summaryrefslogtreecommitdiff
path: root/theories/Program/Combinators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Combinators.v')
-rw-r--r--theories/Program/Combinators.v22
1 files changed, 9 insertions, 13 deletions
diff --git a/theories/Program/Combinators.v b/theories/Program/Combinators.v
index 772018aa..f78d06b1 100644
--- a/theories/Program/Combinators.v
+++ b/theories/Program/Combinators.v
@@ -1,10 +1,12 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Proofs about standard combinators, exports functional extensionality.
@@ -22,15 +24,13 @@ Open Scope program_scope.
Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f.
Proof.
intros.
- unfold id, compose.
- symmetry. apply eta_expansion.
+ reflexivity.
Qed.
Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f.
Proof.
intros.
- unfold id, compose.
- symmetry ; apply eta_expansion.
+ reflexivity.
Qed.
Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D),
@@ -47,9 +47,7 @@ Hint Rewrite <- @compose_assoc : core.
Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id.
Proof.
- unfold flip, compose.
intros.
- extensionality x ; extensionality y ; extensionality z.
reflexivity.
Qed.
@@ -57,9 +55,7 @@ Qed.
Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id.
Proof.
- simpl ; intros.
- unfold prod_uncurry, prod_curry, compose.
- extensionality x ; extensionality y ; extensionality z.
+ intros.
reflexivity.
Qed.