summaryrefslogtreecommitdiff
path: root/theories/QArith/QArith_base.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/QArith/QArith_base.v')
-rw-r--r--theories/QArith/QArith_base.v621
1 files changed, 621 insertions, 0 deletions
diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v
new file mode 100644
index 00000000..1d56b747
--- /dev/null
+++ b/theories/QArith/QArith_base.v
@@ -0,0 +1,621 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: QArith_base.v 8883 2006-05-31 21:56:37Z letouzey $ i*)
+
+Require Export ZArith.
+Require Export ZArithRing.
+Require Export Setoid.
+
+(** * Definition of [Q] and basic properties *)
+
+(** Rationals are pairs of [Z] and [positive] numbers. *)
+
+Record Q : Set := Qmake {Qnum : Z; Qden : positive}.
+
+Delimit Scope Q_scope with Q.
+Bind Scope Q_scope with Q.
+Arguments Scope Qmake [Z_scope positive_scope].
+Open Scope Q_scope.
+Ltac simpl_mult := repeat rewrite Zpos_mult_morphism.
+
+(** [a#b] denotes the fraction [a] over [b]. *)
+
+Notation "a # b" := (Qmake a b) (at level 55, no associativity) : Q_scope.
+
+Definition inject_Z (x : Z) := Qmake x 1.
+Arguments Scope inject_Z [Z_scope].
+
+Notation " 'QDen' p " := (Zpos (Qden p)) (at level 20, no associativity) : Q_scope.
+Notation " 0 " := (0#1) : Q_scope.
+Notation " 1 " := (1#1) : Q_scope.
+
+Definition Qeq (p q : Q) := (Qnum p * QDen q)%Z = (Qnum q * QDen p)%Z.
+Definition Qle (x y : Q) := (Qnum x * QDen y <= Qnum y * QDen x)%Z.
+Definition Qlt (x y : Q) := (Qnum x * QDen y < Qnum y * QDen x)%Z.
+Notation Qgt := (fun x y : Q => Qlt y x).
+Notation Qge := (fun x y : Q => Qle y x).
+
+Infix "==" := Qeq (at level 70, no associativity) : Q_scope.
+Infix "<" := Qlt : Q_scope.
+Infix "<=" := Qle : Q_scope.
+Infix ">" := Qgt : Q_scope.
+Infix ">=" := Qge : Q_scope.
+Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope.
+
+Hint Unfold Qeq Qle Qlt: qarith.
+Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith.
+
+(** Properties of equality. *)
+
+Theorem Qeq_refl : forall x, x == x.
+Proof.
+ auto with qarith.
+Qed.
+
+Theorem Qeq_sym : forall x y, x == y -> y == x.
+Proof.
+ auto with qarith.
+Qed.
+
+Theorem Qeq_trans : forall x y z, x == y -> y == z -> x == z.
+Proof.
+unfold Qeq in |- *; intros.
+apply Zmult_reg_l with (QDen y).
+auto with qarith.
+ring; rewrite H; ring.
+rewrite Zmult_assoc; rewrite H0; ring.
+Qed.
+
+(** Furthermore, this equality is decidable: *)
+
+Theorem Qeq_dec : forall x y, {x==y} + {~ x==y}.
+Proof.
+ intros; case (Z_eq_dec (Qnum x * QDen y) (Qnum y * QDen x)); auto.
+Defined.
+
+(** We now consider [Q] seen as a setoid. *)
+
+Definition Q_Setoid : Setoid_Theory Q Qeq.
+Proof.
+ split; unfold Qeq in |- *; auto; apply Qeq_trans.
+Qed.
+
+Add Setoid Q Qeq Q_Setoid as Qsetoid.
+
+Hint Resolve (Seq_refl Q Qeq Q_Setoid): qarith.
+Hint Resolve (Seq_sym Q Qeq Q_Setoid): qarith.
+Hint Resolve (Seq_trans Q Qeq Q_Setoid): qarith.
+
+(** The addition, multiplication and opposite are defined
+ in the straightforward way: *)
+
+Definition Qplus (x y : Q) :=
+ (Qnum x * QDen y + Qnum y * QDen x) # (Qden x * Qden y).
+
+Definition Qmult (x y : Q) := (Qnum x * Qnum y) # (Qden x * Qden y).
+
+Definition Qopp (x : Q) := (- Qnum x) # (Qden x).
+
+Definition Qminus (x y : Q) := Qplus x (Qopp y).
+
+Definition Qinv (x : Q) :=
+ match Qnum x with
+ | Z0 => 0
+ | Zpos p => (QDen x)#p
+ | Zneg p => (Zneg (Qden x))#p
+ end.
+
+Definition Qdiv (x y : Q) := Qmult x (Qinv y).
+
+Infix "+" := Qplus : Q_scope.
+Notation "- x" := (Qopp x) : Q_scope.
+Infix "-" := Qminus : Q_scope.
+Infix "*" := Qmult : Q_scope.
+Notation "/ x" := (Qinv x) : Q_scope.
+Infix "/" := Qdiv : Q_scope.
+
+(** A light notation for [Zpos] *)
+
+Notation " ' x " := (Zpos x) (at level 20, no associativity) : Z_scope.
+
+(** Setoid compatibility results *)
+
+Add Morphism Qplus : Qplus_comp.
+Proof.
+unfold Qeq, Qplus; simpl.
+Open Scope Z_scope.
+intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
+simpl_mult; ring.
+replace (p1 * ('s2 * 'q2)) with (p1 * 'q2 * 's2) by ring.
+rewrite H.
+replace ('s2 * ('q2 * r1)) with (r1 * 's2 * 'q2) by ring.
+rewrite H0.
+ring.
+Open Scope Q_scope.
+Qed.
+
+Add Morphism Qopp : Qopp_comp.
+Proof.
+unfold Qeq, Qopp; simpl.
+intros; ring; rewrite H; ring.
+Qed.
+
+Add Morphism Qminus : Qminus_comp.
+Proof.
+intros.
+unfold Qminus.
+rewrite H; rewrite H0; auto with qarith.
+Qed.
+
+Add Morphism Qmult : Qmult_comp.
+Proof.
+unfold Qeq; simpl.
+Open Scope Z_scope.
+intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
+intros; simpl_mult; ring.
+replace ('p2 * (q1 * s1)) with (q1 * 'p2 * s1) by ring.
+rewrite <- H.
+replace ('s2 * ('q2 * r1)) with (r1 * 's2 * 'q2) by ring.
+rewrite H0.
+ring.
+Open Scope Q_scope.
+Qed.
+
+Add Morphism Qinv : Qinv_comp.
+Proof.
+unfold Qeq, Qinv; simpl.
+Open Scope Z_scope.
+intros (p1, p2) (q1, q2); simpl.
+case p1; simpl.
+intros.
+assert (q1 = 0).
+ elim (Zmult_integral q1 ('p2)); auto with zarith.
+ intros; discriminate.
+subst; auto.
+case q1; simpl; intros; try discriminate.
+rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto.
+case q1; simpl; intros; try discriminate.
+rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto.
+Open Scope Q_scope.
+Qed.
+
+Add Morphism Qdiv : Qdiv_comp.
+Proof.
+intros; unfold Qdiv.
+rewrite H; rewrite H0; auto with qarith.
+Qed.
+
+Add Morphism Qle with signature Qeq ==> Qeq ==> iff as Qle_comp.
+Proof.
+cut (forall x1 x2, x1==x2 -> forall x3 x4, x3==x4 -> x1<=x3 -> x2<=x4).
+split; apply H; assumption || (apply Qeq_sym ; assumption).
+
+unfold Qeq, Qle; simpl.
+Open Scope Z_scope.
+intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0 H1; simpl in *.
+apply Zmult_le_reg_r with ('p2).
+unfold Zgt; auto.
+replace (q1 * 's2 * 'p2) with (q1 * 'p2 * 's2) by ring.
+rewrite <- H.
+apply Zmult_le_reg_r with ('r2).
+unfold Zgt; auto.
+replace (s1 * 'q2 * 'p2 * 'r2) with (s1 * 'r2 * 'q2 * 'p2) by ring.
+rewrite <- H0.
+replace (p1 * 'q2 * 's2 * 'r2) with ('q2 * 's2 * (p1 * 'r2)) by ring.
+replace (r1 * 's2 * 'q2 * 'p2) with ('q2 * 's2 * (r1 * 'p2)) by ring.
+auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Add Morphism Qlt with signature Qeq ==> Qeq ==> iff as Qlt_comp.
+Proof.
+cut (forall x1 x2, x1==x2 -> forall x3 x4, x3==x4 -> x1<x3 -> x2<x4).
+split; apply H; assumption || (apply Qeq_sym ; assumption).
+
+unfold Qeq, Qlt; simpl.
+Open Scope Z_scope.
+intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0 H1; simpl in *.
+apply Zgt_lt.
+generalize (Zlt_gt _ _ H1); clear H1; intro H1.
+apply Zmult_gt_reg_r with ('p2); auto with zarith.
+replace (q1 * 's2 * 'p2) with (q1 * 'p2 * 's2) by ring.
+rewrite <- H.
+apply Zmult_gt_reg_r with ('r2); auto with zarith.
+replace (s1 * 'q2 * 'p2 * 'r2) with (s1 * 'r2 * 'q2 * 'p2) by ring.
+rewrite <- H0.
+replace (p1 * 'q2 * 's2 * 'r2) with ('q2 * 's2 * (p1 * 'r2)) by ring.
+replace (r1 * 's2 * 'q2 * 'p2) with ('q2 * 's2 * (r1 * 'p2)) by ring.
+apply Zlt_gt.
+apply Zmult_gt_0_lt_compat_l; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+(** [0] and [1] are apart *)
+
+Lemma Q_apart_0_1 : ~ 1 == 0.
+Proof.
+ unfold Qeq; auto with qarith.
+Qed.
+
+(** Addition is associative: *)
+
+Theorem Qplus_assoc : forall x y z, x+(y+z)==(x+y)+z.
+Proof.
+ intros (x1, x2) (y1, y2) (z1, z2).
+ unfold Qeq, Qplus; simpl; simpl_mult; ring.
+Qed.
+
+(** [0] is a neutral element for addition: *)
+
+Lemma Qplus_0_l : forall x, 0+x == x.
+Proof.
+ intros (x1, x2); unfold Qeq, Qplus; simpl; ring.
+Qed.
+
+Lemma Qplus_0_r : forall x, x+0 == x.
+Proof.
+ intros (x1, x2); unfold Qeq, Qplus; simpl.
+ rewrite Pmult_comm; simpl; ring.
+Qed.
+
+(** Commutativity of addition: *)
+
+Theorem Qplus_comm : forall x y, x+y == y+x.
+Proof.
+ intros (x1, x2); unfold Qeq, Qplus; simpl.
+ intros; rewrite Pmult_comm; ring.
+Qed.
+
+(** Properties of [Qopp] *)
+
+Lemma Qopp_involutive : forall q, - -q == q.
+Proof.
+ red; simpl; intros; ring.
+Qed.
+
+Theorem Qplus_opp_r : forall q, q+(-q) == 0.
+Proof.
+ red; simpl; intro; ring.
+Qed.
+
+(** Multiplication is associative: *)
+
+Theorem Qmult_assoc : forall n m p, n*(m*p)==(n*m)*p.
+Proof.
+ intros; red; simpl; rewrite Pmult_assoc; ring.
+Qed.
+
+(** [1] is a neutral element for multiplication: *)
+
+Lemma Qmult_1_l : forall n, 1*n == n.
+Proof.
+ intro; red; simpl; destruct (Qnum n); auto.
+Qed.
+
+Theorem Qmult_1_r : forall n, n*1==n.
+Proof.
+ intro; red; simpl.
+ rewrite Zmult_1_r with (n := Qnum n).
+ rewrite Pmult_comm; simpl; trivial.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem Qmult_comm : forall x y, x*y==y*x.
+Proof.
+ intros; red; simpl; rewrite Pmult_comm; ring.
+Qed.
+
+(** Distributivity *)
+
+Theorem Qmult_plus_distr_r : forall x y z, x*(y+z)==(x*y)+(x*z).
+Proof.
+intros (x1, x2) (y1, y2) (z1, z2).
+unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
+Qed.
+
+Theorem Qmult_plus_distr_l : forall x y z, (x+y)*z==(x*z)+(y*z).
+Proof.
+intros (x1, x2) (y1, y2) (z1, z2).
+unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
+Qed.
+
+(** Integrality *)
+
+Theorem Qmult_integral : forall x y, x*y==0 -> x==0 \/ y==0.
+Proof.
+ intros (x1,x2) (y1,y2).
+ unfold Qeq, Qmult; simpl; intros.
+ destruct (Zmult_integral (x1*1)%Z (y1*1)%Z); auto.
+ rewrite <- H; ring.
+Qed.
+
+Theorem Qmult_integral_l : forall x y, ~ x == 0 -> x*y == 0 -> y == 0.
+Proof.
+ intros (x1, x2) (y1, y2).
+ unfold Qeq, Qmult; simpl; intros.
+ apply Zmult_integral_l with x1; auto with zarith.
+ rewrite <- H0; ring.
+Qed.
+
+(** Inverse and division. *)
+
+Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
+Proof.
+ intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
+ intros; simpl_mult; try ring.
+ elim H; auto.
+Qed.
+
+Lemma Qinv_mult_distr : forall p q, / (p * q) == /p * /q.
+Proof.
+intros (x1,x2) (y1,y2); unfold Qeq, Qinv, Qmult; simpl.
+destruct x1; simpl; auto;
+ destruct y1; simpl; auto.
+Qed.
+
+Theorem Qdiv_mult_l : forall x y, ~ y == 0 -> (x*y)/y == x.
+Proof.
+ intros; unfold Qdiv.
+ rewrite <- (Qmult_assoc x y (Qinv y)).
+ rewrite (Qmult_inv_r y H).
+ apply Qmult_1_r.
+Qed.
+
+Theorem Qmult_div_r : forall x y, ~ y == 0 -> y*(x/y) == x.
+Proof.
+ intros; unfold Qdiv.
+ rewrite (Qmult_assoc y x (Qinv y)).
+ rewrite (Qmult_comm y x).
+ fold (Qdiv (Qmult x y) y).
+ apply Qdiv_mult_l; auto.
+Qed.
+
+(** Properties of order upon Q. *)
+
+Lemma Qle_refl : forall x, x<=x.
+Proof.
+unfold Qle; auto with zarith.
+Qed.
+
+Lemma Qle_antisym : forall x y, x<=y -> y<=x -> x==y.
+Proof.
+unfold Qle, Qeq; auto with zarith.
+Qed.
+
+Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z.
+Proof.
+unfold Qle; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
+Open Scope Z_scope.
+apply Zmult_le_reg_r with ('y2).
+red; trivial.
+apply Zle_trans with (y1 * 'x2 * 'z2).
+replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
+replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qlt_not_eq : forall x y, x<y -> ~ x==y.
+Proof.
+unfold Qlt, Qeq; auto with zarith.
+Qed.
+
+(** Large = strict or equal *)
+
+Lemma Qlt_le_weak : forall x y, x<y -> x<=y.
+Proof.
+unfold Qle, Qlt; auto with zarith.
+Qed.
+
+Lemma Qle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
+Proof.
+unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
+Open Scope Z_scope.
+apply Zgt_lt.
+apply Zmult_gt_reg_r with ('y2).
+red; trivial.
+apply Zgt_le_trans with (y1 * 'x2 * 'z2).
+replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
+replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
+apply Zmult_gt_compat_r; auto with zarith.
+replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qlt_le_trans : forall x y z, x<y -> y<=z -> x<z.
+Proof.
+unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
+Open Scope Z_scope.
+apply Zgt_lt.
+apply Zmult_gt_reg_r with ('y2).
+red; trivial.
+apply Zle_gt_trans with (y1 * 'x2 * 'z2).
+replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring.
+replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring.
+apply Zmult_gt_compat_r; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
+Proof.
+intros.
+apply Qle_lt_trans with y; auto.
+apply Qlt_le_weak; auto.
+Qed.
+
+(** [x<y] iff [~(y<=x)] *)
+
+Lemma Qnot_lt_le : forall x y, ~ x<y -> y<=x.
+Proof.
+unfold Qle, Qlt; auto with zarith.
+Qed.
+
+Lemma Qnot_le_lt : forall x y, ~ x<=y -> y<x.
+Proof.
+unfold Qle, Qlt; auto with zarith.
+Qed.
+
+Lemma Qlt_not_le : forall x y, x<y -> ~ y<=x.
+Proof.
+unfold Qle, Qlt; auto with zarith.
+Qed.
+
+Lemma Qle_not_lt : forall x y, x<=y -> ~ y<x.
+Proof.
+unfold Qle, Qlt; auto with zarith.
+Qed.
+
+Lemma Qle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
+Proof.
+unfold Qle, Qlt, Qeq; intros; apply Zle_lt_or_eq; auto.
+Qed.
+
+(** Some decidability results about orders. *)
+
+Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
+Proof.
+unfold Qlt, Qle, Qeq; intros.
+exact (Z_dec' (Qnum x * QDen y) (Qnum y * QDen x)).
+Defined.
+
+Lemma Qlt_le_dec : forall x y, {x<y} + {y<=x}.
+Proof.
+unfold Qlt, Qle; intros.
+exact (Z_lt_le_dec (Qnum x * QDen y) (Qnum y * QDen x)).
+Defined.
+
+(** Compatibility of operations with respect to order. *)
+
+Lemma Qopp_le_compat : forall p q, p<=q -> -q <= -p.
+Proof.
+intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
+do 2 rewrite <- Zopp_mult_distr_l; omega.
+Qed.
+
+Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
+Proof.
+intros (x1,x2) (y1,y2); unfold Qle; simpl.
+rewrite <- Zopp_mult_distr_l.
+split; omega.
+Qed.
+
+Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p.
+Proof.
+intros (x1,x2) (y1,y2); unfold Qlt; simpl.
+rewrite <- Zopp_mult_distr_l.
+split; omega.
+Qed.
+
+Lemma Qplus_le_compat :
+ forall x y z t, x<=y -> z<=t -> x+z <= y+t.
+Proof.
+unfold Qplus, Qle; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
+ simpl; simpl_mult.
+Open Scope Z_scope.
+intros.
+match goal with |- ?a <= ?b => ring a; ring b end.
+apply Zplus_le_compat.
+replace ('t2 * ('y2 * (z1 * 'x2))) with (z1 * 't2 * ('y2 * 'x2)) by ring.
+replace ('z2 * ('x2 * (t1 * 'y2))) with (t1 * 'z2 * ('y2 * 'x2)) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+replace ('t2 * ('y2 * ('z2 * x1))) with (x1 * 'y2 * ('z2 * 't2)) by ring.
+replace ('z2 * ('x2 * ('t2 * y1))) with (y1 * 'x2 * ('z2 * 't2)) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
+Proof.
+intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
+Open Scope Z_scope.
+intros; simpl_mult.
+replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
+replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
+apply Zmult_le_compat_r; auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y.
+Proof.
+intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
+Open Scope Z_scope.
+simpl_mult.
+replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
+replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
+intros; apply Zmult_le_reg_r with (c1*'c2); auto with zarith.
+Open Scope Q_scope.
+Qed.
+
+Lemma Qmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z.
+Proof.
+intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
+Open Scope Z_scope.
+intros; simpl_mult.
+replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring.
+replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring.
+apply Zmult_lt_compat_r; auto with zarith.
+apply Zmult_lt_0_compat.
+omega.
+compute; auto.
+Open Scope Q_scope.
+Qed.
+
+(** Rational to the n-th power *)
+
+Fixpoint Qpower (q:Q)(n:nat) { struct n } : Q :=
+ match n with
+ | O => 1
+ | S n => q * (Qpower q n)
+ end.
+
+Notation " q ^ n " := (Qpower q n) : Q_scope.
+
+Lemma Qpower_1 : forall n, 1^n == 1.
+Proof.
+induction n; simpl; auto with qarith.
+rewrite IHn; auto with qarith.
+Qed.
+
+Lemma Qpower_0 : forall n, n<>O -> 0^n == 0.
+Proof.
+destruct n; simpl.
+destruct 1; auto.
+intros.
+compute; auto.
+Qed.
+
+Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
+Proof.
+induction n; simpl; auto with qarith.
+intros; compute; intro; discriminate.
+intros.
+apply Qle_trans with (0*(p^n)).
+compute; intro; discriminate.
+apply Qmult_le_compat_r; auto.
+Qed.
+
+Lemma Qinv_power_n : forall n p, (1#p)^n == /(inject_Z ('p))^n.
+Proof.
+induction n.
+compute; auto.
+simpl.
+intros; rewrite IHn; clear IHn.
+unfold Qdiv; rewrite Qinv_mult_distr.
+setoid_replace (1#p) with (/ inject_Z ('p)).
+apply Qeq_refl.
+compute; auto.
+Qed.
+
+