summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v')
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v375
1 files changed, 303 insertions, 72 deletions
diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
index a0e096be..2c7884ac 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
@@ -1,27 +1,28 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: NSigNAxioms.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
-Require Import ZArith Nnat NAxioms NDiv NSig.
+Require Import ZArith OrdersFacts Nnat NAxioms NSig.
(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *)
-Module NTypeIsNAxioms (Import N : NType').
+Module NTypeIsNAxioms (Import NN : NType').
Hint Rewrite
- spec_0 spec_succ spec_add spec_mul spec_pred spec_sub
- spec_div spec_modulo spec_gcd spec_compare spec_eq_bool
- spec_max spec_min spec_power_pos spec_power
+ spec_0 spec_1 spec_2 spec_succ spec_add spec_mul spec_pred spec_sub
+ spec_div spec_modulo spec_gcd spec_compare spec_eqb spec_ltb spec_leb
+ spec_square spec_sqrt spec_log2 spec_max spec_min spec_pow_pos spec_pow_N
+ spec_pow spec_even spec_odd spec_testbit spec_shiftl spec_shiftr
+ spec_land spec_lor spec_ldiff spec_lxor spec_div2 spec_of_N
: nsimpl.
Ltac nsimpl := autorewrite with nsimpl.
-Ltac ncongruence := unfold eq; repeat red; intros; nsimpl; congruence.
-Ltac zify := unfold eq, lt, le in *; nsimpl.
+Ltac ncongruence := unfold eq, to_N; repeat red; intros; nsimpl; congruence.
+Ltac zify := unfold eq, lt, le, to_N in *; nsimpl.
+Ltac omega_pos n := generalize (spec_pos n); omega with *.
Local Obligation Tactic := ncongruence.
@@ -36,14 +37,29 @@ Program Instance mul_wd : Proper (eq==>eq==>eq) mul.
Theorem pred_succ : forall n, pred (succ n) == n.
Proof.
-intros. zify. generalize (spec_pos n); omega with *.
+intros. zify. omega_pos n.
Qed.
-Definition N_of_Z z := of_N (Zabs_N z).
+Theorem one_succ : 1 == succ 0.
+Proof.
+now zify.
+Qed.
+
+Theorem two_succ : 2 == succ 1.
+Proof.
+now zify.
+Qed.
+
+Definition N_of_Z z := of_N (Z.to_N z).
+
+Lemma spec_N_of_Z z : (0<=z)%Z -> [N_of_Z z] = z.
+Proof.
+ unfold N_of_Z. zify. apply Z2N.id.
+Qed.
Section Induction.
-Variable A : N.t -> Prop.
+Variable A : NN.t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (succ n).
@@ -62,9 +78,7 @@ Proof.
intros z H1 H2.
unfold B in *. apply -> AS in H2.
setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto.
-unfold eq. rewrite spec_succ.
-unfold N_of_Z.
-rewrite 2 spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith.
+unfold eq. rewrite spec_succ, 2 spec_N_of_Z; auto with zarith.
Qed.
Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z.
@@ -76,9 +90,7 @@ Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (N_of_Z (to_Z n)).
apply B_holds. apply spec_pos.
-red; unfold N_of_Z.
-rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto.
-apply spec_pos.
+red. now rewrite spec_N_of_Z by apply spec_pos.
Qed.
End Induction.
@@ -95,7 +107,7 @@ Qed.
Theorem sub_0_r : forall n, n - 0 == n.
Proof.
-intros. zify. generalize (spec_pos n); omega with *.
+intros. zify. omega_pos n.
Qed.
Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
@@ -115,39 +127,69 @@ Qed.
(** Order *)
-Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
+Lemma eqb_eq x y : eqb x y = true <-> x == y.
+Proof.
+ zify. apply Z.eqb_eq.
+Qed.
+
+Lemma leb_le x y : leb x y = true <-> x <= y.
+Proof.
+ zify. apply Z.leb_le.
+Qed.
+
+Lemma ltb_lt x y : ltb x y = true <-> x < y.
+Proof.
+ zify. apply Z.ltb_lt.
+Qed.
+
+Lemma compare_eq_iff n m : compare n m = Eq <-> n == m.
Proof.
- intros. zify. destruct (Zcompare_spec [x] [y]); auto.
+ intros. zify. apply Z.compare_eq_iff.
Qed.
-Definition eqb := eq_bool.
+Lemma compare_lt_iff n m : compare n m = Lt <-> n < m.
+Proof.
+ intros. zify. reflexivity.
+Qed.
-Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y.
+Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m.
Proof.
- intros. zify. symmetry. apply Zeq_is_eq_bool.
+ intros. zify. reflexivity.
Qed.
+Lemma compare_antisym n m : compare m n = CompOpp (compare n m).
+Proof.
+ intros. zify. apply Z.compare_antisym.
+Qed.
+
+Include BoolOrderFacts NN NN NN [no inline].
+
Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
Proof.
-intros x x' Hx y y' Hy. rewrite 2 spec_compare, Hx, Hy; intuition.
+intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.
-Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
+Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb.
Proof.
-intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
+intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.
-Theorem lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
+Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb.
Proof.
-intros. zify. omega.
+intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.
-Theorem lt_irrefl : forall n, ~ n < n.
+Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb.
Proof.
-intros. zify. omega.
+intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.
-Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m.
+Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
+Proof.
+intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
+Qed.
+
+Theorem lt_succ_r : forall n m, n < succ m <-> n <= m.
Proof.
intros. zify. omega.
Qed.
@@ -179,6 +221,98 @@ Proof.
zify. auto.
Qed.
+(** Power *)
+
+Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
+
+Lemma pow_0_r : forall a, a^0 == 1.
+Proof.
+ intros. now zify.
+Qed.
+
+Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
+Proof.
+ intros a b. zify. intros. now Z.nzsimpl.
+Qed.
+
+Lemma pow_neg_r : forall a b, b<0 -> a^b == 0.
+Proof.
+ intros a b. zify. intro Hb. exfalso. omega_pos b.
+Qed.
+
+Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b).
+Proof.
+ intros. zify. f_equal.
+ now rewrite Z2N.id by apply spec_pos.
+Qed.
+
+Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b).
+Proof.
+ intros. now zify.
+Qed.
+
+Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p).
+Proof.
+ intros. now zify.
+Qed.
+
+(** Square *)
+
+Lemma square_spec n : square n == n * n.
+Proof.
+ now zify.
+Qed.
+
+(** Sqrt *)
+
+Lemma sqrt_spec : forall n, 0<=n ->
+ (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)).
+Proof.
+ intros n. zify. apply Z.sqrt_spec.
+Qed.
+
+Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0.
+Proof.
+ intros n. zify. intro H. exfalso. omega_pos n.
+Qed.
+
+(** Log2 *)
+
+Lemma log2_spec : forall n, 0<n ->
+ 2^(log2 n) <= n /\ n < 2^(succ (log2 n)).
+Proof.
+ intros n. zify. change (Z.log2 [n]+1)%Z with (Z.succ (Z.log2 [n])).
+ apply Z.log2_spec.
+Qed.
+
+Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0.
+Proof.
+ intros n. zify. apply Z.log2_nonpos.
+Qed.
+
+(** Even / Odd *)
+
+Definition Even n := exists m, n == 2*m.
+Definition Odd n := exists m, n == 2*m+1.
+
+Lemma even_spec n : even n = true <-> Even n.
+Proof.
+ unfold Even. zify. rewrite Z.even_spec.
+ split; intros (m,Hm).
+ - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n.
+ - exists [m]. revert Hm; now zify.
+Qed.
+
+Lemma odd_spec n : odd n = true <-> Odd n.
+Proof.
+ unfold Odd. zify. rewrite Z.odd_spec.
+ split; intros (m,Hm).
+ - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n.
+ - exists [m]. revert Hm; now zify.
+Qed.
+
+(** Div / Mod *)
+
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
@@ -187,16 +321,131 @@ Proof.
intros a b. zify. intros. apply Z_div_mod_eq_full; auto.
Qed.
-Theorem mod_upper_bound : forall a b, ~b==0 -> modulo a b < b.
+Theorem mod_bound_pos : forall a b, 0<=a -> 0<b ->
+ 0 <= modulo a b /\ modulo a b < b.
+Proof.
+intros a b. zify. apply Z.mod_bound_pos.
+Qed.
+
+(** Gcd *)
+
+Definition divide n m := exists p, m == p*n.
+Local Notation "( x | y )" := (divide x y) (at level 0).
+
+Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m].
+Proof.
+ intros n m. split.
+ - intros (p,H). exists [p]. revert H; now zify.
+ - intros (z,H). exists (of_N (Z.abs_N z)). zify.
+ rewrite N2Z.inj_abs_N.
+ rewrite <- (Z.abs_eq [m]), <- (Z.abs_eq [n]) by apply spec_pos.
+ now rewrite H, Z.abs_mul.
+Qed.
+
+Lemma gcd_divide_l : forall n m, (gcd n m | n).
Proof.
-intros a b. zify. intros.
-destruct (Z_mod_lt [a] [b]); auto.
-generalize (spec_pos b); auto with zarith.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_l.
Qed.
-Definition recursion (A : Type) (a : A) (f : N.t -> A -> A) (n : N.t) :=
- Nrect (fun _ => A) a (fun n a => f (N.of_N n) a) (N.to_N n).
-Implicit Arguments recursion [A].
+Lemma gcd_divide_r : forall n m, (gcd n m | m).
+Proof.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_r.
+Qed.
+
+Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
+Proof.
+ intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest.
+Qed.
+
+Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
+Proof.
+ intros. zify. apply Z.gcd_nonneg.
+Qed.
+
+(** Bitwise operations *)
+
+Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
+
+Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true.
+Proof.
+ intros. zify. apply Z.testbit_odd_0.
+Qed.
+
+Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false.
+Proof.
+ intros. zify. apply Z.testbit_even_0.
+Qed.
+
+Lemma testbit_odd_succ : forall a n, 0<=n ->
+ testbit (2*a+1) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Z.testbit_odd_succ.
+Qed.
+
+Lemma testbit_even_succ : forall a n, 0<=n ->
+ testbit (2*a) (succ n) = testbit a n.
+Proof.
+ intros a n. zify. apply Z.testbit_even_succ.
+Qed.
+
+Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.
+Proof.
+ intros a n. zify. apply Z.testbit_neg_r.
+Qed.
+
+Lemma shiftr_spec : forall a n m, 0<=m ->
+ testbit (shiftr a n) m = testbit a (m+n).
+Proof.
+ intros a n m. zify. apply Z.shiftr_spec.
+Qed.
+
+Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m ->
+ testbit (shiftl a n) m = testbit a (m-n).
+Proof.
+ intros a n m. zify. intros Hn H. rewrite Z.max_r by auto with zarith.
+ now apply Z.shiftl_spec_high.
+Qed.
+
+Lemma shiftl_spec_low : forall a n m, m<n ->
+ testbit (shiftl a n) m = false.
+Proof.
+ intros a n m. zify. intros H. now apply Z.shiftl_spec_low.
+Qed.
+
+Lemma land_spec : forall a b n,
+ testbit (land a b) n = testbit a n && testbit b n.
+Proof.
+ intros a n m. zify. now apply Z.land_spec.
+Qed.
+
+Lemma lor_spec : forall a b n,
+ testbit (lor a b) n = testbit a n || testbit b n.
+Proof.
+ intros a n m. zify. now apply Z.lor_spec.
+Qed.
+
+Lemma ldiff_spec : forall a b n,
+ testbit (ldiff a b) n = testbit a n && negb (testbit b n).
+Proof.
+ intros a n m. zify. now apply Z.ldiff_spec.
+Qed.
+
+Lemma lxor_spec : forall a b n,
+ testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
+Proof.
+ intros a n m. zify. now apply Z.lxor_spec.
+Qed.
+
+Lemma div2_spec : forall a, div2 a == shiftr a 1.
+Proof.
+ intros a. zify. now apply Z.div2_spec.
+Qed.
+
+(** Recursion *)
+
+Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) :=
+ Nrect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n).
+Arguments recursion [A] a f n.
Instance recursion_wd (A : Type) (Aeq : relation A) :
Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
@@ -204,53 +453,35 @@ Proof.
unfold eq.
intros a a' Eaa' f f' Eff' x x' Exx'.
unfold recursion.
-unfold N.to_N.
+unfold NN.to_N.
rewrite <- Exx'; clear x' Exx'.
-replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])).
-induction (Zabs_nat [x]).
+induction (Z.to_N [x]) using N.peano_ind.
simpl; auto.
-rewrite N_of_S, 2 Nrect_step; auto. apply Eff'; auto.
-destruct [x]; simpl; auto.
-change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
-change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
+rewrite 2 Nrect_step. now apply Eff'.
Qed.
Theorem recursion_0 :
- forall (A : Type) (a : A) (f : N.t -> A -> A), recursion a f 0 = a.
+ forall (A : Type) (a : A) (f : NN.t -> A -> A), recursion a f 0 = a.
Proof.
-intros A a f; unfold recursion, N.to_N; rewrite N.spec_0; simpl; auto.
+intros A a f; unfold recursion, NN.to_N; rewrite NN.spec_0; simpl; auto.
Qed.
Theorem recursion_succ :
- forall (A : Type) (Aeq : relation A) (a : A) (f : N.t -> A -> A),
+ forall (A : Type) (Aeq : relation A) (a : A) (f : NN.t -> A -> A),
Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
-unfold N.eq, recursion; intros A Aeq a f EAaa f_wd n.
-replace (N.to_N (succ n)) with (Nsucc (N.to_N n)).
+unfold eq, recursion; intros A Aeq a f EAaa f_wd n.
+replace (to_N (succ n)) with (N.succ (to_N n)) by
+ (zify; now rewrite <- Z2N.inj_succ by apply spec_pos).
rewrite Nrect_step.
apply f_wd; auto.
-unfold N.to_N.
-rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto.
- apply N.spec_pos.
-
-fold (recursion a f n).
-apply recursion_wd; auto.
-red; auto.
-unfold N.to_N.
-
-rewrite N.spec_succ.
-change ([n]+1)%Z with (Zsucc [n]).
-apply Z_of_N_eq_rev.
-rewrite Z_of_N_succ.
-rewrite 2 Z_of_N_abs.
-rewrite 2 Zabs_eq; auto.
-generalize (spec_pos n); auto with zarith.
-apply spec_pos; auto.
+zify. now rewrite Z2N.id by apply spec_pos.
+fold (recursion a f n). apply recursion_wd; auto. red; auto.
Qed.
End NTypeIsNAxioms.
-Module NType_NAxioms (N : NType)
- <: NAxiomsSig <: NDivSig <: HasCompare N <: HasEqBool N <: HasMinMax N
- := N <+ NTypeIsNAxioms.
+Module NType_NAxioms (NN : NType)
+ <: NAxiomsSig <: OrderFunctions NN <: HasMinMax NN
+ := NN <+ NTypeIsNAxioms.