summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Binary/NBinDefs.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Binary/NBinDefs.v')
-rw-r--r--theories/Numbers/Natural/Binary/NBinDefs.v267
1 files changed, 267 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/Binary/NBinDefs.v b/theories/Numbers/Natural/Binary/NBinDefs.v
new file mode 100644
index 00000000..fc2bd2df
--- /dev/null
+++ b/theories/Numbers/Natural/Binary/NBinDefs.v
@@ -0,0 +1,267 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NBinDefs.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import BinPos.
+Require Export BinNat.
+Require Import NSub.
+
+Open Local Scope N_scope.
+
+(** Implementation of [NAxiomsSig] module type via [BinNat.N] *)
+
+Module NBinaryAxiomsMod <: NAxiomsSig.
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := N.
+Definition NZeq := @eq N.
+Definition NZ0 := N0.
+Definition NZsucc := Nsucc.
+Definition NZpred := Npred.
+Definition NZadd := Nplus.
+Definition NZsub := Nminus.
+Definition NZmul := Nmult.
+
+Theorem NZeq_equiv : equiv N NZeq.
+Proof (eq_equiv N).
+
+Add Relation N NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZinduction :
+ forall A : NZ -> Prop, predicate_wd NZeq A ->
+ A N0 -> (forall n, A n <-> A (NZsucc n)) -> forall n : NZ, A n.
+Proof.
+intros A A_wd A0 AS. apply Nrect. assumption. intros; now apply -> AS.
+Qed.
+
+Theorem NZpred_succ : forall n : NZ, NZpred (NZsucc n) = n.
+Proof.
+destruct n as [| p]; simpl. reflexivity.
+case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
+intro H; false_hyp H Psucc_not_one.
+Qed.
+
+Theorem NZadd_0_l : forall n : NZ, N0 + n = n.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZadd_succ_l : forall n m : NZ, (NZsucc n) + m = NZsucc (n + m).
+Proof.
+destruct n; destruct m.
+simpl in |- *; reflexivity.
+unfold NZsucc, NZadd, Nsucc, Nplus. rewrite <- Pplus_one_succ_l; reflexivity.
+simpl in |- *; reflexivity.
+simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
+Qed.
+
+Theorem NZsub_0_r : forall n : NZ, n - N0 = n.
+Proof.
+now destruct n.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : NZ, n - (NZsucc m) = NZpred (n - m).
+Proof.
+destruct n as [| p]; destruct m as [| q]; try reflexivity.
+now destruct p.
+simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
+Qed.
+
+Theorem NZmul_0_l : forall n : NZ, N0 * n = N0.
+Proof.
+destruct n; reflexivity.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : NZ, (NZsucc n) * m = n * m + m.
+Proof.
+destruct n as [| n]; destruct m as [| m]; simpl; try reflexivity.
+now rewrite Pmult_Sn_m, Pplus_comm.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := Nlt.
+Definition NZle := Nle.
+Definition NZmin := Nmin.
+Definition NZmax := Nmax.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m : N, n <= m <-> n < m \/ n = m.
+Proof.
+intros n m. unfold Nle, Nlt. rewrite <- Ncompare_eq_correct.
+destruct (n ?= m); split; intro H1; (try discriminate); try (now left); try now right.
+now elim H1. destruct H1; discriminate.
+Qed.
+
+Theorem NZlt_irrefl : forall n : NZ, ~ n < n.
+Proof.
+intro n; unfold Nlt; now rewrite Ncompare_refl.
+Qed.
+
+Theorem NZlt_succ_r : forall n m : NZ, n < (NZsucc m) <-> n <= m.
+Proof.
+intros n m; unfold Nlt, Nle; destruct n as [| p]; destruct m as [| q]; simpl;
+split; intro H; try reflexivity; try discriminate.
+destruct p; simpl; intros; discriminate. elimtype False; now apply H.
+apply -> Pcompare_p_Sq in H. destruct H as [H | H].
+now rewrite H. now rewrite H, Pcompare_refl.
+apply <- Pcompare_p_Sq. case_eq ((p ?= q)%positive Eq); intro H1.
+right; now apply Pcompare_Eq_eq. now left. elimtype False; now apply H.
+Qed.
+
+Theorem NZmin_l : forall n m : N, n <= m -> NZmin n m = n.
+Proof.
+unfold NZmin, Nmin, Nle; intros n m H.
+destruct (n ?= m); try reflexivity. now elim H.
+Qed.
+
+Theorem NZmin_r : forall n m : N, m <= n -> NZmin n m = m.
+Proof.
+unfold NZmin, Nmin, Nle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+now apply -> Ncompare_eq_correct.
+rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
+Qed.
+
+Theorem NZmax_l : forall n m : N, m <= n -> NZmax n m = n.
+Proof.
+unfold NZmax, Nmax, Nle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+symmetry; now apply -> Ncompare_eq_correct.
+rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
+Qed.
+
+Theorem NZmax_r : forall n m : N, n <= m -> NZmax n m = m.
+Proof.
+unfold NZmax, Nmax, Nle; intros n m H.
+destruct (n ?= m); try reflexivity. now elim H.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition recursion (A : Type) (a : A) (f : N -> A -> A) (n : N) :=
+ Nrect (fun _ => A) a f n.
+Implicit Arguments recursion [A].
+
+Theorem pred_0 : Npred N0 = N0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem recursion_wd :
+forall (A : Type) (Aeq : relation A),
+ forall a a' : A, Aeq a a' ->
+ forall f f' : N -> A -> A, fun2_eq NZeq Aeq Aeq f f' ->
+ forall x x' : N, x = x' ->
+ Aeq (recursion a f x) (recursion a' f' x').
+Proof.
+unfold fun2_wd, NZeq, fun2_eq.
+intros A Aeq a a' Eaa' f f' Eff'.
+intro x; pattern x; apply Nrect.
+intros x' H; now rewrite <- H.
+clear x.
+intros x IH x' H; rewrite <- H.
+unfold recursion in *. do 2 rewrite Nrect_step.
+now apply Eff'; [| apply IH].
+Qed.
+
+Theorem recursion_0 :
+ forall (A : Type) (a : A) (f : N -> A -> A), recursion a f N0 = a.
+Proof.
+intros A a f; unfold recursion; now rewrite Nrect_base.
+Qed.
+
+Theorem recursion_succ :
+ forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
+ Aeq a a -> fun2_wd NZeq Aeq Aeq f ->
+ forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)).
+Proof.
+unfold NZeq, recursion, fun2_wd; intros A Aeq a f EAaa f_wd n; pattern n; apply Nrect.
+rewrite Nrect_step; rewrite Nrect_base; now apply f_wd.
+clear n; intro n; do 2 rewrite Nrect_step; intro IH. apply f_wd; [reflexivity|].
+now rewrite Nrect_step.
+Qed.
+
+End NBinaryAxiomsMod.
+
+Module Export NBinarySubPropMod := NSubPropFunct NBinaryAxiomsMod.
+
+(* Some fun comparing the efficiency of the generic log defined
+by strong (course-of-value) recursion and the log defined by recursion
+on notation *)
+(* Time Eval compute in (log 100000). *) (* 98 sec *)
+
+(*
+Fixpoint binposlog (p : positive) : N :=
+match p with
+| xH => 0
+| xO p' => Nsucc (binposlog p')
+| xI p' => Nsucc (binposlog p')
+end.
+
+Definition binlog (n : N) : N :=
+match n with
+| 0 => 0
+| Npos p => binposlog p
+end.
+*)
+(* Eval compute in (binlog 1000000000000000000). *) (* Works very fast *)
+