summaryrefslogtreecommitdiff
path: root/theories/Numbers/Rational/BigQ/QbiMake.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Rational/BigQ/QbiMake.v')
-rw-r--r--theories/Numbers/Rational/BigQ/QbiMake.v1066
1 files changed, 1066 insertions, 0 deletions
diff --git a/theories/Numbers/Rational/BigQ/QbiMake.v b/theories/Numbers/Rational/BigQ/QbiMake.v
new file mode 100644
index 00000000..699f383e
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QbiMake.v
@@ -0,0 +1,1066 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QbiMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qbi.
+
+ Import BinInt Zorder.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0%Q
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else
+ match BigZ.cmp_sign zx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ end
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else
+ match BigZ.cmp_sign nx zy with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ end
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false =>
+ match BigZ.cmp_sign nx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z1); set (b := BigZ.to_Z x2);
+ set (c := BigN.to_Z y2); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign z1 x2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare (z1 * BigZ.Pos y2)%bigZ x2);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (a * c < b)%Z.
+ apply Zlt_le_trans with (2 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (a * c > b)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (1 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z2); set (b := BigZ.to_Z x1);
+ set (c := BigN.to_Z y1); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Zmult_1_r; rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign x1 z2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (b < a * c)%Z.
+ apply Zlt_le_trans with (1 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (b > a * c)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (2 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z x1); set (b := BigZ.to_Z x2);
+ set (c1 := BigN.to_Z y1); set (c2 := BigN.to_Z y2).
+ fold c1 in HH; fold c2 in HH1.
+ assert (F1: (0 < c1)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c1; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ assert (F2: (0 < c2)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c2; auto.
+ intros H1; case HH1; rewrite <- H1; auto.
+ repeat rewrite Z2P_correct; auto.
+ generalize (BigZ.spec_cmp_sign x1 x2); case BigZ.cmp_sign.
+ intros _; generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)%bigZ
+ (x2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c1 c2; auto.
+ rewrite BigZ.spec_mul; simpl; fold a b c1; intros HH2; rewrite HH2;
+ rewrite Zcompare_refl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 < b * c1)%Z.
+ apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c2)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 > b * c1)%Z.
+ apply Zlt_gt; apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c1)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ Qed.
+
+
+ Definition do_norm_n n :=
+ match n with
+ | BigN.N0 _ => false
+ | BigN.N1 _ => false
+ | BigN.N2 _ => false
+ | BigN.N3 _ => false
+ | BigN.N4 _ => false
+ | BigN.N5 _ => false
+ | BigN.N6 _ => false
+ | _ => true
+ end.
+
+ Definition do_norm_z z :=
+ match z with
+ | BigZ.Pos n => do_norm_n n
+ | BigZ.Neg n => do_norm_n n
+ end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ if andb (do_norm_z n) (do_norm_n d) then
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end
+ else Qq n d.
+
+ Theorem spec_norm: forall n q,
+ ([norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm.
+ case do_norm_z; simpl andb.
+ 2: apply Qeq_refl.
+ case do_norm_n.
+ 2: apply Qeq_refl.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ Qq n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+
+
+ Theorem spec_add x y:
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ generalize (BigN.spec_eq_bool dx dy);
+ case BigN.eq_bool; intros HH3.
+ rewrite <- HH3.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ red; simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH4.
+ case HH; auto.
+ simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ ring.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros H3; simpl.
+ absurd (0 < 0)%Z; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ norm n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm x y:
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; intros HH3;
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem spec_sub x y:
+ ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y:
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => mul (Qz ny) (norm zx dy)
+ | Qq nx dx, Qz zy => mul (Qz nx) (norm zy dx)
+ | Qq nx dx, Qq ny dy => mul (norm nx dy) (norm ny dx)
+ end.
+
+ Theorem spec_mul_norm x y:
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; ring.
+ intros p1 p2 n.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Pmult_1_r; auto.
+ intros p1 n1 p2 n2.
+ repeat rewrite spec_mul.
+ repeat match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; try ring.
+ repeat rewrite Zpos_mult_morphism; ring.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+
+ Theorem spec_inv x:
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros x; rewrite <- spec_inv; generalize x; clear x.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, inv;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; try apply Qeq_refl;
+ red; simpl;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; auto;
+ case H2; auto.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_power_pos; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ elim p; simpl.
+ intros; red; simpl; auto.
+ intros p1 Hp1; rewrite <- Hp1; red; simpl; auto.
+ apply Qeq_refl.
+ case H2; generalize H1.
+ elim p; simpl.
+ intros p1 Hrec.
+ change (xI p1) with (1 + (xO p1))%positive.
+ rewrite Zpower_pos_is_exp; rewrite Zpower_pos_1_r.
+ intros HH; case (Zmult_integral _ _ HH); auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ intros p1 Hrec.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ rewrite Zpower_pos_1_r; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ case H1; rewrite H2; auto.
+ simpl; rewrite Zpower_pos_0_l; auto.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ Theorem spec_power_posc x p:
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ unfold Qpower_positive.
+ assert (tmp: forall p, pow_pos Qmult 0%Q p = 0%Q).
+ intros p1; elim p1; simpl; auto; clear p1.
+ intros p1 Hp1; rewrite Hp1; auto.
+ intros p1 Hp1; rewrite Hp1; auto.
+ repeat rewrite tmp; intros; red; simpl; auto.
+ intros H1.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qbi.