summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Peano/NPeano.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Peano/NPeano.v')
-rw-r--r--theories/Numbers/Natural/Peano/NPeano.v806
1 files changed, 4 insertions, 802 deletions
diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v
index f438df40..96eb7b35 100644
--- a/theories/Numbers/Natural/Peano/NPeano.v
+++ b/theories/Numbers/Natural/Peano/NPeano.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,806 +8,8 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-Require Import
- Bool Peano Peano_dec Compare_dec Plus Mult Minus Le Lt EqNat Div2 Wf_nat
- NAxioms NProperties.
+Require Import PeanoNat NAxioms.
-(** Functions not already defined *)
+(** * [PeanoNat.Nat] already implements [NAxiomSig] *)
-Fixpoint leb n m :=
- match n, m with
- | O, _ => true
- | _, O => false
- | S n', S m' => leb n' m'
- end.
-
-Definition ltb n m := leb (S n) m.
-
-Infix "<=?" := leb (at level 70) : nat_scope.
-Infix "<?" := ltb (at level 70) : nat_scope.
-
-Lemma leb_le n m : (n <=? m) = true <-> n <= m.
-Proof.
- revert m.
- induction n. split; auto with arith.
- destruct m; simpl. now split.
- rewrite IHn. split; auto with arith.
-Qed.
-
-Lemma ltb_lt n m : (n <? m) = true <-> n < m.
-Proof.
- unfold ltb, lt. apply leb_le.
-Qed.
-
-Fixpoint pow n m :=
- match m with
- | O => 1
- | S m => n * (pow n m)
- end.
-
-Infix "^" := pow : nat_scope.
-
-Lemma pow_0_r : forall a, a^0 = 1.
-Proof. reflexivity. Qed.
-
-Lemma pow_succ_r : forall a b, 0<=b -> a^(S b) = a * a^b.
-Proof. reflexivity. Qed.
-
-Definition square n := n * n.
-
-Lemma square_spec n : square n = n * n.
-Proof. reflexivity. Qed.
-
-Definition Even n := exists m, n = 2*m.
-Definition Odd n := exists m, n = 2*m+1.
-
-Fixpoint even n :=
- match n with
- | O => true
- | 1 => false
- | S (S n') => even n'
- end.
-
-Definition odd n := negb (even n).
-
-Lemma even_spec : forall n, even n = true <-> Even n.
-Proof.
- fix 1.
- destruct n as [|[|n]]; simpl; try rewrite even_spec; split.
- now exists 0.
- trivial.
- discriminate.
- intros (m,H). destruct m. discriminate.
- simpl in H. rewrite <- plus_n_Sm in H. discriminate.
- intros (m,H). exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
- intros (m,H). destruct m. discriminate. exists m.
- simpl in H. rewrite <- plus_n_Sm in H. inversion H. reflexivity.
-Qed.
-
-Lemma odd_spec : forall n, odd n = true <-> Odd n.
-Proof.
- unfold odd.
- fix 1.
- destruct n as [|[|n]]; simpl; try rewrite odd_spec; split.
- discriminate.
- intros (m,H). rewrite <- plus_n_Sm in H; discriminate.
- now exists 0.
- trivial.
- intros (m,H). exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
- intros (m,H). destruct m. discriminate. exists m.
- simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl.
- now rewrite <- !plus_n_Sm, <- !plus_n_O.
-Qed.
-
-Lemma Even_equiv : forall n, Even n <-> Even.even n.
-Proof.
- split. intros (p,->). apply Even.even_mult_l. do 3 constructor.
- intros H. destruct (even_2n n H) as (p,->).
- exists p. unfold double. simpl. now rewrite <- plus_n_O.
-Qed.
-
-Lemma Odd_equiv : forall n, Odd n <-> Even.odd n.
-Proof.
- split. intros (p,->). rewrite <- plus_n_Sm, <- plus_n_O.
- apply Even.odd_S. apply Even.even_mult_l. do 3 constructor.
- intros H. destruct (odd_S2n n H) as (p,->).
- exists p. unfold double. simpl. now rewrite <- plus_n_Sm, <- !plus_n_O.
-Qed.
-
-(* A linear, tail-recursive, division for nat.
-
- In [divmod], [y] is the predecessor of the actual divisor,
- and [u] is [y] minus the real remainder
-*)
-
-Fixpoint divmod x y q u :=
- match x with
- | 0 => (q,u)
- | S x' => match u with
- | 0 => divmod x' y (S q) y
- | S u' => divmod x' y q u'
- end
- end.
-
-Definition div x y :=
- match y with
- | 0 => y
- | S y' => fst (divmod x y' 0 y')
- end.
-
-Definition modulo x y :=
- match y with
- | 0 => y
- | S y' => y' - snd (divmod x y' 0 y')
- end.
-
-Infix "/" := div : nat_scope.
-Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
-
-Lemma divmod_spec : forall x y q u, u <= y ->
- let (q',u') := divmod x y q u in
- x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
-Proof.
- induction x. simpl. intuition.
- intros y q u H. destruct u; simpl divmod.
- generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
- intros (EQ,LE); split; trivial.
- rewrite <- EQ, <- minus_n_O, minus_diag, <- plus_n_O.
- now rewrite !plus_Sn_m, plus_n_Sm, <- plus_assoc, mult_n_Sm.
- generalize (IHx y q u (le_Sn_le _ _ H)). destruct divmod as (q',u').
- intros (EQ,LE); split; trivial.
- rewrite <- EQ.
- rewrite !plus_Sn_m, plus_n_Sm. f_equal. now apply minus_Sn_m.
-Qed.
-
-Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
-Proof.
- intros x y Hy.
- destruct y; [ now elim Hy | clear Hy ].
- unfold div, modulo.
- generalize (divmod_spec x y 0 y (le_n y)).
- destruct divmod as (q,u).
- intros (U,V).
- simpl in *.
- now rewrite <- mult_n_O, minus_diag, <- !plus_n_O in U.
-Qed.
-
-Lemma mod_bound_pos : forall x y, 0<=x -> 0<y -> 0 <= x mod y < y.
-Proof.
- intros x y Hx Hy. split. auto with arith.
- destruct y; [ now elim Hy | clear Hy ].
- unfold modulo.
- apply le_n_S, le_minus.
-Qed.
-
-(** Square root *)
-
-(** The following square root function is linear (and tail-recursive).
- With Peano representation, we can't do better. For faster algorithm,
- see Psqrt/Zsqrt/Nsqrt...
-
- We search the square root of n = k + p^2 + (q - r)
- with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
- looking for the square root of n = k. Then we progressively
- decrease k and r. When k = S k' and r=0, it means we can use (S p)
- as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
- When k reaches 0, we have found the biggest p^2 square contained
- in n, hence the square root of n is p.
-*)
-
-Fixpoint sqrt_iter k p q r :=
- match k with
- | O => p
- | S k' => match r with
- | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
- | S r' => sqrt_iter k' p q r'
- end
- end.
-
-Definition sqrt n := sqrt_iter n 0 0 0.
-
-Lemma sqrt_iter_spec : forall k p q r,
- q = p+p -> r<=q ->
- let s := sqrt_iter k p q r in
- s*s <= k + p*p + (q - r) < (S s)*(S s).
-Proof.
- induction k.
- (* k = 0 *)
- simpl; intros p q r Hq Hr.
- split.
- apply le_plus_l.
- apply le_lt_n_Sm.
- rewrite <- mult_n_Sm.
- rewrite plus_assoc, (plus_comm p), <- plus_assoc.
- apply plus_le_compat; trivial.
- rewrite <- Hq. apply le_minus.
- (* k = S k' *)
- destruct r.
- (* r = 0 *)
- intros Hq _.
- replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))).
- apply IHk.
- simpl. rewrite <- plus_n_Sm. congruence.
- auto with arith.
- rewrite minus_diag, <- minus_n_O, <- plus_n_O. simpl.
- rewrite <- plus_n_Sm; f_equal. rewrite <- plus_assoc; f_equal.
- rewrite <- mult_n_Sm, (plus_comm p), <- plus_assoc. congruence.
- (* r = S r' *)
- intros Hq Hr.
- replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)).
- apply IHk; auto with arith.
- simpl. rewrite plus_n_Sm. f_equal. rewrite minus_Sn_m; auto.
-Qed.
-
-Lemma sqrt_spec : forall n,
- (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n).
-Proof.
- intros.
- set (s:=sqrt n).
- replace n with (n + 0*0 + (0-0)).
- apply sqrt_iter_spec; auto.
- simpl. now rewrite <- 2 plus_n_O.
-Qed.
-
-(** A linear tail-recursive base-2 logarithm
-
- In [log2_iter], we maintain the logarithm [p] of the counter [q],
- while [r] is the distance between [q] and the next power of 2,
- more precisely [q + S r = 2^(S p)] and [r<2^p]. At each
- recursive call, [q] goes up while [r] goes down. When [r]
- is 0, we know that [q] has almost reached a power of 2,
- and we increase [p] at the next call, while resetting [r]
- to [q].
-
- Graphically (numbers are [q], stars are [r]) :
-
-<<
- 10
- 9
- 8
- 7 *
- 6 *
- 5 ...
- 4
- 3 *
- 2 *
- 1 * *
-0 * * *
->>
-
- We stop when [k], the global downward counter reaches 0.
- At that moment, [q] is the number we're considering (since
- [k+q] is invariant), and [p] its logarithm.
-*)
-
-Fixpoint log2_iter k p q r :=
- match k with
- | O => p
- | S k' => match r with
- | O => log2_iter k' (S p) (S q) q
- | S r' => log2_iter k' p (S q) r'
- end
- end.
-
-Definition log2 n := log2_iter (pred n) 0 1 0.
-
-Lemma log2_iter_spec : forall k p q r,
- 2^(S p) = q + S r -> r < 2^p ->
- let s := log2_iter k p q r in
- 2^s <= k + q < 2^(S s).
-Proof.
- induction k.
- (* k = 0 *)
- intros p q r EQ LT. simpl log2_iter. cbv zeta.
- split.
- rewrite plus_O_n.
- apply plus_le_reg_l with (2^p).
- simpl pow in EQ. rewrite <- plus_n_O in EQ. rewrite EQ.
- rewrite plus_comm. apply plus_le_compat_r. now apply lt_le_S.
- rewrite EQ, plus_comm. apply plus_lt_compat_l. apply lt_0_Sn.
- (* k = S k' *)
- intros p q r EQ LT. destruct r.
- (* r = 0 *)
- rewrite <- plus_n_Sm, <- plus_n_O in EQ.
- rewrite plus_Sn_m, plus_n_Sm. apply IHk.
- rewrite <- EQ. remember (S p) as p'; simpl. now rewrite <- plus_n_O.
- unfold lt. now rewrite EQ.
- (* r = S r' *)
- rewrite plus_Sn_m, plus_n_Sm. apply IHk.
- now rewrite plus_Sn_m, plus_n_Sm.
- unfold lt.
- now apply lt_le_weak.
-Qed.
-
-Lemma log2_spec : forall n, 0<n ->
- 2^(log2 n) <= n < 2^(S (log2 n)).
-Proof.
- intros.
- set (s:=log2 n).
- replace n with (pred n + 1).
- apply log2_iter_spec; auto.
- rewrite <- plus_n_Sm, <- plus_n_O.
- symmetry. now apply S_pred with 0.
-Qed.
-
-Lemma log2_nonpos : forall n, n<=0 -> log2 n = 0.
-Proof.
- inversion 1; now subst.
-Qed.
-
-(** * Gcd *)
-
-(** We use Euclid algorithm, which is normally not structural,
- but Coq is now clever enough to accept this (behind modulo
- there is a subtraction, which now preserves being a subterm)
-*)
-
-Fixpoint gcd a b :=
- match a with
- | O => b
- | S a' => gcd (b mod (S a')) (S a')
- end.
-
-Definition divide x y := exists z, y=z*x.
-Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.
-
-Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
-Proof.
- fix 1.
- intros [|a] b; simpl.
- split.
- now exists 0.
- exists 1. simpl. now rewrite <- plus_n_O.
- fold (b mod (S a)).
- destruct (gcd_divide (b mod (S a)) (S a)) as (H,H').
- set (a':=S a) in *.
- split; auto.
- rewrite (div_mod b a') at 2 by discriminate.
- destruct H as (u,Hu), H' as (v,Hv).
- rewrite mult_comm.
- exists ((b/a')*v + u).
- rewrite mult_plus_distr_r.
- now rewrite <- mult_assoc, <- Hv, <- Hu.
-Qed.
-
-Lemma gcd_divide_l : forall a b, (gcd a b | a).
-Proof.
- intros. apply gcd_divide.
-Qed.
-
-Lemma gcd_divide_r : forall a b, (gcd a b | b).
-Proof.
- intros. apply gcd_divide.
-Qed.
-
-Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
-Proof.
- fix 1.
- intros [|a] b; simpl; auto.
- fold (b mod (S a)).
- intros c H H'. apply gcd_greatest; auto.
- set (a':=S a) in *.
- rewrite (div_mod b a') in H' by discriminate.
- destruct H as (u,Hu), H' as (v,Hv).
- exists (v - (b/a')*u).
- rewrite mult_comm in Hv.
- now rewrite mult_minus_distr_r, <- Hv, <-mult_assoc, <-Hu, minus_plus.
-Qed.
-
-(** * Bitwise operations *)
-
-(** We provide here some bitwise operations for unary numbers.
- Some might be really naive, they are just there for fullfiling
- the same interface as other for natural representations. As
- soon as binary representations such as NArith are available,
- it is clearly better to convert to/from them and use their ops.
-*)
-
-Fixpoint testbit a n :=
- match n with
- | O => odd a
- | S n => testbit (div2 a) n
- end.
-
-Definition shiftl a n := iter_nat n _ double a.
-Definition shiftr a n := iter_nat n _ div2 a.
-
-Fixpoint bitwise (op:bool->bool->bool) n a b :=
- match n with
- | O => O
- | S n' =>
- (if op (odd a) (odd b) then 1 else 0) +
- 2*(bitwise op n' (div2 a) (div2 b))
- end.
-
-Definition land a b := bitwise andb a a b.
-Definition lor a b := bitwise orb (max a b) a b.
-Definition ldiff a b := bitwise (fun b b' => b && negb b') a a b.
-Definition lxor a b := bitwise xorb (max a b) a b.
-
-Lemma double_twice : forall n, double n = 2*n.
-Proof.
- simpl; intros. now rewrite <- plus_n_O.
-Qed.
-
-Lemma testbit_0_l : forall n, testbit 0 n = false.
-Proof.
- now induction n.
-Qed.
-
-Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
-Proof.
- unfold testbit. rewrite odd_spec. now exists a.
-Qed.
-
-Lemma testbit_even_0 a : testbit (2*a) 0 = false.
-Proof.
- unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial.
- now exists a.
-Qed.
-
-Lemma testbit_odd_succ a n : testbit (2*a+1) (S n) = testbit a n.
-Proof.
- unfold testbit; fold testbit.
- rewrite <- plus_n_Sm, <- plus_n_O. f_equal.
- apply div2_double_plus_one.
-Qed.
-
-Lemma testbit_even_succ a n : testbit (2*a) (S n) = testbit a n.
-Proof.
- unfold testbit; fold testbit. f_equal. apply div2_double.
-Qed.
-
-Lemma shiftr_spec : forall a n m,
- testbit (shiftr a n) m = testbit a (m+n).
-Proof.
- induction n; intros m. trivial.
- now rewrite <- plus_n_O.
- now rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn.
-Qed.
-
-Lemma shiftl_spec_high : forall a n m, n<=m ->
- testbit (shiftl a n) m = testbit a (m-n).
-Proof.
- induction n; intros m H. trivial.
- now rewrite <- minus_n_O.
- destruct m. inversion H.
- simpl. apply le_S_n in H.
- change (shiftl a (S n)) with (double (shiftl a n)).
- rewrite double_twice, div2_double. now apply IHn.
-Qed.
-
-Lemma shiftl_spec_low : forall a n m, m<n ->
- testbit (shiftl a n) m = false.
-Proof.
- induction n; intros m H. inversion H.
- change (shiftl a (S n)) with (double (shiftl a n)).
- destruct m; simpl.
- unfold odd. apply negb_false_iff.
- apply even_spec. exists (shiftl a n). apply double_twice.
- rewrite double_twice, div2_double. apply IHn.
- now apply lt_S_n.
-Qed.
-
-Lemma div2_bitwise : forall op n a b,
- div2 (bitwise op (S n) a b) = bitwise op n (div2 a) (div2 b).
-Proof.
- intros. unfold bitwise; fold bitwise.
- destruct (op (odd a) (odd b)).
- now rewrite div2_double_plus_one.
- now rewrite plus_O_n, div2_double.
-Qed.
-
-Lemma odd_bitwise : forall op n a b,
- odd (bitwise op (S n) a b) = op (odd a) (odd b).
-Proof.
- intros. unfold bitwise; fold bitwise.
- destruct (op (odd a) (odd b)).
- apply odd_spec. rewrite plus_comm. eexists; eauto.
- unfold odd. apply negb_false_iff. apply even_spec.
- rewrite plus_O_n; eexists; eauto.
-Qed.
-
-Lemma div2_decr : forall a n, a <= S n -> div2 a <= n.
-Proof.
- destruct a; intros. apply le_0_n.
- apply le_trans with a.
- apply lt_n_Sm_le, lt_div2, lt_0_Sn. now apply le_S_n.
-Qed.
-
-Lemma testbit_bitwise_1 : forall op, (forall b, op false b = false) ->
- forall n m a b, a<=n ->
- testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
-Proof.
- intros op Hop.
- induction n; intros m a b Ha.
- simpl. inversion Ha; subst. now rewrite testbit_0_l.
- destruct m.
- apply odd_bitwise.
- unfold testbit; fold testbit. rewrite div2_bitwise.
- apply IHn; now apply div2_decr.
-Qed.
-
-Lemma testbit_bitwise_2 : forall op, op false false = false ->
- forall n m a b, a<=n -> b<=n ->
- testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
-Proof.
- intros op Hop.
- induction n; intros m a b Ha Hb.
- simpl. inversion Ha; inversion Hb; subst. now rewrite testbit_0_l.
- destruct m.
- apply odd_bitwise.
- unfold testbit; fold testbit. rewrite div2_bitwise.
- apply IHn; now apply div2_decr.
-Qed.
-
-Lemma land_spec : forall a b n,
- testbit (land a b) n = testbit a n && testbit b n.
-Proof.
- intros. unfold land. apply testbit_bitwise_1; trivial.
-Qed.
-
-Lemma ldiff_spec : forall a b n,
- testbit (ldiff a b) n = testbit a n && negb (testbit b n).
-Proof.
- intros. unfold ldiff. apply testbit_bitwise_1; trivial.
-Qed.
-
-Lemma lor_spec : forall a b n,
- testbit (lor a b) n = testbit a n || testbit b n.
-Proof.
- intros. unfold lor. apply testbit_bitwise_2. trivial.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
-Qed.
-
-Lemma lxor_spec : forall a b n,
- testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
-Proof.
- intros. unfold lxor. apply testbit_bitwise_2. trivial.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
-Qed.
-
-(** * Implementation of [NAxiomsSig] by [nat] *)
-
-Module Nat
- <: NAxiomsSig <: UsualDecidableTypeFull <: OrderedTypeFull <: TotalOrder.
-
-(** Bi-directional induction. *)
-
-Theorem bi_induction :
- forall A : nat -> Prop, Proper (eq==>iff) A ->
- A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
-Proof.
-intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
-Qed.
-
-(** Basic operations. *)
-
-Definition eq_equiv : Equivalence (@eq nat) := eq_equivalence.
-Local Obligation Tactic := simpl_relation.
-Program Instance succ_wd : Proper (eq==>eq) S.
-Program Instance pred_wd : Proper (eq==>eq) pred.
-Program Instance add_wd : Proper (eq==>eq==>eq) plus.
-Program Instance sub_wd : Proper (eq==>eq==>eq) minus.
-Program Instance mul_wd : Proper (eq==>eq==>eq) mult.
-
-Theorem pred_succ : forall n : nat, pred (S n) = n.
-Proof.
-reflexivity.
-Qed.
-
-Theorem one_succ : 1 = S 0.
-Proof.
-reflexivity.
-Qed.
-
-Theorem two_succ : 2 = S 1.
-Proof.
-reflexivity.
-Qed.
-
-Theorem add_0_l : forall n : nat, 0 + n = n.
-Proof.
-reflexivity.
-Qed.
-
-Theorem add_succ_l : forall n m : nat, (S n) + m = S (n + m).
-Proof.
-reflexivity.
-Qed.
-
-Theorem sub_0_r : forall n : nat, n - 0 = n.
-Proof.
-intro n; now destruct n.
-Qed.
-
-Theorem sub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
-Proof.
-induction n; destruct m; simpl; auto. apply sub_0_r.
-Qed.
-
-Theorem mul_0_l : forall n : nat, 0 * n = 0.
-Proof.
-reflexivity.
-Qed.
-
-Theorem mul_succ_l : forall n m : nat, S n * m = n * m + m.
-Proof.
-assert (add_S_r : forall n m, n+S m = S(n+m)) by (induction n; auto).
-assert (add_comm : forall n m, n+m = m+n).
- induction n; simpl; auto. intros; rewrite add_S_r; auto.
-intros n m; now rewrite add_comm.
-Qed.
-
-(** Order on natural numbers *)
-
-Program Instance lt_wd : Proper (eq==>eq==>iff) lt.
-
-Theorem lt_succ_r : forall n m : nat, n < S m <-> n <= m.
-Proof.
-unfold lt; split. apply le_S_n. induction 1; auto.
-Qed.
-
-
-Theorem lt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
-Proof.
-split.
-inversion 1; auto. rewrite lt_succ_r; auto.
-destruct 1; [|subst; auto]. rewrite <- lt_succ_r; auto.
-Qed.
-
-Theorem lt_irrefl : forall n : nat, ~ (n < n).
-Proof.
-induction n. intro H; inversion H. rewrite lt_succ_r; auto.
-Qed.
-
-(** Facts specific to natural numbers, not integers. *)
-
-Theorem pred_0 : pred 0 = 0.
-Proof.
-reflexivity.
-Qed.
-
-(** Recursion fonction *)
-
-Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
- nat_rect (fun _ => A).
-
-Instance recursion_wd {A} (Aeq : relation A) :
- Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
-Proof.
-intros a a' Ha f f' Hf n n' Hn. subst n'.
-induction n; simpl; auto. apply Hf; auto.
-Qed.
-
-Theorem recursion_0 :
- forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
-Proof.
-reflexivity.
-Qed.
-
-Theorem recursion_succ :
- forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
- Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
- forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
-Proof.
-unfold Proper, respectful in *; induction n; simpl; auto.
-Qed.
-
-(** The instantiation of operations.
- Placing them at the very end avoids having indirections in above lemmas. *)
-
-Definition t := nat.
-Definition eq := @eq nat.
-Definition eqb := beq_nat.
-Definition compare := nat_compare.
-Definition zero := 0.
-Definition one := 1.
-Definition two := 2.
-Definition succ := S.
-Definition pred := pred.
-Definition add := plus.
-Definition sub := minus.
-Definition mul := mult.
-Definition lt := lt.
-Definition le := le.
-Definition ltb := ltb.
-Definition leb := leb.
-
-Definition min := min.
-Definition max := max.
-Definition max_l := max_l.
-Definition max_r := max_r.
-Definition min_l := min_l.
-Definition min_r := min_r.
-
-Definition eqb_eq := beq_nat_true_iff.
-Definition compare_spec := nat_compare_spec.
-Definition eq_dec := eq_nat_dec.
-Definition leb_le := leb_le.
-Definition ltb_lt := ltb_lt.
-
-Definition Even := Even.
-Definition Odd := Odd.
-Definition even := even.
-Definition odd := odd.
-Definition even_spec := even_spec.
-Definition odd_spec := odd_spec.
-
-Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
-Definition pow_0_r := pow_0_r.
-Definition pow_succ_r := pow_succ_r.
-Lemma pow_neg_r : forall a b, b<0 -> a^b = 0. inversion 1. Qed.
-Definition pow := pow.
-
-Definition square := square.
-Definition square_spec := square_spec.
-
-Definition log2_spec := log2_spec.
-Definition log2_nonpos := log2_nonpos.
-Definition log2 := log2.
-
-Definition sqrt_spec a (Ha:0<=a) := sqrt_spec a.
-Lemma sqrt_neg : forall a, a<0 -> sqrt a = 0. inversion 1. Qed.
-Definition sqrt := sqrt.
-
-Definition div := div.
-Definition modulo := modulo.
-Program Instance div_wd : Proper (eq==>eq==>eq) div.
-Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
-Definition div_mod := div_mod.
-Definition mod_bound_pos := mod_bound_pos.
-
-Definition divide := divide.
-Definition gcd := gcd.
-Definition gcd_divide_l := gcd_divide_l.
-Definition gcd_divide_r := gcd_divide_r.
-Definition gcd_greatest := gcd_greatest.
-Lemma gcd_nonneg : forall a b, 0<=gcd a b.
-Proof. intros. apply le_O_n. Qed.
-
-Definition testbit := testbit.
-Definition shiftl := shiftl.
-Definition shiftr := shiftr.
-Definition lxor := lxor.
-Definition land := land.
-Definition lor := lor.
-Definition ldiff := ldiff.
-Definition div2 := div2.
-
-Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
-Definition testbit_odd_0 := testbit_odd_0.
-Definition testbit_even_0 := testbit_even_0.
-Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ a n.
-Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ a n.
-Lemma testbit_neg_r a n (H:n<0) : testbit a n = false.
-Proof. inversion H. Qed.
-Definition shiftl_spec_low := shiftl_spec_low.
-Definition shiftl_spec_high a n m (_:0<=m) := shiftl_spec_high a n m.
-Definition shiftr_spec a n m (_:0<=m) := shiftr_spec a n m.
-Definition lxor_spec := lxor_spec.
-Definition land_spec := land_spec.
-Definition lor_spec := lor_spec.
-Definition ldiff_spec := ldiff_spec.
-Definition div2_spec a : div2 a = shiftr a 1 := eq_refl _.
-
-(** Generic Properties *)
-
-Include NProp
- <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
-
-End Nat.
-
-(** [Nat] contains an [order] tactic for natural numbers *)
-
-(** Note that [Nat.order] is domain-agnostic: it will not prove
- [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)
-
-Section TestOrder.
- Let test : forall x y, x<=y -> y<=x -> x=y.
- Proof.
- Nat.order.
- Qed.
-End TestOrder.
+Module Nat <: NAxiomsSig := Nat.