold Qred; intros (a,b); simpl.
- generalize (Z.ggcd_gcd a ('b)) (Z.ggcd_correct_divisors a ('b)).
- intros.
- rewrite H1 in H; clear H1.
- destruct (Z.ggcd a ('b)) as (g,(aa,bb)); simpl in *; subst.
- destruct H0.
- rewrite Z.mul_1_l in H, H0.
- subst; simpl; auto.
+ intros (a,b) H; simpl in *.
+ rewrite <- Z.ggcd_gcd in H.
+ generalize (Z.ggcd_correct_divisors a ('b)).
+ destruct Z.ggcd as (g,(aa,bb)); simpl in *; subst.
+ rewrite !Z.mul_1_l. now intros (<-,<-).
Qed.
Lemma Qred_identity2 :
forall q:Q, Qred q = q -> Z.gcd (Qnum q) (QDen q) = 1%Z.
Proof.
- unfold Qred; intros (a,b); simpl.
- generalize (Z.ggcd_gcd a ('b)) (Z.ggcd_correct_divisors a ('b)) (Z.gcd_nonneg a ('b)).
- intros.
- rewrite <- H; rewrite <- H in H1; clear H.
- destruct (Z.ggcd a ('b)) as (g,(aa,bb)); simpl in *; subst.
- injection H2; intros; clear H2.
- destruct H0.
- clear H0 H3.
- destruct g as [|g|g]; destruct bb as [|bb|bb]; simpl in *; try discriminate.
- f_equal.
- apply Pos.mul_reg_r with bb.
- injection H2; intros.
- rewrite <- H0.
- rewrite H; simpl; auto.
- elim H1; auto.
+ intros (a,b) H; simpl in *.
+ generalize (Z.gcd_nonneg a ('b)) (Z.ggcd_correct_divisors a ('b)).
+ rewrite <- Z.ggcd_gcd.
+ destruct Z.ggcd as (g,(aa,bb)); simpl in *.
+ injection H as <- <-. intros H (_,H').
+ destruct g as [|g|g]; [ discriminate | | now elim H ].
+ destruct bb as [|b|b]; simpl in *; try discriminate.
+ injection H' as H'. f_equal.
+ apply Pos.mul_reg_r with b. now rewrite Pos.mul_1_l.
Qed.
Lemma Qred_iff : forall q:Q, Qred q = q <-> Z.gcd (Qnum q) (QDen q) = 1%Z.
@@ -61,6 +54,23 @@ Proof.
apply Qred_identity; auto.
Qed.
+(** Coercion from [Qc] to [Q] and equality *)
+
+Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'.
+Proof.
+ intros (q,hq) (q',hq') H. simpl in *.
+ assert (H' := Qred_complete _ _ H).
+ rewrite hq, hq' in H'. subst q'. f_equal.
+ apply eq_proofs_unicity. intros. repeat decide equality.
+Qed.
+Hint Resolve Qc_is_canon.
+
+Theorem Qc_decomp: forall q q': Qc, (q:Q) = q' -> q = q'.
+Proof.
+ intros. apply Qc_is_canon. now rewrite H.
+Qed.
+
+(** [Q2Qc] : a conversion from [Q] to [Qc]. *)
Lemma Qred_involutive : forall q:Q, Qred (Qred q) = Qred q.
Proof.
@@ -71,20 +81,12 @@ Qed.
Definition Q2Qc (q:Q) : Qc := Qcmake (Qred q) (Qred_involutive q).
Arguments Q2Qc q%Q.
-Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'.
+Lemma Q2Qc_eq_iff (q q' : Q) : Q2Qc q = Q2Qc q' <-> q == q'.
Proof.
- intros (q,proof_q) (q',proof_q').
- simpl.
- intros H.
- assert (H0:=Qred_complete _ _ H).
- assert (q = q') by congruence.
- subst q'.
- assert (proof_q = proof_q').
- apply eq_proofs_unicity; auto; intros.
- repeat decide equality.
- congruence.
+ split; intro H.
+ - now injection H as H%Qred_eq_iff.
+ - apply Qc_is_canon. simpl. now rewrite H.
Qed.
-Hint Resolve Qc_is_canon.
Notation " 0 " := (Q2Qc 0) : Qc_scope.
Notation " 1 " := (Q2Qc 1) : Qc_scope.
@@ -107,8 +109,7 @@ Lemma Qceq_alt : forall p q, (p = q) <-> (p ?= q) = Eq.
Proof.
unfold Qccompare.
intros; rewrite <- Qeq_alt.
- split; auto.
- intro H; rewrite H; auto with qarith.
+ split; auto. now intros <-.
Qed.
Lemma Qclt_alt : forall p q, (p<q) <-> (p?=q = Lt).
@@ -121,12 +122,12 @@ Proof.
intros; exact (Qgt_alt p q).
Qed.
-Lemma Qle_alt : forall p q, (p<=q) <-> (p?=q <> Gt).
+Lemma Qcle_alt : forall p q, (p<=q) <-> (p?=q <> Gt).
Proof.
intros; exact (Qle_alt p q).
Qed.
-Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
+Lemma Qcge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
Proof.
intros; exact (Qge_alt p q).
Qed.
@@ -166,7 +167,7 @@ Qed.
Ltac qc := match goal with
| q:Qc |- _ => destruct q; qc
- | _ => apply Qc_is_canon; simpl; repeat rewrite Qred_correct
+ | _ => apply Qc_is_canon; simpl; rewrite !Qred_correct
end.
Opaque Qred.
@@ -216,6 +217,18 @@ Proof.
intros; qc; apply Qmult_assoc.
Qed.
+(** [0] is absorbing for multiplication: *)
+
+Lemma Qcmult_0_l : forall n, 0*n = 0.
+Proof.
+ intros; qc; split.
+Qed.
+
+Theorem Qcmult_0_r : forall n, n*0=0.
+Proof.
+ intros; qc; rewrite Qmult_comm; split.
+Qed.
+
(** [1] is a neutral element for multiplication: *)
Lemma Qcmult_1_l : forall n, 1*n = n.
@@ -253,7 +266,7 @@ Theorem Qcmult_integral : forall x y, x*y=0 -> x=0 \/ y=0.
Proof.
intros.
destruct (Qmult_integral x y); try qc; auto.
- injection H; clear H; intros.
+ injection H as H.
rewrite <- (Qred_correct (x*y)).
rewrite <- (Qred_correct 0).
rewrite H; auto with qarith.
@@ -303,7 +316,7 @@ Proof.
apply Qcmult_1_l.
Qed.
-(** Properties of order upon Q. *)
+(** Properties of order upon Qc. *)
Lemma Qcle_refl : forall x, x<=x.
Proof.
@@ -372,9 +385,11 @@ Proof.
unfold Qcle, Qclt; intros; apply Qle_not_lt; auto.
Qed.
-Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
+Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x=y.
Proof.
- unfold Qcle, Qclt; intros; apply Qle_lt_or_eq; auto.
+ unfold Qcle, Qclt; intros x y H.
+ destruct (Qle_lt_or_eq _ _ H); [left|right]; trivial.
+ now apply Qc_is_canon.
Qed.
(** Some decidability results about orders. *)
@@ -459,13 +474,13 @@ Proof.
induction n; simpl; auto with qarith.
rewrite IHn; auto with qarith.
Qed.
-Transparent Qred.
+
Lemma Qcpower_0 : forall n, n<>O -> 0^n = 0.
Proof.
destruct n; simpl.
destruct 1; auto.
intros.
- now apply Qc_is_canon.
+ now apply Qc_is_canon.
Qed.
Lemma Qcpower_pos : forall p n, 0 <= p -> 0 <= p^n.
@@ -525,16 +540,3 @@ intros.
field.
auto.
Qed.
-
-
-Theorem Qc_decomp: forall x y: Qc,
- (Qred x = x -> Qred y = y -> (x:Q) = y)-> x = y.
-Proof.
- intros (q, Hq) (q', Hq'); simpl; intros H.
- assert (H1 := H Hq Hq').
- subst q'.
- assert (Hq = Hq').
- apply Eqdep_dec.eq_proofs_unicity; auto; intros.
- repeat decide equality.
- congruence.
-Qed.