summaryrefslogtreecommitdiff
path: root/theories/PArith/BinPos.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/PArith/BinPos.v')
-rw-r--r--theories/PArith/BinPos.v2132
1 files changed, 2132 insertions, 0 deletions
diff --git a/theories/PArith/BinPos.v b/theories/PArith/BinPos.v
new file mode 100644
index 00000000..2e4d52a2
--- /dev/null
+++ b/theories/PArith/BinPos.v
@@ -0,0 +1,2132 @@
+(* -*- coding: utf-8 -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Export BinNums.
+Require Import Eqdep_dec EqdepFacts RelationClasses Morphisms Setoid
+ Equalities Orders OrdersFacts GenericMinMax Le Plus.
+
+Require Export BinPosDef.
+
+(**********************************************************************)
+(** * Binary positive numbers, operations and properties *)
+(**********************************************************************)
+
+(** Initial development by Pierre Crégut, CNET, Lannion, France *)
+
+(** The type [positive] and its constructors [xI] and [xO] and [xH]
+ are now defined in [BinNums.v] *)
+
+Local Open Scope positive_scope.
+Local Unset Boolean Equality Schemes.
+Local Unset Case Analysis Schemes.
+
+(** Every definitions and early properties about positive numbers
+ are placed in a module [Pos] for qualification purpose. *)
+
+Module Pos
+ <: UsualOrderedTypeFull
+ <: UsualDecidableTypeFull
+ <: TotalOrder.
+
+(** * Definitions of operations, now in a separate file *)
+
+Include BinPosDef.Pos.
+
+(** In functor applications that follow, we only inline t and eq *)
+
+Set Inline Level 30.
+
+(** * Logical Predicates *)
+
+Definition eq := @Logic.eq positive.
+Definition eq_equiv := @eq_equivalence positive.
+Include BackportEq.
+
+Definition lt x y := (x ?= y) = Lt.
+Definition gt x y := (x ?= y) = Gt.
+Definition le x y := (x ?= y) <> Gt.
+Definition ge x y := (x ?= y) <> Lt.
+
+Infix "<=" := le : positive_scope.
+Infix "<" := lt : positive_scope.
+Infix ">=" := ge : positive_scope.
+Infix ">" := gt : positive_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
+Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
+
+(**********************************************************************)
+(** * Properties of operations over positive numbers *)
+
+(** ** Decidability of equality on binary positive numbers *)
+
+Lemma eq_dec : forall x y:positive, {x = y} + {x <> y}.
+Proof.
+ decide equality.
+Defined.
+
+(**********************************************************************)
+(** * Properties of successor on binary positive numbers *)
+
+(** ** Specification of [xI] in term of [succ] and [xO] *)
+
+Lemma xI_succ_xO p : p~1 = succ p~0.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma succ_discr p : p <> succ p.
+Proof.
+ now destruct p.
+Qed.
+
+(** ** Successor and double *)
+
+Lemma pred_double_spec p : pred_double p = pred (p~0).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma succ_pred_double p : succ (pred_double p) = p~0.
+Proof.
+ induction p; simpl; now f_equal.
+Qed.
+
+Lemma pred_double_succ p : pred_double (succ p) = p~1.
+Proof.
+ induction p; simpl; now f_equal.
+Qed.
+
+Lemma double_succ p : (succ p)~0 = succ (succ p~0).
+Proof.
+ now destruct p.
+Qed.
+
+Lemma pred_double_xO_discr p : pred_double p <> p~0.
+Proof.
+ now destruct p.
+Qed.
+
+(** ** Successor and predecessor *)
+
+Lemma succ_not_1 p : succ p <> 1.
+Proof.
+ now destruct p.
+Qed.
+
+Lemma pred_succ p : pred (succ p) = p.
+Proof.
+ destruct p; simpl; trivial. apply pred_double_succ.
+Qed.
+
+Lemma succ_pred_or p : p = 1 \/ succ (pred p) = p.
+Proof.
+ destruct p; simpl; auto.
+ right; apply succ_pred_double.
+Qed.
+
+Lemma succ_pred p : p <> 1 -> succ (pred p) = p.
+Proof.
+ destruct p; intros H; simpl; trivial.
+ apply succ_pred_double.
+ now destruct H.
+Qed.
+
+(** ** Injectivity of successor *)
+
+Lemma succ_inj p q : succ p = succ q -> p = q.
+Proof.
+ revert q.
+ induction p; intros [q|q| ] H; simpl in H; destr_eq H; f_equal; auto.
+ elim (succ_not_1 p); auto.
+ elim (succ_not_1 q); auto.
+Qed.
+
+(** ** Predecessor to [N] *)
+
+Lemma pred_N_succ p : pred_N (succ p) = Npos p.
+Proof.
+ destruct p; simpl; trivial. f_equal. apply pred_double_succ.
+Qed.
+
+
+(**********************************************************************)
+(** * Properties of addition on binary positive numbers *)
+
+(** ** Specification of [succ] in term of [add] *)
+
+Lemma add_1_r p : p + 1 = succ p.
+Proof.
+ now destruct p.
+Qed.
+
+Lemma add_1_l p : 1 + p = succ p.
+Proof.
+ now destruct p.
+Qed.
+
+(** ** Specification of [add_carry] *)
+
+Theorem add_carry_spec p q : add_carry p q = succ (p + q).
+Proof.
+ revert q. induction p; destruct q; simpl; now f_equal.
+Qed.
+
+(** ** Commutativity *)
+
+Theorem add_comm p q : p + q = q + p.
+Proof.
+ revert q. induction p; destruct q; simpl; f_equal; trivial.
+ rewrite 2 add_carry_spec; now f_equal.
+Qed.
+
+(** ** Permutation of [add] and [succ] *)
+
+Theorem add_succ_r p q : p + succ q = succ (p + q).
+Proof.
+ revert q.
+ induction p; destruct q; simpl; f_equal;
+ auto using add_1_r; rewrite add_carry_spec; auto.
+Qed.
+
+Theorem add_succ_l p q : succ p + q = succ (p + q).
+Proof.
+ rewrite add_comm, (add_comm p). apply add_succ_r.
+Qed.
+
+(** ** No neutral elements for addition *)
+
+Lemma add_no_neutral p q : q + p <> p.
+Proof.
+ revert q.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
+ destr_eq H; apply (IHp q H).
+Qed.
+
+(** ** Simplification *)
+
+Lemma add_carry_add p q r s :
+ add_carry p r = add_carry q s -> p + r = q + s.
+Proof.
+ intros H; apply succ_inj; now rewrite <- 2 add_carry_spec.
+Qed.
+
+Lemma add_reg_r p q r : p + r = q + r -> p = q.
+Proof.
+ revert p q. induction r.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal;
+ auto using add_carry_add; contradict H;
+ rewrite add_carry_spec, <- add_succ_r; auto using add_no_neutral.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
+ contradict H; auto using add_no_neutral.
+ intros p q H. apply succ_inj. now rewrite <- 2 add_1_r.
+Qed.
+
+Lemma add_reg_l p q r : p + q = p + r -> q = r.
+Proof.
+ rewrite 2 (add_comm p). now apply add_reg_r.
+Qed.
+
+Lemma add_cancel_r p q r : p + r = q + r <-> p = q.
+Proof.
+ split. apply add_reg_r. congruence.
+Qed.
+
+Lemma add_cancel_l p q r : r + p = r + q <-> p = q.
+Proof.
+ split. apply add_reg_l. congruence.
+Qed.
+
+Lemma add_carry_reg_r p q r :
+ add_carry p r = add_carry q r -> p = q.
+Proof.
+ intros H. apply add_reg_r with (r:=r); now apply add_carry_add.
+Qed.
+
+Lemma add_carry_reg_l p q r :
+ add_carry p q = add_carry p r -> q = r.
+Proof.
+ intros H; apply add_reg_r with (r:=p);
+ rewrite (add_comm r), (add_comm q); now apply add_carry_add.
+Qed.
+
+(** ** Addition is associative *)
+
+Theorem add_assoc p q r : p + (q + r) = p + q + r.
+Proof.
+ revert q r. induction p.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; trivial;
+ rewrite ?add_carry_spec, ?add_succ_r, ?add_succ_l, ?add_1_r;
+ f_equal; trivial.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; trivial;
+ rewrite ?add_carry_spec, ?add_succ_r, ?add_succ_l, ?add_1_r;
+ f_equal; trivial.
+ intros q r; rewrite 2 add_1_l, add_succ_l; auto.
+Qed.
+
+(** ** Commutation of addition and double *)
+
+Lemma add_xO p q : (p + q)~0 = p~0 + q~0.
+Proof.
+ now destruct p, q.
+Qed.
+
+Lemma add_xI_pred_double p q :
+ (p + q)~0 = p~1 + pred_double q.
+Proof.
+ change (p~1) with (p~0 + 1).
+ now rewrite <- add_assoc, add_1_l, succ_pred_double.
+Qed.
+
+Lemma add_xO_pred_double p q :
+ pred_double (p + q) = p~0 + pred_double q.
+Proof.
+ revert q. induction p as [p IHp| p IHp| ]; destruct q; simpl;
+ rewrite ?add_carry_spec, ?pred_double_succ, ?add_xI_pred_double;
+ try reflexivity.
+ rewrite IHp; auto.
+ rewrite <- succ_pred_double, <- add_1_l. reflexivity.
+Qed.
+
+(** ** Miscellaneous *)
+
+Lemma add_diag p : p + p = p~0.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl;
+ now rewrite ?add_carry_spec, ?IHp.
+Qed.
+
+(**********************************************************************)
+(** * Peano induction and recursion on binary positive positive numbers *)
+
+(** The Peano-like recursor function for [positive] (due to Daniel Schepler) *)
+
+Fixpoint peano_rect (P:positive->Type) (a:P 1)
+ (f: forall p:positive, P p -> P (succ p)) (p:positive) : P p :=
+let f2 := peano_rect (fun p:positive => P (p~0)) (f _ a)
+ (fun (p:positive) (x:P (p~0)) => f _ (f _ x))
+in
+match p with
+ | q~1 => f _ (f2 q)
+ | q~0 => f2 q
+ | 1 => a
+end.
+
+Theorem peano_rect_succ (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (succ p)) (p:positive) :
+ peano_rect P a f (succ p) = f _ (peano_rect P a f p).
+Proof.
+ revert P a f. induction p; trivial.
+ intros. simpl. now rewrite IHp.
+Qed.
+
+Theorem peano_rect_base (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (succ p)) :
+ peano_rect P a f 1 = a.
+Proof.
+ trivial.
+Qed.
+
+Definition peano_rec (P:positive->Set) := peano_rect P.
+
+(** Peano induction *)
+
+Definition peano_ind (P:positive->Prop) := peano_rect P.
+
+(** Peano case analysis *)
+
+Theorem peano_case :
+ forall P:positive -> Prop,
+ P 1 -> (forall n:positive, P (succ n)) -> forall p:positive, P p.
+Proof.
+ intros; apply peano_ind; auto.
+Qed.
+
+(** Earlier, the Peano-like recursor was built and proved in a way due to
+ Conor McBride, see "The view from the left" *)
+
+Inductive PeanoView : positive -> Type :=
+| PeanoOne : PeanoView 1
+| PeanoSucc : forall p, PeanoView p -> PeanoView (succ p).
+
+Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
+ match q in PeanoView x return PeanoView (x~0) with
+ | PeanoOne => PeanoSucc _ PeanoOne
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
+ end.
+
+Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
+ match q in PeanoView x return PeanoView (x~1) with
+ | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
+ end.
+
+Fixpoint peanoView p : PeanoView p :=
+ match p return PeanoView p with
+ | 1 => PeanoOne
+ | p~0 => peanoView_xO p (peanoView p)
+ | p~1 => peanoView_xI p (peanoView p)
+ end.
+
+Definition PeanoView_iter (P:positive->Type)
+ (a:P 1) (f:forall p, P p -> P (succ p)) :=
+ (fix iter p (q:PeanoView p) : P p :=
+ match q in PeanoView p return P p with
+ | PeanoOne => a
+ | PeanoSucc _ q => f _ (iter _ q)
+ end).
+
+Theorem eq_dep_eq_positive :
+ forall (P:positive->Type) (p:positive) (x y:P p),
+ eq_dep positive P p x p y -> x = y.
+Proof.
+ apply eq_dep_eq_dec.
+ decide equality.
+Qed.
+
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
+Proof.
+ intros.
+ induction q as [ | p q IHq ].
+ apply eq_dep_eq_positive.
+ cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
+ destruct p; intros; discriminate.
+ trivial.
+ apply eq_dep_eq_positive.
+ cut (succ p=succ p). pattern (succ p) at 1 2 5, q'. destruct q'.
+ intro. destruct p; discriminate.
+ intro. apply succ_inj in H.
+ generalize q'. rewrite H. intro.
+ rewrite (IHq q'0).
+ trivial.
+ trivial.
+Qed.
+
+Lemma peano_equiv (P:positive->Type) (a:P 1) (f:forall p, P p -> P (succ p)) p :
+ PeanoView_iter P a f p (peanoView p) = peano_rect P a f p.
+Proof.
+ revert P a f. induction p using peano_rect.
+ trivial.
+ intros; simpl. rewrite peano_rect_succ.
+ rewrite (PeanoViewUnique _ (peanoView (succ p)) (PeanoSucc _ (peanoView p))).
+ simpl; now f_equal.
+Qed.
+
+(**********************************************************************)
+(** * Properties of multiplication on binary positive numbers *)
+
+(** ** One is neutral for multiplication *)
+
+Lemma mul_1_l p : 1 * p = p.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma mul_1_r p : p * 1 = p.
+Proof.
+ induction p; simpl; now f_equal.
+Qed.
+
+(** ** Right reduction properties for multiplication *)
+
+Lemma mul_xO_r p q : p * q~0 = (p * q)~0.
+Proof.
+ induction p; simpl; f_equal; f_equal; trivial.
+Qed.
+
+Lemma mul_xI_r p q : p * q~1 = p + (p * q)~0.
+Proof.
+ induction p as [p IHp|p IHp| ]; simpl; f_equal; trivial.
+ now rewrite IHp, 2 add_assoc, (add_comm p).
+Qed.
+
+(** ** Commutativity of multiplication *)
+
+Theorem mul_comm p q : p * q = q * p.
+Proof.
+ induction q as [q IHq|q IHq| ]; simpl; rewrite <- ? IHq;
+ auto using mul_xI_r, mul_xO_r, mul_1_r.
+Qed.
+
+(** ** Distributivity of multiplication over addition *)
+
+Theorem mul_add_distr_l p q r :
+ p * (q + r) = p * q + p * r.
+Proof.
+ induction p as [p IHp|p IHp| ]; simpl.
+ rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
+ change ((p*q+p*r)~0) with (m+n).
+ rewrite 2 add_assoc; f_equal.
+ rewrite <- 2 add_assoc; f_equal.
+ apply add_comm.
+ f_equal; auto.
+ reflexivity.
+Qed.
+
+Theorem mul_add_distr_r p q r :
+ (p + q) * r = p * r + q * r.
+Proof.
+ rewrite 3 (mul_comm _ r); apply mul_add_distr_l.
+Qed.
+
+(** ** Associativity of multiplication *)
+
+Theorem mul_assoc p q r : p * (q * r) = p * q * r.
+Proof.
+ induction p as [p IHp| p IHp | ]; simpl; rewrite ?IHp; trivial.
+ now rewrite mul_add_distr_r.
+Qed.
+
+(** ** Successor and multiplication *)
+
+Lemma mul_succ_l p q : (succ p) * q = q + p * q.
+Proof.
+ induction p as [p IHp | p IHp | ]; simpl; trivial.
+ now rewrite IHp, add_assoc, add_diag, <-add_xO.
+ symmetry; apply add_diag.
+Qed.
+
+Lemma mul_succ_r p q : p * (succ q) = p + p * q.
+Proof.
+ rewrite mul_comm, mul_succ_l. f_equal. apply mul_comm.
+Qed.
+
+(** ** Parity properties of multiplication *)
+
+Lemma mul_xI_mul_xO_discr p q r : p~1 * r <> q~0 * r.
+Proof.
+ induction r; try discriminate.
+ rewrite 2 mul_xO_r; intro H; destr_eq H; auto.
+Qed.
+
+Lemma mul_xO_discr p q : p~0 * q <> q.
+Proof.
+ induction q; try discriminate.
+ rewrite mul_xO_r; injection; assumption.
+Qed.
+
+(** ** Simplification properties of multiplication *)
+
+Theorem mul_reg_r p q r : p * r = q * r -> p = q.
+Proof.
+ revert q r.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
+ reflexivity || apply f_equal || exfalso.
+ apply IHp with (r~0). simpl in *.
+ rewrite 2 mul_xO_r. apply add_reg_l with (1:=H).
+ contradict H. apply mul_xI_mul_xO_discr.
+ contradict H. simpl. rewrite add_comm. apply add_no_neutral.
+ symmetry in H. contradict H. apply mul_xI_mul_xO_discr.
+ apply IHp with (r~0). simpl. now rewrite 2 mul_xO_r.
+ contradict H. apply mul_xO_discr.
+ symmetry in H. contradict H. simpl. rewrite add_comm.
+ apply add_no_neutral.
+ symmetry in H. contradict H. apply mul_xO_discr.
+Qed.
+
+Theorem mul_reg_l p q r : r * p = r * q -> p = q.
+Proof.
+ rewrite 2 (mul_comm r). apply mul_reg_r.
+Qed.
+
+Lemma mul_cancel_r p q r : p * r = q * r <-> p = q.
+Proof.
+ split. apply mul_reg_r. congruence.
+Qed.
+
+Lemma mul_cancel_l p q r : r * p = r * q <-> p = q.
+Proof.
+ split. apply mul_reg_l. congruence.
+Qed.
+
+(** ** Inversion of multiplication *)
+
+Lemma mul_eq_1_l p q : p * q = 1 -> p = 1.
+Proof.
+ now destruct p, q.
+Qed.
+
+Lemma mul_eq_1_r p q : p * q = 1 -> q = 1.
+Proof.
+ now destruct p, q.
+Qed.
+
+Notation mul_eq_1 := mul_eq_1_l.
+
+(** ** Square *)
+
+Lemma square_xO p : p~0 * p~0 = (p*p)~0~0.
+Proof.
+ simpl. now rewrite mul_comm.
+Qed.
+
+Lemma square_xI p : p~1 * p~1 = (p*p+p)~0~1.
+Proof.
+ simpl. rewrite mul_comm. simpl. f_equal.
+ rewrite add_assoc, add_diag. simpl. now rewrite add_comm.
+Qed.
+
+(** ** Properties of [iter] *)
+
+Lemma iter_swap_gen : forall A B (f:A->B)(g:A->A)(h:B->B),
+ (forall a, f (g a) = h (f a)) -> forall p a,
+ f (iter p g a) = iter p h (f a).
+Proof.
+ induction p; simpl; intros; now rewrite ?H, ?IHp.
+Qed.
+
+Theorem iter_swap :
+ forall p (A:Type) (f:A -> A) (x:A),
+ iter p f (f x) = f (iter p f x).
+Proof.
+ intros. symmetry. now apply iter_swap_gen.
+Qed.
+
+Theorem iter_succ :
+ forall p (A:Type) (f:A -> A) (x:A),
+ iter (succ p) f x = f (iter p f x).
+Proof.
+ induction p as [p IHp|p IHp|]; intros; simpl; trivial.
+ now rewrite !IHp, iter_swap.
+Qed.
+
+Theorem iter_add :
+ forall p q (A:Type) (f:A -> A) (x:A),
+ iter (p+q) f x = iter p f (iter q f x).
+Proof.
+ induction p using peano_ind; intros.
+ now rewrite add_1_l, iter_succ.
+ now rewrite add_succ_l, !iter_succ, IHp.
+Qed.
+
+Theorem iter_invariant :
+ forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop),
+ (forall x:A, Inv x -> Inv (f x)) ->
+ forall x:A, Inv x -> Inv (iter p f x).
+Proof.
+ induction p as [p IHp|p IHp|]; simpl; trivial.
+ intros A f Inv H x H0. apply H, IHp, IHp; trivial.
+ intros A f Inv H x H0. apply IHp, IHp; trivial.
+Qed.
+
+(** ** Properties of power *)
+
+Lemma pow_1_r p : p^1 = p.
+Proof.
+ unfold pow. simpl. now rewrite mul_comm.
+Qed.
+
+Lemma pow_succ_r p q : p^(succ q) = p * p^q.
+Proof.
+ unfold pow. now rewrite iter_succ.
+Qed.
+
+(** ** Properties of square *)
+
+Lemma square_spec p : square p = p * p.
+Proof.
+ induction p.
+ - rewrite square_xI. simpl. now rewrite IHp.
+ - rewrite square_xO. simpl. now rewrite IHp.
+ - trivial.
+Qed.
+
+(** ** Properties of [sub_mask] *)
+
+Lemma sub_mask_succ_r p q :
+ sub_mask p (succ q) = sub_mask_carry p q.
+Proof.
+ revert q. induction p; destruct q; simpl; f_equal; trivial; now destruct p.
+Qed.
+
+Theorem sub_mask_carry_spec p q :
+ sub_mask_carry p q = pred_mask (sub_mask p q).
+Proof.
+ revert q. induction p as [p IHp|p IHp| ]; destruct q; simpl;
+ try reflexivity; try rewrite IHp;
+ destruct (sub_mask p q) as [|[r|r| ]|] || destruct p; auto.
+Qed.
+
+Inductive SubMaskSpec (p q : positive) : mask -> Prop :=
+ | SubIsNul : p = q -> SubMaskSpec p q IsNul
+ | SubIsPos : forall r, q + r = p -> SubMaskSpec p q (IsPos r)
+ | SubIsNeg : forall r, p + r = q -> SubMaskSpec p q IsNeg.
+
+Theorem sub_mask_spec p q : SubMaskSpec p q (sub_mask p q).
+Proof.
+ revert q. induction p; destruct q; simpl; try constructor; trivial.
+ (* p~1 q~1 *)
+ destruct (IHp q); subst; try now constructor.
+ now apply SubIsNeg with r~0.
+ (* p~1 q~0 *)
+ destruct (IHp q); subst; try now constructor.
+ apply SubIsNeg with (pred_double r). symmetry. apply add_xI_pred_double.
+ (* p~0 q~1 *)
+ rewrite sub_mask_carry_spec.
+ destruct (IHp q); subst; try constructor.
+ now apply SubIsNeg with 1.
+ destruct r; simpl; try constructor; simpl.
+ now rewrite add_carry_spec, <- add_succ_r.
+ now rewrite add_carry_spec, <- add_succ_r, succ_pred_double.
+ now rewrite add_1_r.
+ now apply SubIsNeg with r~1.
+ (* p~0 q~0 *)
+ destruct (IHp q); subst; try now constructor.
+ now apply SubIsNeg with r~0.
+ (* p~0 1 *)
+ now rewrite add_1_l, succ_pred_double.
+ (* 1 q~1 *)
+ now apply SubIsNeg with q~0.
+ (* 1 q~0 *)
+ apply SubIsNeg with (pred_double q). now rewrite add_1_l, succ_pred_double.
+Qed.
+
+Theorem sub_mask_nul_iff p q : sub_mask p q = IsNul <-> p = q.
+Proof.
+ split.
+ now case sub_mask_spec.
+ intros <-. induction p; simpl; now rewrite ?IHp.
+Qed.
+
+Theorem sub_mask_diag p : sub_mask p p = IsNul.
+Proof.
+ now apply sub_mask_nul_iff.
+Qed.
+
+Lemma sub_mask_add p q r : sub_mask p q = IsPos r -> q + r = p.
+Proof.
+ case sub_mask_spec; congruence.
+Qed.
+
+Lemma sub_mask_add_diag_l p q : sub_mask (p+q) p = IsPos q.
+Proof.
+ case sub_mask_spec.
+ intros H. rewrite add_comm in H. elim (add_no_neutral _ _ H).
+ intros r H. apply add_cancel_l in H. now f_equal.
+ intros r H. rewrite <- add_assoc, add_comm in H. elim (add_no_neutral _ _ H).
+Qed.
+
+Lemma sub_mask_pos_iff p q r : sub_mask p q = IsPos r <-> q + r = p.
+Proof.
+ split. apply sub_mask_add. intros <-; apply sub_mask_add_diag_l.
+Qed.
+
+Lemma sub_mask_add_diag_r p q : sub_mask p (p+q) = IsNeg.
+Proof.
+ case sub_mask_spec; trivial.
+ intros H. symmetry in H; rewrite add_comm in H. elim (add_no_neutral _ _ H).
+ intros r H. rewrite <- add_assoc, add_comm in H. elim (add_no_neutral _ _ H).
+Qed.
+
+Lemma sub_mask_neg_iff p q : sub_mask p q = IsNeg <-> exists r, p + r = q.
+Proof.
+ split.
+ case sub_mask_spec; try discriminate. intros r Hr _; now exists r.
+ intros (r,<-). apply sub_mask_add_diag_r.
+Qed.
+
+(*********************************************************************)
+(** * Properties of boolean comparisons *)
+
+Theorem eqb_eq p q : (p =? q) = true <-> p=q.
+Proof.
+ revert q. induction p; destruct q; simpl; rewrite ?IHp; split; congruence.
+Qed.
+
+Theorem ltb_lt p q : (p <? q) = true <-> p < q.
+Proof.
+ unfold ltb, lt. destruct compare; easy'.
+Qed.
+
+Theorem leb_le p q : (p <=? q) = true <-> p <= q.
+Proof.
+ unfold leb, le. destruct compare; easy'.
+Qed.
+
+(** More about [eqb] *)
+
+Include BoolEqualityFacts.
+
+(**********************************************************************)
+(** * Properties of comparison on binary positive numbers *)
+
+(** First, we express [compare_cont] in term of [compare] *)
+
+Definition switch_Eq c c' :=
+ match c' with
+ | Eq => c
+ | Lt => Lt
+ | Gt => Gt
+ end.
+
+Lemma compare_cont_spec p q c :
+ compare_cont p q c = switch_Eq c (p ?= q).
+Proof.
+ unfold compare.
+ revert q c.
+ induction p; destruct q; simpl; trivial.
+ intros c.
+ rewrite 2 IHp. now destruct (compare_cont p q Eq).
+ intros c.
+ rewrite 2 IHp. now destruct (compare_cont p q Eq).
+Qed.
+
+(** From this general result, we now describe particular cases
+ of [compare_cont p q c = c'] :
+ - When [c=Eq], this is directly [compare]
+ - When [c<>Eq], we'll show first that [c'<>Eq]
+ - That leaves only 4 lemmas for [c] and [c'] being [Lt] or [Gt]
+*)
+
+Theorem compare_cont_Eq p q c :
+ compare_cont p q c = Eq -> c = Eq.
+Proof.
+ rewrite compare_cont_spec. now destruct (p ?= q).
+Qed.
+
+Lemma compare_cont_Lt_Gt p q :
+ compare_cont p q Lt = Gt <-> p > q.
+Proof.
+ rewrite compare_cont_spec. unfold gt. destruct (p ?= q); now split.
+Qed.
+
+Lemma compare_cont_Lt_Lt p q :
+ compare_cont p q Lt = Lt <-> p <= q.
+Proof.
+ rewrite compare_cont_spec. unfold le. destruct (p ?= q); easy'.
+Qed.
+
+Lemma compare_cont_Gt_Lt p q :
+ compare_cont p q Gt = Lt <-> p < q.
+Proof.
+ rewrite compare_cont_spec. unfold lt. destruct (p ?= q); now split.
+Qed.
+
+Lemma compare_cont_Gt_Gt p q :
+ compare_cont p q Gt = Gt <-> p >= q.
+Proof.
+ rewrite compare_cont_spec. unfold ge. destruct (p ?= q); easy'.
+Qed.
+
+(** We can express recursive equations for [compare] *)
+
+Lemma compare_xO_xO p q : (p~0 ?= q~0) = (p ?= q).
+Proof. reflexivity. Qed.
+
+Lemma compare_xI_xI p q : (p~1 ?= q~1) = (p ?= q).
+Proof. reflexivity. Qed.
+
+Lemma compare_xI_xO p q :
+ (p~1 ?= q~0) = switch_Eq Gt (p ?= q).
+Proof. exact (compare_cont_spec p q Gt). Qed.
+
+Lemma compare_xO_xI p q :
+ (p~0 ?= q~1) = switch_Eq Lt (p ?= q).
+Proof. exact (compare_cont_spec p q Lt). Qed.
+
+Hint Rewrite compare_xO_xO compare_xI_xI compare_xI_xO compare_xO_xI : compare.
+
+Ltac simpl_compare := autorewrite with compare.
+Ltac simpl_compare_in H := autorewrite with compare in H.
+
+(** Relation between [compare] and [sub_mask] *)
+
+Definition mask2cmp (p:mask) : comparison :=
+ match p with
+ | IsNul => Eq
+ | IsPos _ => Gt
+ | IsNeg => Lt
+ end.
+
+Lemma compare_sub_mask p q : (p ?= q) = mask2cmp (sub_mask p q).
+Proof.
+ revert q.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ]; simpl; trivial;
+ specialize (IHp q); rewrite ?sub_mask_carry_spec;
+ destruct (sub_mask p q) as [|r|]; simpl in *;
+ try clear r; try destruct r; simpl; trivial;
+ simpl_compare; now rewrite IHp.
+Qed.
+
+(** Alternative characterisation of strict order in term of addition *)
+
+Lemma lt_iff_add p q : p < q <-> exists r, p + r = q.
+Proof.
+ unfold "<". rewrite <- sub_mask_neg_iff, compare_sub_mask.
+ destruct sub_mask; now split.
+Qed.
+
+Lemma gt_iff_add p q : p > q <-> exists r, q + r = p.
+Proof.
+ unfold ">". rewrite compare_sub_mask.
+ split.
+ case_eq (sub_mask p q); try discriminate; intros r Hr _.
+ exists r. now apply sub_mask_pos_iff.
+ intros (r,Hr). apply sub_mask_pos_iff in Hr. now rewrite Hr.
+Qed.
+
+(** Basic facts about [compare_cont] *)
+
+Theorem compare_cont_refl p c :
+ compare_cont p p c = c.
+Proof.
+ now induction p.
+Qed.
+
+Lemma compare_cont_antisym p q c :
+ CompOpp (compare_cont p q c) = compare_cont q p (CompOpp c).
+Proof.
+ revert q c.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] c; simpl;
+ trivial; apply IHp.
+Qed.
+
+(** Basic facts about [compare] *)
+
+Lemma compare_eq_iff p q : (p ?= q) = Eq <-> p = q.
+Proof.
+ rewrite compare_sub_mask, <- sub_mask_nul_iff.
+ destruct sub_mask; now split.
+Qed.
+
+Lemma compare_antisym p q : (q ?= p) = CompOpp (p ?= q).
+Proof.
+ unfold compare. now rewrite compare_cont_antisym.
+Qed.
+
+Lemma compare_lt_iff p q : (p ?= q) = Lt <-> p < q.
+Proof. reflexivity. Qed.
+
+Lemma compare_le_iff p q : (p ?= q) <> Gt <-> p <= q.
+Proof. reflexivity. Qed.
+
+(** More properties about [compare] and boolean comparisons,
+ including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *)
+
+Include BoolOrderFacts.
+
+Definition le_lteq := lt_eq_cases.
+
+(** ** Facts about [gt] and [ge] *)
+
+(** The predicates [lt] and [le] are now favored in the statements
+ of theorems, the use of [gt] and [ge] is hence not recommended.
+ We provide here the bare minimal results to related them with
+ [lt] and [le]. *)
+
+Lemma gt_lt_iff p q : p > q <-> q < p.
+Proof.
+ unfold lt, gt. now rewrite compare_antisym, CompOpp_iff.
+Qed.
+
+Lemma gt_lt p q : p > q -> q < p.
+Proof.
+ apply gt_lt_iff.
+Qed.
+
+Lemma lt_gt p q : p < q -> q > p.
+Proof.
+ apply gt_lt_iff.
+Qed.
+
+Lemma ge_le_iff p q : p >= q <-> q <= p.
+Proof.
+ unfold le, ge. now rewrite compare_antisym, CompOpp_iff.
+Qed.
+
+Lemma ge_le p q : p >= q -> q <= p.
+Proof.
+ apply ge_le_iff.
+Qed.
+
+Lemma le_ge p q : p <= q -> q >= p.
+Proof.
+ apply ge_le_iff.
+Qed.
+
+(** ** Comparison and the successor *)
+
+Lemma compare_succ_r p q :
+ switch_Eq Gt (p ?= succ q) = switch_Eq Lt (p ?= q).
+Proof.
+ revert q.
+ induction p as [p IH|p IH| ]; intros [q|q| ]; simpl;
+ simpl_compare; rewrite ?IH; trivial;
+ (now destruct compare) || (now destruct p).
+Qed.
+
+Lemma compare_succ_l p q :
+ switch_Eq Lt (succ p ?= q) = switch_Eq Gt (p ?= q).
+Proof.
+ rewrite 2 (compare_antisym q). generalize (compare_succ_r q p).
+ now do 2 destruct compare.
+Qed.
+
+Theorem lt_succ_r p q : p < succ q <-> p <= q.
+Proof.
+ unfold lt, le. generalize (compare_succ_r p q).
+ do 2 destruct compare; try discriminate; now split.
+Qed.
+
+Lemma lt_succ_diag_r p : p < succ p.
+Proof.
+ rewrite lt_iff_add. exists 1. apply add_1_r.
+Qed.
+
+Lemma compare_succ_succ p q : (succ p ?= succ q) = (p ?= q).
+Proof.
+ revert q.
+ induction p; destruct q; simpl; simpl_compare; trivial;
+ apply compare_succ_l || apply compare_succ_r ||
+ (now destruct p) || (now destruct q).
+Qed.
+
+(** ** 1 is the least positive number *)
+
+Lemma le_1_l p : 1 <= p.
+Proof.
+ now destruct p.
+Qed.
+
+Lemma nlt_1_r p : ~ p < 1.
+Proof.
+ now destruct p.
+Qed.
+
+Lemma lt_1_succ p : 1 < succ p.
+Proof.
+ apply lt_succ_r, le_1_l.
+Qed.
+
+(** ** Properties of the order *)
+
+Lemma le_nlt p q : p <= q <-> ~ q < p.
+Proof.
+ now rewrite <- ge_le_iff.
+Qed.
+
+Lemma lt_nle p q : p < q <-> ~ q <= p.
+Proof.
+ intros. unfold lt, le. rewrite compare_antisym.
+ destruct compare; split; auto; easy'.
+Qed.
+
+Lemma lt_le_incl p q : p<q -> p<=q.
+Proof.
+ intros. apply le_lteq. now left.
+Qed.
+
+Lemma lt_lt_succ n m : n < m -> n < succ m.
+Proof.
+ intros. now apply lt_succ_r, lt_le_incl.
+Qed.
+
+Lemma succ_lt_mono n m : n < m <-> succ n < succ m.
+Proof.
+ unfold lt. now rewrite compare_succ_succ.
+Qed.
+
+Lemma succ_le_mono n m : n <= m <-> succ n <= succ m.
+Proof.
+ unfold le. now rewrite compare_succ_succ.
+Qed.
+
+Lemma lt_trans n m p : n < m -> m < p -> n < p.
+Proof.
+ rewrite 3 lt_iff_add. intros (r,Hr) (s,Hs).
+ exists (r+s). now rewrite add_assoc, Hr, Hs.
+Qed.
+
+Theorem lt_ind : forall (A : positive -> Prop) (n : positive),
+ A (succ n) ->
+ (forall m : positive, n < m -> A m -> A (succ m)) ->
+ forall m : positive, n < m -> A m.
+Proof.
+ intros A n AB AS m. induction m using peano_ind; intros H.
+ elim (nlt_1_r _ H).
+ apply lt_succ_r, le_lteq in H. destruct H as [H|H]; subst; auto.
+Qed.
+
+Instance lt_strorder : StrictOrder lt.
+Proof. split. exact lt_irrefl. exact lt_trans. Qed.
+
+Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) lt.
+Proof. repeat red. intros. subst; auto. Qed.
+
+Lemma lt_total p q : p < q \/ p = q \/ q < p.
+Proof.
+ case (compare_spec p q); intuition.
+Qed.
+
+Lemma le_refl p : p <= p.
+Proof.
+ intros. unfold le. now rewrite compare_refl.
+Qed.
+
+Lemma le_lt_trans n m p : n <= m -> m < p -> n < p.
+Proof.
+ intros H H'. apply le_lteq in H. destruct H.
+ now apply lt_trans with m. now subst.
+Qed.
+
+Lemma lt_le_trans n m p : n < m -> m <= p -> n < p.
+Proof.
+ intros H H'. apply le_lteq in H'. destruct H'.
+ now apply lt_trans with m. now subst.
+Qed.
+
+Lemma le_trans n m p : n <= m -> m <= p -> n <= p.
+Proof.
+ intros H H'.
+ apply le_lteq in H. destruct H.
+ apply le_lteq; left. now apply lt_le_trans with m.
+ now subst.
+Qed.
+
+Lemma le_succ_l n m : succ n <= m <-> n < m.
+Proof.
+ rewrite <- lt_succ_r. symmetry. apply succ_lt_mono.
+Qed.
+
+Lemma le_antisym p q : p <= q -> q <= p -> p = q.
+Proof.
+ rewrite le_lteq; destruct 1; auto.
+ rewrite le_lteq; destruct 1; auto.
+ elim (lt_irrefl p). now transitivity q.
+Qed.
+
+Instance le_preorder : PreOrder le.
+Proof. split. exact le_refl. exact le_trans. Qed.
+
+Instance le_partorder : PartialOrder Logic.eq le.
+Proof.
+ intros x y. change (x=y <-> x <= y <= x).
+ split. intros; now subst.
+ destruct 1; now apply le_antisym.
+Qed.
+
+(** ** Comparison and addition *)
+
+Lemma add_compare_mono_l p q r : (p+q ?= p+r) = (q ?= r).
+Proof.
+ revert p q r. induction p using peano_ind; intros q r.
+ rewrite 2 add_1_l. apply compare_succ_succ.
+ now rewrite 2 add_succ_l, compare_succ_succ.
+Qed.
+
+Lemma add_compare_mono_r p q r : (q+p ?= r+p) = (q ?= r).
+Proof.
+ rewrite 2 (add_comm _ p). apply add_compare_mono_l.
+Qed.
+
+(** ** Order and addition *)
+
+Lemma lt_add_diag_r p q : p < p + q.
+Proof.
+ rewrite lt_iff_add. now exists q.
+Qed.
+
+Lemma add_lt_mono_l p q r : q<r <-> p+q < p+r.
+Proof.
+ unfold lt. rewrite add_compare_mono_l. apply iff_refl.
+Qed.
+
+Lemma add_lt_mono_r p q r : q<r <-> q+p < r+p.
+Proof.
+ unfold lt. rewrite add_compare_mono_r. apply iff_refl.
+Qed.
+
+Lemma add_lt_mono p q r s : p<q -> r<s -> p+r<q+s.
+Proof.
+ intros. apply lt_trans with (p+s).
+ now apply add_lt_mono_l.
+ now apply add_lt_mono_r.
+Qed.
+
+Lemma add_le_mono_l p q r : q<=r <-> p+q<=p+r.
+Proof.
+ unfold le. rewrite add_compare_mono_l. apply iff_refl.
+Qed.
+
+Lemma add_le_mono_r p q r : q<=r <-> q+p<=r+p.
+Proof.
+ unfold le. rewrite add_compare_mono_r. apply iff_refl.
+Qed.
+
+Lemma add_le_mono p q r s : p<=q -> r<=s -> p+r <= q+s.
+Proof.
+ intros. apply le_trans with (p+s).
+ now apply add_le_mono_l.
+ now apply add_le_mono_r.
+Qed.
+
+(** ** Comparison and multiplication *)
+
+Lemma mul_compare_mono_l p q r : (p*q ?= p*r) = (q ?= r).
+Proof.
+ revert q r. induction p; simpl; trivial.
+ intros q r. specialize (IHp q r).
+ destruct (compare_spec q r).
+ subst. apply compare_refl.
+ now apply add_lt_mono.
+ now apply lt_gt, add_lt_mono, gt_lt.
+Qed.
+
+Lemma mul_compare_mono_r p q r : (q*p ?= r*p) = (q ?= r).
+Proof.
+ rewrite 2 (mul_comm _ p). apply mul_compare_mono_l.
+Qed.
+
+(** ** Order and multiplication *)
+
+Lemma mul_lt_mono_l p q r : q<r <-> p*q < p*r.
+Proof.
+ unfold lt. rewrite mul_compare_mono_l. apply iff_refl.
+Qed.
+
+Lemma mul_lt_mono_r p q r : q<r <-> q*p < r*p.
+Proof.
+ unfold lt. rewrite mul_compare_mono_r. apply iff_refl.
+Qed.
+
+Lemma mul_lt_mono p q r s : p<q -> r<s -> p*r < q*s.
+Proof.
+ intros. apply lt_trans with (p*s).
+ now apply mul_lt_mono_l.
+ now apply mul_lt_mono_r.
+Qed.
+
+Lemma mul_le_mono_l p q r : q<=r <-> p*q<=p*r.
+Proof.
+ unfold le. rewrite mul_compare_mono_l. apply iff_refl.
+Qed.
+
+Lemma mul_le_mono_r p q r : q<=r <-> q*p<=r*p.
+Proof.
+ unfold le. rewrite mul_compare_mono_r. apply iff_refl.
+Qed.
+
+Lemma mul_le_mono p q r s : p<=q -> r<=s -> p*r <= q*s.
+Proof.
+ intros. apply le_trans with (p*s).
+ now apply mul_le_mono_l.
+ now apply mul_le_mono_r.
+Qed.
+
+Lemma lt_add_r p q : p < p+q.
+Proof.
+ induction q using peano_ind.
+ rewrite add_1_r. apply lt_succ_diag_r.
+ apply lt_trans with (p+q); auto.
+ apply add_lt_mono_l, lt_succ_diag_r.
+Qed.
+
+Lemma lt_not_add_l p q : ~ p+q < p.
+Proof.
+ intro H. elim (lt_irrefl p).
+ apply lt_trans with (p+q); auto using lt_add_r.
+Qed.
+
+Lemma pow_gt_1 n p : 1<n -> 1<n^p.
+Proof.
+ intros H. induction p using peano_ind.
+ now rewrite pow_1_r.
+ rewrite pow_succ_r.
+ apply lt_trans with (n*1).
+ now rewrite mul_1_r.
+ now apply mul_lt_mono_l.
+Qed.
+
+(**********************************************************************)
+(** * Properties of subtraction on binary positive numbers *)
+
+Lemma sub_1_r p : sub p 1 = pred p.
+Proof.
+ now destruct p.
+Qed.
+
+Lemma pred_sub p : pred p = sub p 1.
+Proof.
+ symmetry. apply sub_1_r.
+Qed.
+
+Theorem sub_succ_r p q : p - (succ q) = pred (p - q).
+Proof.
+ unfold sub; rewrite sub_mask_succ_r, sub_mask_carry_spec.
+ destruct (sub_mask p q) as [|[r|r| ]|]; auto.
+Qed.
+
+(** ** Properties of subtraction without underflow *)
+
+Lemma sub_mask_pos' p q :
+ q < p -> exists r, sub_mask p q = IsPos r /\ q + r = p.
+Proof.
+ rewrite lt_iff_add. intros (r,Hr). exists r. split; trivial.
+ now apply sub_mask_pos_iff.
+Qed.
+
+Lemma sub_mask_pos p q :
+ q < p -> exists r, sub_mask p q = IsPos r.
+Proof.
+ intros H. destruct (sub_mask_pos' p q H) as (r & Hr & _). now exists r.
+Qed.
+
+Theorem sub_add p q : q < p -> (p-q)+q = p.
+Proof.
+ intros H. destruct (sub_mask_pos p q H) as (r,U).
+ unfold sub. rewrite U. rewrite add_comm. now apply sub_mask_add.
+Qed.
+
+Lemma add_sub p q : (p+q)-q = p.
+Proof.
+ intros. apply add_reg_r with q.
+ rewrite sub_add; trivial.
+ rewrite add_comm. apply lt_add_r.
+Qed.
+
+Lemma mul_sub_distr_l p q r : r<q -> p*(q-r) = p*q-p*r.
+Proof.
+ intros H.
+ apply add_reg_r with (p*r).
+ rewrite <- mul_add_distr_l.
+ rewrite sub_add; trivial.
+ symmetry. apply sub_add; trivial.
+ now apply mul_lt_mono_l.
+Qed.
+
+Lemma mul_sub_distr_r p q r : q<p -> (p-q)*r = p*r-q*r.
+Proof.
+ intros H. rewrite 3 (mul_comm _ r). now apply mul_sub_distr_l.
+Qed.
+
+Lemma sub_lt_mono_l p q r: q<p -> p<r -> r-p < r-q.
+Proof.
+ intros Hqp Hpr.
+ apply (add_lt_mono_r p).
+ rewrite sub_add by trivial.
+ apply le_lt_trans with ((r-q)+q).
+ rewrite sub_add by (now apply lt_trans with p).
+ apply le_refl.
+ now apply add_lt_mono_l.
+Qed.
+
+Lemma sub_compare_mono_l p q r :
+ q<p -> r<p -> (p-q ?= p-r) = (r ?= q).
+Proof.
+ intros Hqp Hrp.
+ case (compare_spec r q); intros H. subst. apply compare_refl.
+ apply sub_lt_mono_l; trivial.
+ apply lt_gt, sub_lt_mono_l; trivial.
+Qed.
+
+Lemma sub_compare_mono_r p q r :
+ p<q -> p<r -> (q-p ?= r-p) = (q ?= r).
+Proof.
+ intros. rewrite <- (add_compare_mono_r p), 2 sub_add; trivial.
+Qed.
+
+Lemma sub_lt_mono_r p q r : q<p -> r<q -> q-r < p-r.
+Proof.
+ intros. unfold lt. rewrite sub_compare_mono_r; trivial.
+ now apply lt_trans with q.
+Qed.
+
+Lemma sub_decr n m : m<n -> n-m < n.
+Proof.
+ intros.
+ apply add_lt_mono_r with m.
+ rewrite sub_add; trivial.
+ apply lt_add_r.
+Qed.
+
+Lemma add_sub_assoc p q r : r<q -> p+(q-r) = p+q-r.
+Proof.
+ intros.
+ apply add_reg_r with r.
+ rewrite <- add_assoc, !sub_add; trivial.
+ rewrite add_comm. apply lt_trans with q; trivial using lt_add_r.
+Qed.
+
+Lemma sub_add_distr p q r : q+r < p -> p-(q+r) = p-q-r.
+Proof.
+ intros.
+ assert (q < p)
+ by (apply lt_trans with (q+r); trivial using lt_add_r).
+ rewrite (add_comm q r) in *.
+ apply add_reg_r with (r+q).
+ rewrite sub_add by trivial.
+ rewrite add_assoc, !sub_add; trivial.
+ apply (add_lt_mono_r q). rewrite sub_add; trivial.
+Qed.
+
+Lemma sub_sub_distr p q r : r<q -> q-r < p -> p-(q-r) = p+r-q.
+Proof.
+ intros.
+ apply add_reg_r with ((q-r)+r).
+ rewrite add_assoc, !sub_add; trivial.
+ rewrite <- (sub_add q r); trivial.
+ now apply add_lt_mono_r.
+Qed.
+
+(** Recursive equations for [sub] *)
+
+Lemma sub_xO_xO n m : m<n -> n~0 - m~0 = (n-m)~0.
+Proof.
+ intros H. unfold sub. simpl.
+ now destruct (sub_mask_pos n m H) as (p, ->).
+Qed.
+
+Lemma sub_xI_xI n m : m<n -> n~1 - m~1 = (n-m)~0.
+Proof.
+ intros H. unfold sub. simpl.
+ now destruct (sub_mask_pos n m H) as (p, ->).
+Qed.
+
+Lemma sub_xI_xO n m : m<n -> n~1 - m~0 = (n-m)~1.
+Proof.
+ intros H. unfold sub. simpl.
+ now destruct (sub_mask_pos n m) as (p, ->).
+Qed.
+
+Lemma sub_xO_xI n m : n~0 - m~1 = pred_double (n-m).
+Proof.
+ unfold sub. simpl. rewrite sub_mask_carry_spec.
+ now destruct (sub_mask n m) as [|[r|r|]|].
+Qed.
+
+(** Properties of subtraction with underflow *)
+
+Lemma sub_mask_neg_iff' p q : sub_mask p q = IsNeg <-> p < q.
+Proof.
+ rewrite lt_iff_add. apply sub_mask_neg_iff.
+Qed.
+
+Lemma sub_mask_neg p q : p<q -> sub_mask p q = IsNeg.
+Proof.
+ apply sub_mask_neg_iff'.
+Qed.
+
+Lemma sub_le p q : p<=q -> p-q = 1.
+Proof.
+ unfold le, sub. rewrite compare_sub_mask.
+ destruct sub_mask; easy'.
+Qed.
+
+Lemma sub_lt p q : p<q -> p-q = 1.
+Proof.
+ intros. now apply sub_le, lt_le_incl.
+Qed.
+
+Lemma sub_diag p : p-p = 1.
+Proof.
+ unfold sub. now rewrite sub_mask_diag.
+Qed.
+
+(** ** Results concerning [size] and [size_nat] *)
+
+Lemma size_nat_monotone p q : p<q -> (size_nat p <= size_nat q)%nat.
+Proof.
+ assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
+ assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
+ revert q.
+ induction p; destruct q; simpl; intros; auto; easy || apply leS;
+ red in H; simpl_compare_in H.
+ apply IHp. red. now destruct (p?=q).
+ destruct (compare_spec p q); subst; now auto.
+Qed.
+
+Lemma size_gt p : p < 2^(size p).
+Proof.
+ induction p; simpl; try rewrite pow_succ_r; try easy.
+ apply le_succ_l in IHp. now apply le_succ_l.
+Qed.
+
+Lemma size_le p : 2^(size p) <= p~0.
+Proof.
+ induction p; simpl; try rewrite pow_succ_r; try easy.
+ apply mul_le_mono_l.
+ apply le_lteq; left. rewrite xI_succ_xO. apply lt_succ_r, IHp.
+Qed.
+
+(** ** Properties of [min] and [max] *)
+
+(** First, the specification *)
+
+Lemma max_l : forall x y, y<=x -> max x y = x.
+Proof.
+ intros x y H. unfold max. case compare_spec; auto.
+ intros H'. apply le_nlt in H. now elim H.
+Qed.
+
+Lemma max_r : forall x y, x<=y -> max x y = y.
+Proof.
+ unfold le, max. intros x y. destruct compare; easy'.
+Qed.
+
+Lemma min_l : forall x y, x<=y -> min x y = x.
+Proof.
+ unfold le, min. intros x y. destruct compare; easy'.
+Qed.
+
+Lemma min_r : forall x y, y<=x -> min x y = y.
+Proof.
+ intros x y H. unfold min. case compare_spec; auto.
+ intros H'. apply le_nlt in H. now elim H'.
+Qed.
+
+(** We hence obtain all the generic properties of [min] and [max]. *)
+
+Include !UsualMinMaxLogicalProperties.
+Include !UsualMinMaxDecProperties.
+
+(** Minimum, maximum and constant one *)
+
+Lemma max_1_l n : max 1 n = n.
+Proof.
+ unfold max. case compare_spec; auto.
+ intros H. apply lt_nle in H. elim H. apply le_1_l.
+Qed.
+
+Lemma max_1_r n : max n 1 = n.
+Proof. rewrite max_comm. apply max_1_l. Qed.
+
+Lemma min_1_l n : min 1 n = 1.
+Proof.
+ unfold min. case compare_spec; auto.
+ intros H. apply lt_nle in H. elim H. apply le_1_l.
+Qed.
+
+Lemma min_1_r n : min n 1 = 1.
+Proof. rewrite min_comm. apply min_1_l. Qed.
+
+(** Minimum, maximum and operations (consequences of monotonicity) *)
+
+Lemma succ_max_distr n m : succ (max n m) = max (succ n) (succ m).
+Proof.
+ symmetry. apply max_monotone.
+ intros x x'. apply succ_le_mono.
+Qed.
+
+Lemma succ_min_distr n m : succ (min n m) = min (succ n) (succ m).
+Proof.
+ symmetry. apply min_monotone.
+ intros x x'. apply succ_le_mono.
+Qed.
+
+Lemma add_max_distr_l n m p : max (p + n) (p + m) = p + max n m.
+Proof.
+ apply max_monotone. intros x x'. apply add_le_mono_l.
+Qed.
+
+Lemma add_max_distr_r n m p : max (n + p) (m + p) = max n m + p.
+Proof.
+ rewrite 3 (add_comm _ p). apply add_max_distr_l.
+Qed.
+
+Lemma add_min_distr_l n m p : min (p + n) (p + m) = p + min n m.
+Proof.
+ apply min_monotone. intros x x'. apply add_le_mono_l.
+Qed.
+
+Lemma add_min_distr_r n m p : min (n + p) (m + p) = min n m + p.
+Proof.
+ rewrite 3 (add_comm _ p). apply add_min_distr_l.
+Qed.
+
+Lemma mul_max_distr_l n m p : max (p * n) (p * m) = p * max n m.
+Proof.
+ apply max_monotone. intros x x'. apply mul_le_mono_l.
+Qed.
+
+Lemma mul_max_distr_r n m p : max (n * p) (m * p) = max n m * p.
+Proof.
+ rewrite 3 (mul_comm _ p). apply mul_max_distr_l.
+Qed.
+
+Lemma mul_min_distr_l n m p : min (p * n) (p * m) = p * min n m.
+Proof.
+ apply min_monotone. intros x x'. apply mul_le_mono_l.
+Qed.
+
+Lemma mul_min_distr_r n m p : min (n * p) (m * p) = min n m * p.
+Proof.
+ rewrite 3 (mul_comm _ p). apply mul_min_distr_l.
+Qed.
+
+
+(** ** Results concerning [iter_op] *)
+
+Lemma iter_op_succ : forall A (op:A->A->A),
+ (forall x y z, op x (op y z) = op (op x y) z) ->
+ forall p a,
+ iter_op op (succ p) a = op a (iter_op op p a).
+Proof.
+ induction p; simpl; intros; trivial.
+ rewrite H. apply IHp.
+Qed.
+
+(** ** Results about [of_nat] and [of_succ_nat] *)
+
+Lemma of_nat_succ (n:nat) : of_succ_nat n = of_nat (S n).
+Proof.
+ induction n. trivial. simpl. f_equal. now rewrite IHn.
+Qed.
+
+Lemma pred_of_succ_nat (n:nat) : pred (of_succ_nat n) = of_nat n.
+Proof.
+ destruct n. trivial. simpl pred. rewrite pred_succ. apply of_nat_succ.
+Qed.
+
+Lemma succ_of_nat (n:nat) : n<>O -> succ (of_nat n) = of_succ_nat n.
+Proof.
+ rewrite of_nat_succ. destruct n; trivial. now destruct 1.
+Qed.
+
+(** ** Correctness proofs for the square root function *)
+
+Inductive SqrtSpec : positive*mask -> positive -> Prop :=
+ | SqrtExact s x : x=s*s -> SqrtSpec (s,IsNul) x
+ | SqrtApprox s r x : x=s*s+r -> r <= s~0 -> SqrtSpec (s,IsPos r) x.
+
+Lemma sqrtrem_step_spec f g p x :
+ (f=xO \/ f=xI) -> (g=xO \/ g=xI) ->
+ SqrtSpec p x -> SqrtSpec (sqrtrem_step f g p) (g (f x)).
+Proof.
+intros Hf Hg [ s _ -> | s r _ -> Hr ].
+(* exact *)
+unfold sqrtrem_step.
+destruct Hf,Hg; subst; simpl; constructor; now rewrite ?square_xO.
+(* approx *)
+assert (Hfg : forall p q, g (f (p+q)) = p~0~0 + g (f q))
+ by (intros; destruct Hf, Hg; now subst).
+unfold sqrtrem_step, leb.
+case compare_spec; [intros EQ | intros LT | intros GT].
+(* - EQ *)
+rewrite <- EQ, sub_mask_diag. constructor.
+destruct Hg; subst g; destr_eq EQ.
+destruct Hf; subst f; destr_eq EQ.
+subst. now rewrite square_xI.
+(* - LT *)
+destruct (sub_mask_pos' _ _ LT) as (y & -> & H). constructor.
+rewrite Hfg, <- H. now rewrite square_xI, add_assoc. clear Hfg.
+rewrite <- lt_succ_r in Hr. change (r < s~1) in Hr.
+rewrite <- lt_succ_r, (add_lt_mono_l (s~0~1)), H. simpl.
+rewrite add_carry_spec, add_diag. simpl.
+destruct Hf,Hg; subst; red; simpl_compare; now rewrite Hr.
+(* - GT *)
+constructor. now rewrite Hfg, square_xO. apply lt_succ_r, GT.
+Qed.
+
+Lemma sqrtrem_spec p : SqrtSpec (sqrtrem p) p.
+Proof.
+revert p. fix 1.
+ destruct p; try destruct p; try (constructor; easy);
+ apply sqrtrem_step_spec; auto.
+Qed.
+
+Lemma sqrt_spec p :
+ let s := sqrt p in s*s <= p < (succ s)*(succ s).
+Proof.
+ simpl.
+ assert (H:=sqrtrem_spec p).
+ unfold sqrt in *. destruct sqrtrem as (s,rm); simpl.
+ inversion_clear H; subst.
+ (* exact *)
+ split. reflexivity. apply mul_lt_mono; apply lt_succ_diag_r.
+ (* approx *)
+ split.
+ apply lt_le_incl, lt_add_r.
+ rewrite <- add_1_l, mul_add_distr_r, !mul_add_distr_l, !mul_1_r, !mul_1_l.
+ rewrite add_assoc, (add_comm _ r). apply add_lt_mono_r.
+ now rewrite <- add_assoc, add_diag, add_1_l, lt_succ_r.
+Qed.
+
+(** ** Correctness proofs for the gcd function *)
+
+Lemma divide_add_cancel_l p q r : (p | r) -> (p | q + r) -> (p | q).
+Proof.
+ intros (s,Hs) (t,Ht).
+ exists (t-s).
+ rewrite mul_sub_distr_r.
+ rewrite <- Hs, <- Ht.
+ symmetry. apply add_sub.
+ apply mul_lt_mono_r with p.
+ rewrite <- Hs, <- Ht, add_comm.
+ apply lt_add_r.
+Qed.
+
+Lemma divide_xO_xI p q r : (p | q~0) -> (p | r~1) -> (p | q).
+Proof.
+ intros (s,Hs) (t,Ht).
+ destruct p.
+ destruct s; try easy. simpl in Hs. destr_eq Hs. now exists s.
+ rewrite mul_xO_r in Ht; discriminate.
+ exists q; now rewrite mul_1_r.
+Qed.
+
+Lemma divide_xO_xO p q : (p~0|q~0) <-> (p|q).
+Proof.
+ split; intros (r,H); simpl in *.
+ rewrite mul_xO_r in H. destr_eq H. now exists r.
+ exists r; simpl. rewrite mul_xO_r. f_equal; auto.
+Qed.
+
+Lemma divide_mul_l p q r : (p|q) -> (p|q*r).
+Proof.
+ intros (s,H). exists (s*r).
+ rewrite <- mul_assoc, (mul_comm r p), mul_assoc. now f_equal.
+Qed.
+
+Lemma divide_mul_r p q r : (p|r) -> (p|q*r).
+Proof.
+ rewrite mul_comm. apply divide_mul_l.
+Qed.
+
+(** The first component of ggcd is gcd *)
+
+Lemma ggcdn_gcdn : forall n a b,
+ fst (ggcdn n a b) = gcdn n a b.
+Proof.
+ induction n.
+ simpl; auto.
+ destruct a, b; simpl; auto; try case compare_spec; simpl; trivial;
+ rewrite <- IHn; destruct ggcdn as (g,(u,v)); simpl; auto.
+Qed.
+
+Lemma ggcd_gcd : forall a b, fst (ggcd a b) = gcd a b.
+Proof.
+ unfold ggcd, gcd. intros. apply ggcdn_gcdn.
+Qed.
+
+(** The other components of ggcd are indeed the correct factors. *)
+
+Ltac destr_pggcdn IHn :=
+ match goal with |- context [ ggcdn _ ?x ?y ] =>
+ generalize (IHn x y); destruct ggcdn as (g,(u,v)); simpl
+ end.
+
+Lemma ggcdn_correct_divisors : forall n a b,
+ let '(g,(aa,bb)) := ggcdn n a b in
+ a = g*aa /\ b = g*bb.
+Proof.
+ induction n.
+ simpl; auto.
+ destruct a, b; simpl; auto; try case compare_spec; try destr_pggcdn IHn.
+ (* Eq *)
+ intros ->. now rewrite mul_comm.
+ (* Lt *)
+ intros (H',H) LT; split; auto.
+ rewrite mul_add_distr_l, mul_xO_r, <- H, <- H'.
+ simpl. f_equal. symmetry.
+ rewrite add_comm. now apply sub_add.
+ (* Gt *)
+ intros (H',H) LT; split; auto.
+ rewrite mul_add_distr_l, mul_xO_r, <- H, <- H'.
+ simpl. f_equal. symmetry.
+ rewrite add_comm. now apply sub_add.
+ (* Then... *)
+ intros (H,H'); split; auto. rewrite mul_xO_r, H'; auto.
+ intros (H,H'); split; auto. rewrite mul_xO_r, H; auto.
+ intros (H,H'); split; subst; auto.
+Qed.
+
+Lemma ggcd_correct_divisors : forall a b,
+ let '(g,(aa,bb)) := ggcd a b in
+ a=g*aa /\ b=g*bb.
+Proof.
+ unfold ggcd. intros. apply ggcdn_correct_divisors.
+Qed.
+
+(** We can use this fact to prove a part of the gcd correctness *)
+
+Lemma gcd_divide_l : forall a b, (gcd a b | a).
+Proof.
+ intros a b. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
+ destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa.
+ now rewrite mul_comm.
+Qed.
+
+Lemma gcd_divide_r : forall a b, (gcd a b | b).
+Proof.
+ intros a b. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
+ destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb.
+ now rewrite mul_comm.
+Qed.
+
+(** We now prove directly that gcd is the greatest amongst common divisors *)
+
+Lemma gcdn_greatest : forall n a b, (size_nat a + size_nat b <= n)%nat ->
+ forall p, (p|a) -> (p|b) -> (p|gcdn n a b).
+Proof.
+ induction n.
+ destruct a, b; simpl; inversion 1.
+ destruct a, b; simpl; try case compare_spec; simpl; auto.
+ (* Lt *)
+ intros LT LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
+ apply le_S_n in LE. eapply Le.le_trans; [|eapply LE].
+ rewrite plus_comm, <- plus_n_Sm, <- plus_Sn_m.
+ apply plus_le_compat; trivial.
+ apply size_nat_monotone, sub_decr, LT.
+ apply divide_xO_xI with a; trivial.
+ apply (divide_add_cancel_l p _ a~1); trivial.
+ now rewrite <- sub_xI_xI, sub_add.
+ (* Gt *)
+ intros LT LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
+ apply le_S_n in LE. eapply Le.le_trans; [|eapply LE].
+ apply plus_le_compat; trivial.
+ apply size_nat_monotone, sub_decr, LT.
+ apply divide_xO_xI with b; trivial.
+ apply (divide_add_cancel_l p _ b~1); trivial.
+ now rewrite <- sub_xI_xI, sub_add.
+ (* a~1 b~0 *)
+ intros LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
+ apply le_S_n in LE. simpl. now rewrite plus_n_Sm.
+ apply divide_xO_xI with a; trivial.
+ (* a~0 b~1 *)
+ intros LE p Hp1 Hp2. apply IHn; clear IHn; trivial.
+ simpl. now apply le_S_n.
+ apply divide_xO_xI with b; trivial.
+ (* a~0 b~0 *)
+ intros LE p Hp1 Hp2.
+ destruct p.
+ change (gcdn n a b)~0 with (2*(gcdn n a b)).
+ apply divide_mul_r.
+ apply IHn; clear IHn.
+ apply le_S_n in LE. apply le_Sn_le. now rewrite plus_n_Sm.
+ apply divide_xO_xI with p; trivial. now exists 1.
+ apply divide_xO_xI with p; trivial. now exists 1.
+ apply divide_xO_xO.
+ apply IHn; clear IHn.
+ apply le_S_n in LE. apply le_Sn_le. now rewrite plus_n_Sm.
+ now apply divide_xO_xO.
+ now apply divide_xO_xO.
+ exists (gcdn n a b)~0. now rewrite mul_1_r.
+Qed.
+
+Lemma gcd_greatest : forall a b p, (p|a) -> (p|b) -> (p|gcd a b).
+Proof.
+ intros. apply gcdn_greatest; auto.
+Qed.
+
+(** As a consequence, the rests after division by gcd are relatively prime *)
+
+Lemma ggcd_greatest : forall a b,
+ let (aa,bb) := snd (ggcd a b) in
+ forall p, (p|aa) -> (p|bb) -> p=1.
+Proof.
+ intros. generalize (gcd_greatest a b) (ggcd_correct_divisors a b).
+ rewrite <- ggcd_gcd. destruct ggcd as (g,(aa,bb)); simpl.
+ intros H (EQa,EQb) p Hp1 Hp2; subst.
+ assert (H' : (g*p | g)).
+ apply H.
+ destruct Hp1 as (r,Hr). exists r.
+ now rewrite mul_assoc, (mul_comm r g), <- mul_assoc, <- Hr.
+ destruct Hp2 as (r,Hr). exists r.
+ now rewrite mul_assoc, (mul_comm r g), <- mul_assoc, <- Hr.
+ destruct H' as (q,H').
+ rewrite (mul_comm g p), mul_assoc in H'.
+ apply mul_eq_1 with q; rewrite mul_comm.
+ now apply mul_reg_r with g.
+Qed.
+
+End Pos.
+
+(** Exportation of notations *)
+
+Infix "+" := Pos.add : positive_scope.
+Infix "-" := Pos.sub : positive_scope.
+Infix "*" := Pos.mul : positive_scope.
+Infix "^" := Pos.pow : positive_scope.
+Infix "?=" := Pos.compare (at level 70, no associativity) : positive_scope.
+Infix "=?" := Pos.eqb (at level 70, no associativity) : positive_scope.
+Infix "<=?" := Pos.leb (at level 70, no associativity) : positive_scope.
+Infix "<?" := Pos.ltb (at level 70, no associativity) : positive_scope.
+Infix "<=" := Pos.le : positive_scope.
+Infix "<" := Pos.lt : positive_scope.
+Infix ">=" := Pos.ge : positive_scope.
+Infix ">" := Pos.gt : positive_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
+Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
+
+Notation "( p | q )" := (Pos.divide p q) (at level 0) : positive_scope.
+
+(** Compatibility notations *)
+
+Notation positive := positive (only parsing).
+Notation positive_rect := positive_rect (only parsing).
+Notation positive_rec := positive_rec (only parsing).
+Notation positive_ind := positive_ind (only parsing).
+Notation xI := xI (only parsing).
+Notation xO := xO (only parsing).
+Notation xH := xH (only parsing).
+
+Notation Psucc := Pos.succ (only parsing).
+Notation Pplus := Pos.add (only parsing).
+Notation Pplus_carry := Pos.add_carry (only parsing).
+Notation Ppred := Pos.pred (only parsing).
+Notation Piter_op := Pos.iter_op (only parsing).
+Notation Piter_op_succ := Pos.iter_op_succ (only parsing).
+Notation Pmult_nat := (Pos.iter_op plus) (only parsing).
+Notation nat_of_P := Pos.to_nat (only parsing).
+Notation P_of_succ_nat := Pos.of_succ_nat (only parsing).
+Notation Pdouble_minus_one := Pos.pred_double (only parsing).
+Notation positive_mask := Pos.mask (only parsing).
+Notation IsNul := Pos.IsNul (only parsing).
+Notation IsPos := Pos.IsPos (only parsing).
+Notation IsNeg := Pos.IsNeg (only parsing).
+Notation positive_mask_rect := Pos.mask_rect (only parsing).
+Notation positive_mask_ind := Pos.mask_ind (only parsing).
+Notation positive_mask_rec := Pos.mask_rec (only parsing).
+Notation Pdouble_plus_one_mask := Pos.succ_double_mask (only parsing).
+Notation Pdouble_mask := Pos.double_mask (only parsing).
+Notation Pdouble_minus_two := Pos.double_pred_mask (only parsing).
+Notation Pminus_mask := Pos.sub_mask (only parsing).
+Notation Pminus_mask_carry := Pos.sub_mask_carry (only parsing).
+Notation Pminus := Pos.sub (only parsing).
+Notation Pmult := Pos.mul (only parsing).
+Notation iter_pos := @Pos.iter (only parsing).
+Notation Ppow := Pos.pow (only parsing).
+Notation Pdiv2 := Pos.div2 (only parsing).
+Notation Pdiv2_up := Pos.div2_up (only parsing).
+Notation Psize := Pos.size_nat (only parsing).
+Notation Psize_pos := Pos.size (only parsing).
+Notation Pcompare := Pos.compare_cont (only parsing).
+Notation Plt := Pos.lt (only parsing).
+Notation Pgt := Pos.gt (only parsing).
+Notation Ple := Pos.le (only parsing).
+Notation Pge := Pos.ge (only parsing).
+Notation Pmin := Pos.min (only parsing).
+Notation Pmax := Pos.max (only parsing).
+Notation Peqb := Pos.eqb (only parsing).
+Notation positive_eq_dec := Pos.eq_dec (only parsing).
+Notation xI_succ_xO := Pos.xI_succ_xO (only parsing).
+Notation Psucc_discr := Pos.succ_discr (only parsing).
+Notation Psucc_o_double_minus_one_eq_xO :=
+ Pos.succ_pred_double (only parsing).
+Notation Pdouble_minus_one_o_succ_eq_xI :=
+ Pos.pred_double_succ (only parsing).
+Notation xO_succ_permute := Pos.double_succ (only parsing).
+Notation double_moins_un_xO_discr :=
+ Pos.pred_double_xO_discr (only parsing).
+Notation Psucc_not_one := Pos.succ_not_1 (only parsing).
+Notation Ppred_succ := Pos.pred_succ (only parsing).
+Notation Psucc_pred := Pos.succ_pred_or (only parsing).
+Notation Psucc_inj := Pos.succ_inj (only parsing).
+Notation Pplus_carry_spec := Pos.add_carry_spec (only parsing).
+Notation Pplus_comm := Pos.add_comm (only parsing).
+Notation Pplus_succ_permute_r := Pos.add_succ_r (only parsing).
+Notation Pplus_succ_permute_l := Pos.add_succ_l (only parsing).
+Notation Pplus_no_neutral := Pos.add_no_neutral (only parsing).
+Notation Pplus_carry_plus := Pos.add_carry_add (only parsing).
+Notation Pplus_reg_r := Pos.add_reg_r (only parsing).
+Notation Pplus_reg_l := Pos.add_reg_l (only parsing).
+Notation Pplus_carry_reg_r := Pos.add_carry_reg_r (only parsing).
+Notation Pplus_carry_reg_l := Pos.add_carry_reg_l (only parsing).
+Notation Pplus_assoc := Pos.add_assoc (only parsing).
+Notation Pplus_xO := Pos.add_xO (only parsing).
+Notation Pplus_xI_double_minus_one := Pos.add_xI_pred_double (only parsing).
+Notation Pplus_xO_double_minus_one := Pos.add_xO_pred_double (only parsing).
+Notation Pplus_diag := Pos.add_diag (only parsing).
+Notation PeanoView := Pos.PeanoView (only parsing).
+Notation PeanoOne := Pos.PeanoOne (only parsing).
+Notation PeanoSucc := Pos.PeanoSucc (only parsing).
+Notation PeanoView_rect := Pos.PeanoView_rect (only parsing).
+Notation PeanoView_ind := Pos.PeanoView_ind (only parsing).
+Notation PeanoView_rec := Pos.PeanoView_rec (only parsing).
+Notation peanoView_xO := Pos.peanoView_xO (only parsing).
+Notation peanoView_xI := Pos.peanoView_xI (only parsing).
+Notation peanoView := Pos.peanoView (only parsing).
+Notation PeanoView_iter := Pos.PeanoView_iter (only parsing).
+Notation eq_dep_eq_positive := Pos.eq_dep_eq_positive (only parsing).
+Notation PeanoViewUnique := Pos.PeanoViewUnique (only parsing).
+Notation Prect := Pos.peano_rect (only parsing).
+Notation Prect_succ := Pos.peano_rect_succ (only parsing).
+Notation Prect_base := Pos.peano_rect_base (only parsing).
+Notation Prec := Pos.peano_rec (only parsing).
+Notation Pind := Pos.peano_ind (only parsing).
+Notation Pcase := Pos.peano_case (only parsing).
+Notation Pmult_1_r := Pos.mul_1_r (only parsing).
+Notation Pmult_Sn_m := Pos.mul_succ_l (only parsing).
+Notation Pmult_xO_permute_r := Pos.mul_xO_r (only parsing).
+Notation Pmult_xI_permute_r := Pos.mul_xI_r (only parsing).
+Notation Pmult_comm := Pos.mul_comm (only parsing).
+Notation Pmult_plus_distr_l := Pos.mul_add_distr_l (only parsing).
+Notation Pmult_plus_distr_r := Pos.mul_add_distr_r (only parsing).
+Notation Pmult_assoc := Pos.mul_assoc (only parsing).
+Notation Pmult_xI_mult_xO_discr := Pos.mul_xI_mul_xO_discr (only parsing).
+Notation Pmult_xO_discr := Pos.mul_xO_discr (only parsing).
+Notation Pmult_reg_r := Pos.mul_reg_r (only parsing).
+Notation Pmult_reg_l := Pos.mul_reg_l (only parsing).
+Notation Pmult_1_inversion_l := Pos.mul_eq_1_l (only parsing).
+Notation Psquare_xO := Pos.square_xO (only parsing).
+Notation Psquare_xI := Pos.square_xI (only parsing).
+Notation iter_pos_swap_gen := Pos.iter_swap_gen (only parsing).
+Notation iter_pos_swap := Pos.iter_swap (only parsing).
+Notation iter_pos_succ := Pos.iter_succ (only parsing).
+Notation iter_pos_plus := Pos.iter_add (only parsing).
+Notation iter_pos_invariant := Pos.iter_invariant (only parsing).
+Notation Ppow_1_r := Pos.pow_1_r (only parsing).
+Notation Ppow_succ_r := Pos.pow_succ_r (only parsing).
+Notation Peqb_refl := Pos.eqb_refl (only parsing).
+Notation Peqb_eq := Pos.eqb_eq (only parsing).
+Notation Pcompare_refl_id := Pos.compare_cont_refl (only parsing).
+Notation Pcompare_eq_iff := Pos.compare_eq_iff (only parsing).
+Notation Pcompare_Gt_Lt := Pos.compare_cont_Gt_Lt (only parsing).
+Notation Pcompare_eq_Lt := Pos.compare_lt_iff (only parsing).
+Notation Pcompare_Lt_Gt := Pos.compare_cont_Lt_Gt (only parsing).
+
+Notation Pcompare_antisym := Pos.compare_cont_antisym (only parsing).
+Notation ZC1 := Pos.gt_lt (only parsing).
+Notation ZC2 := Pos.lt_gt (only parsing).
+Notation Pcompare_spec := Pos.compare_spec (only parsing).
+Notation Pcompare_p_Sp := Pos.lt_succ_diag_r (only parsing).
+Notation Pcompare_succ_succ := Pos.compare_succ_succ (only parsing).
+Notation Pcompare_1 := Pos.nlt_1_r (only parsing).
+Notation Plt_1 := Pos.nlt_1_r (only parsing).
+Notation Plt_1_succ := Pos.lt_1_succ (only parsing).
+Notation Plt_lt_succ := Pos.lt_lt_succ (only parsing).
+Notation Plt_irrefl := Pos.lt_irrefl (only parsing).
+Notation Plt_trans := Pos.lt_trans (only parsing).
+Notation Plt_ind := Pos.lt_ind (only parsing).
+Notation Ple_lteq := Pos.le_lteq (only parsing).
+Notation Ple_refl := Pos.le_refl (only parsing).
+Notation Ple_lt_trans := Pos.le_lt_trans (only parsing).
+Notation Plt_le_trans := Pos.lt_le_trans (only parsing).
+Notation Ple_trans := Pos.le_trans (only parsing).
+Notation Plt_succ_r := Pos.lt_succ_r (only parsing).
+Notation Ple_succ_l := Pos.le_succ_l (only parsing).
+Notation Pplus_compare_mono_l := Pos.add_compare_mono_l (only parsing).
+Notation Pplus_compare_mono_r := Pos.add_compare_mono_r (only parsing).
+Notation Pplus_lt_mono_l := Pos.add_lt_mono_l (only parsing).
+Notation Pplus_lt_mono_r := Pos.add_lt_mono_r (only parsing).
+Notation Pplus_lt_mono := Pos.add_lt_mono (only parsing).
+Notation Pplus_le_mono_l := Pos.add_le_mono_l (only parsing).
+Notation Pplus_le_mono_r := Pos.add_le_mono_r (only parsing).
+Notation Pplus_le_mono := Pos.add_le_mono (only parsing).
+Notation Pmult_compare_mono_l := Pos.mul_compare_mono_l (only parsing).
+Notation Pmult_compare_mono_r := Pos.mul_compare_mono_r (only parsing).
+Notation Pmult_lt_mono_l := Pos.mul_lt_mono_l (only parsing).
+Notation Pmult_lt_mono_r := Pos.mul_lt_mono_r (only parsing).
+Notation Pmult_lt_mono := Pos.mul_lt_mono (only parsing).
+Notation Pmult_le_mono_l := Pos.mul_le_mono_l (only parsing).
+Notation Pmult_le_mono_r := Pos.mul_le_mono_r (only parsing).
+Notation Pmult_le_mono := Pos.mul_le_mono (only parsing).
+Notation Plt_plus_r := Pos.lt_add_r (only parsing).
+Notation Plt_not_plus_l := Pos.lt_not_add_l (only parsing).
+Notation Ppow_gt_1 := Pos.pow_gt_1 (only parsing).
+Notation Ppred_mask := Pos.pred_mask (only parsing).
+Notation Pminus_mask_succ_r := Pos.sub_mask_succ_r (only parsing).
+Notation Pminus_mask_carry_spec := Pos.sub_mask_carry_spec (only parsing).
+Notation Pminus_succ_r := Pos.sub_succ_r (only parsing).
+Notation Pminus_mask_diag := Pos.sub_mask_diag (only parsing).
+
+Notation Pplus_minus_eq := Pos.add_sub (only parsing).
+Notation Pmult_minus_distr_l := Pos.mul_sub_distr_l (only parsing).
+Notation Pminus_lt_mono_l := Pos.sub_lt_mono_l (only parsing).
+Notation Pminus_compare_mono_l := Pos.sub_compare_mono_l (only parsing).
+Notation Pminus_compare_mono_r := Pos.sub_compare_mono_r (only parsing).
+Notation Pminus_lt_mono_r := Pos.sub_lt_mono_r (only parsing).
+Notation Pminus_decr := Pos.sub_decr (only parsing).
+Notation Pminus_xI_xI := Pos.sub_xI_xI (only parsing).
+Notation Pplus_minus_assoc := Pos.add_sub_assoc (only parsing).
+Notation Pminus_plus_distr := Pos.sub_add_distr (only parsing).
+Notation Pminus_minus_distr := Pos.sub_sub_distr (only parsing).
+Notation Pminus_mask_Lt := Pos.sub_mask_neg (only parsing).
+Notation Pminus_Lt := Pos.sub_lt (only parsing).
+Notation Pminus_Eq := Pos.sub_diag (only parsing).
+Notation Psize_monotone := Pos.size_nat_monotone (only parsing).
+Notation Psize_pos_gt := Pos.size_gt (only parsing).
+Notation Psize_pos_le := Pos.size_le (only parsing).
+
+(** More complex compatibility facts, expressed as lemmas
+ (to preserve scopes for instance) *)
+
+Lemma Peqb_true_eq x y : Pos.eqb x y = true -> x=y.
+Proof. apply Pos.eqb_eq. Qed.
+Lemma Pcompare_eq_Gt p q : (p ?= q) = Gt <-> p > q.
+Proof. reflexivity. Qed.
+Lemma Pplus_one_succ_r p : Psucc p = p + 1.
+Proof (eq_sym (Pos.add_1_r p)).
+Lemma Pplus_one_succ_l p : Psucc p = 1 + p.
+Proof (eq_sym (Pos.add_1_l p)).
+Lemma Pcompare_refl p : Pcompare p p Eq = Eq.
+Proof (Pos.compare_cont_refl p Eq).
+Lemma Pcompare_Eq_eq : forall p q, Pcompare p q Eq = Eq -> p = q.
+Proof Pos.compare_eq.
+Lemma ZC4 p q : Pcompare p q Eq = CompOpp (Pcompare q p Eq).
+Proof (Pos.compare_antisym q p).
+Lemma Ppred_minus p : Ppred p = p - 1.
+Proof (eq_sym (Pos.sub_1_r p)).
+
+Lemma Pminus_mask_Gt p q :
+ p > q ->
+ exists h : positive,
+ Pminus_mask p q = IsPos h /\
+ q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
+Proof.
+ intros H. apply Pos.gt_lt in H.
+ destruct (Pos.sub_mask_pos p q H) as (r & U).
+ exists r. repeat split; trivial.
+ now apply Pos.sub_mask_pos_iff.
+ destruct (Pos.eq_dec r 1) as [EQ|NE]; [now left|right].
+ rewrite Pos.sub_mask_carry_spec, U. destruct r; trivial. now elim NE.
+Qed.
+
+Lemma Pplus_minus : forall p q, p > q -> q+(p-q) = p.
+Proof.
+ intros. rewrite Pos.add_comm. now apply Pos.sub_add, Pos.gt_lt.
+Qed.
+
+(** Discontinued results of little interest and little/zero use
+ in user contributions:
+
+ Pplus_carry_no_neutral
+ Pplus_carry_pred_eq_plus
+ Pcompare_not_Eq
+ Pcompare_Lt_Lt
+ Pcompare_Lt_eq_Lt
+ Pcompare_Gt_Gt
+ Pcompare_Gt_eq_Gt
+ Psucc_lt_compat
+ Psucc_le_compat
+ ZC3
+ Pcompare_p_Sq
+ Pminus_mask_carry_diag
+ Pminus_mask_IsNeg
+ ZL10
+ ZL11
+ double_eq_zero_inversion
+ double_plus_one_zero_discr
+ double_plus_one_eq_one_inversion
+ double_eq_one_discr
+
+ Infix "/" := Pdiv2 : positive_scope.
+*)
+
+(** Old stuff, to remove someday *)
+
+Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
+Proof.
+ destruct r; auto.
+Qed.
+
+(** Incompatibilities :
+
+ - [(_ ?= _)%positive] expects no arg now, and designates [Pos.compare]
+ which is convertible but syntactically distinct to
+ [Pos.compare_cont .. .. Eq].
+
+ - [Pmult_nat] cannot be unfolded (unfold [Pos.iter_op] instead).
+
+*)