summaryrefslogtreecommitdiff
path: root/theories/Numbers/Rational/SpecViaQ/QSig.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Rational/SpecViaQ/QSig.v')
-rw-r--r--theories/Numbers/Rational/SpecViaQ/QSig.v229
1 files changed, 0 insertions, 229 deletions
diff --git a/theories/Numbers/Rational/SpecViaQ/QSig.v b/theories/Numbers/Rational/SpecViaQ/QSig.v
deleted file mode 100644
index 8e20fd06..00000000
--- a/theories/Numbers/Rational/SpecViaQ/QSig.v
+++ /dev/null
@@ -1,229 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import QArith Qpower Qminmax Orders RelationPairs GenericMinMax.
-
-Open Scope Q_scope.
-
-(** * QSig *)
-
-(** Interface of a rich structure about rational numbers.
- Specifications are written via translation to Q.
-*)
-
-Module Type QType.
-
- Parameter t : Type.
-
- Parameter to_Q : t -> Q.
- Local Notation "[ x ]" := (to_Q x).
-
- Definition eq x y := [x] == [y].
- Definition lt x y := [x] < [y].
- Definition le x y := [x] <= [y].
-
- Parameter of_Q : Q -> t.
- Parameter spec_of_Q: forall x, to_Q (of_Q x) == x.
-
- Parameter red : t -> t.
- Parameter compare : t -> t -> comparison.
- Parameter eq_bool : t -> t -> bool.
- Parameter max : t -> t -> t.
- Parameter min : t -> t -> t.
- Parameter zero : t.
- Parameter one : t.
- Parameter minus_one : t.
- Parameter add : t -> t -> t.
- Parameter sub : t -> t -> t.
- Parameter opp : t -> t.
- Parameter mul : t -> t -> t.
- Parameter square : t -> t.
- Parameter inv : t -> t.
- Parameter div : t -> t -> t.
- Parameter power : t -> Z -> t.
-
- Parameter spec_red : forall x, [red x] == [x].
- Parameter strong_spec_red : forall x, [red x] = Qred [x].
- Parameter spec_compare : forall x y, compare x y = ([x] ?= [y]).
- Parameter spec_eq_bool : forall x y, eq_bool x y = Qeq_bool [x] [y].
- Parameter spec_max : forall x y, [max x y] == Qmax [x] [y].
- Parameter spec_min : forall x y, [min x y] == Qmin [x] [y].
- Parameter spec_0: [zero] == 0.
- Parameter spec_1: [one] == 1.
- Parameter spec_m1: [minus_one] == -(1).
- Parameter spec_add: forall x y, [add x y] == [x] + [y].
- Parameter spec_sub: forall x y, [sub x y] == [x] - [y].
- Parameter spec_opp: forall x, [opp x] == - [x].
- Parameter spec_mul: forall x y, [mul x y] == [x] * [y].
- Parameter spec_square: forall x, [square x] == [x] ^ 2.
- Parameter spec_inv : forall x, [inv x] == / [x].
- Parameter spec_div: forall x y, [div x y] == [x] / [y].
- Parameter spec_power: forall x z, [power x z] == [x] ^ z.
-
-End QType.
-
-(** NB: several of the above functions come with [..._norm] variants
- that expect reduced arguments and return reduced results. *)
-
-(** TODO : also speak of specifications via Qcanon ... *)
-
-Module Type QType_Notation (Import Q : QType).
- Notation "[ x ]" := (to_Q x).
- Infix "==" := eq (at level 70).
- Notation "x != y" := (~x==y) (at level 70).
- Infix "<=" := le.
- Infix "<" := lt.
- Notation "0" := zero.
- Notation "1" := one.
- Infix "+" := add.
- Infix "-" := sub.
- Infix "*" := mul.
- Notation "- x" := (opp x).
- Infix "/" := div.
- Notation "/ x" := (inv x).
- Infix "^" := power.
-End QType_Notation.
-
-Module Type QType' := QType <+ QType_Notation.
-
-
-Module QProperties (Import Q : QType').
-
-(** Conversion to Q *)
-
-Hint Rewrite
- spec_red spec_compare spec_eq_bool spec_min spec_max
- spec_add spec_sub spec_opp spec_mul spec_square spec_inv spec_div
- spec_power : qsimpl.
-Ltac qify := unfold eq, lt, le in *; autorewrite with qsimpl;
- try rewrite spec_0 in *; try rewrite spec_1 in *; try rewrite spec_m1 in *.
-
-(** NB: do not add [spec_0] in the autorewrite database. Otherwise,
- after instantiation in BigQ, this lemma become convertible to 0=0,
- and autorewrite loops. Idem for [spec_1] and [spec_m1] *)
-
-(** Morphisms *)
-
-Ltac solve_wd1 := intros x x' Hx; qify; now rewrite Hx.
-Ltac solve_wd2 := intros x x' Hx y y' Hy; qify; now rewrite Hx, Hy.
-
-Local Obligation Tactic := solve_wd2 || solve_wd1.
-
-Instance : Measure to_Q.
-Instance eq_equiv : Equivalence eq.
-Proof.
- change eq with (RelCompFun Qeq to_Q); apply _.
-Defined.
-
-Program Instance lt_wd : Proper (eq==>eq==>iff) lt.
-Program Instance le_wd : Proper (eq==>eq==>iff) le.
-Program Instance red_wd : Proper (eq==>eq) red.
-Program Instance compare_wd : Proper (eq==>eq==>Logic.eq) compare.
-Program Instance eq_bool_wd : Proper (eq==>eq==>Logic.eq) eq_bool.
-Program Instance min_wd : Proper (eq==>eq==>eq) min.
-Program Instance max_wd : Proper (eq==>eq==>eq) max.
-Program Instance add_wd : Proper (eq==>eq==>eq) add.
-Program Instance sub_wd : Proper (eq==>eq==>eq) sub.
-Program Instance opp_wd : Proper (eq==>eq) opp.
-Program Instance mul_wd : Proper (eq==>eq==>eq) mul.
-Program Instance square_wd : Proper (eq==>eq) square.
-Program Instance inv_wd : Proper (eq==>eq) inv.
-Program Instance div_wd : Proper (eq==>eq==>eq) div.
-Program Instance power_wd : Proper (eq==>Logic.eq==>eq) power.
-
-(** Let's implement [HasCompare] *)
-
-Lemma compare_spec : forall x y, CompareSpec (x==y) (x<y) (y<x) (compare x y).
-Proof. intros. qify. destruct (Qcompare_spec [x] [y]); auto. Qed.
-
-(** Let's implement [TotalOrder] *)
-
-Definition lt_compat := lt_wd.
-Instance lt_strorder : StrictOrder lt.
-Proof.
- change lt with (RelCompFun Qlt to_Q); apply _.
-Qed.
-
-Lemma le_lteq : forall x y, x<=y <-> x<y \/ x==y.
-Proof. intros. qify. apply Qle_lteq. Qed.
-
-Lemma lt_total : forall x y, x<y \/ x==y \/ y<x.
-Proof. intros. destruct (compare_spec x y); auto. Qed.
-
-(** Let's implement [HasEqBool] *)
-
-Definition eqb := eq_bool.
-
-Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y.
-Proof. intros. qify. apply Qeq_bool_iff. Qed.
-
-Lemma eqb_correct : forall x y, eq_bool x y = true -> x == y.
-Proof. now apply eqb_eq. Qed.
-
-Lemma eqb_complete : forall x y, x == y -> eq_bool x y = true.
-Proof. now apply eqb_eq. Qed.
-
-(** Let's implement [HasMinMax] *)
-
-Lemma max_l : forall x y, y<=x -> max x y == x.
-Proof. intros x y. qify. apply Qminmax.Q.max_l. Qed.
-
-Lemma max_r : forall x y, x<=y -> max x y == y.
-Proof. intros x y. qify. apply Qminmax.Q.max_r. Qed.
-
-Lemma min_l : forall x y, x<=y -> min x y == x.
-Proof. intros x y. qify. apply Qminmax.Q.min_l. Qed.
-
-Lemma min_r : forall x y, y<=x -> min x y == y.
-Proof. intros x y. qify. apply Qminmax.Q.min_r. Qed.
-
-(** Q is a ring *)
-
-Lemma add_0_l : forall x, 0+x == x.
-Proof. intros. qify. apply Qplus_0_l. Qed.
-
-Lemma add_comm : forall x y, x+y == y+x.
-Proof. intros. qify. apply Qplus_comm. Qed.
-
-Lemma add_assoc : forall x y z, x+(y+z) == x+y+z.
-Proof. intros. qify. apply Qplus_assoc. Qed.
-
-Lemma mul_1_l : forall x, 1*x == x.
-Proof. intros. qify. apply Qmult_1_l. Qed.
-
-Lemma mul_comm : forall x y, x*y == y*x.
-Proof. intros. qify. apply Qmult_comm. Qed.
-
-Lemma mul_assoc : forall x y z, x*(y*z) == x*y*z.
-Proof. intros. qify. apply Qmult_assoc. Qed.
-
-Lemma mul_add_distr_r : forall x y z, (x+y)*z == x*z + y*z.
-Proof. intros. qify. apply Qmult_plus_distr_l. Qed.
-
-Lemma sub_add_opp : forall x y, x-y == x+(-y).
-Proof. intros. qify. now unfold Qminus. Qed.
-
-Lemma add_opp_diag_r : forall x, x+(-x) == 0.
-Proof. intros. qify. apply Qplus_opp_r. Qed.
-
-(** Q is a field *)
-
-Lemma neq_1_0 : 1!=0.
-Proof. intros. qify. apply Q_apart_0_1. Qed.
-
-Lemma div_mul_inv : forall x y, x/y == x*(/y).
-Proof. intros. qify. now unfold Qdiv. Qed.
-
-Lemma mul_inv_diag_l : forall x, x!=0 -> /x * x == 1.
-Proof. intros x. qify. rewrite Qmult_comm. apply Qmult_inv_r. Qed.
-
-End QProperties.
-
-Module QTypeExt (Q : QType)
- <: QType <: TotalOrder <: HasCompare Q <: HasMinMax Q <: HasEqBool Q
- := Q <+ QProperties.