summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/Nbasic.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/BigN/Nbasic.v')
-rw-r--r--theories/Numbers/Natural/BigN/Nbasic.v569
1 files changed, 0 insertions, 569 deletions
diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v
deleted file mode 100644
index 18d0262c..00000000
--- a/theories/Numbers/Natural/BigN/Nbasic.v
+++ /dev/null
@@ -1,569 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Require Import ZArith Ndigits.
-Require Import BigNumPrelude.
-Require Import Max.
-Require Import DoubleType.
-Require Import DoubleBase.
-Require Import CyclicAxioms.
-Require Import DoubleCyclic.
-
-Arguments mk_zn2z_ops [t] ops.
-Arguments mk_zn2z_ops_karatsuba [t] ops.
-Arguments mk_zn2z_specs [t ops] specs.
-Arguments mk_zn2z_specs_karatsuba [t ops] specs.
-Arguments ZnZ.digits [t] Ops.
-Arguments ZnZ.zdigits [t] Ops.
-
-Lemma Pshiftl_nat_Zpower : forall n p,
- Zpos (Pos.shiftl_nat p n) = Zpos p * 2 ^ Z.of_nat n.
-Proof.
- intros.
- rewrite Z.mul_comm.
- induction n. simpl; auto.
- transitivity (2 * (2 ^ Z.of_nat n * Zpos p)).
- rewrite <- IHn. auto.
- rewrite Z.mul_assoc.
- rewrite Nat2Z.inj_succ.
- rewrite <- Z.pow_succ_r; auto with zarith.
-Qed.
-
-(* To compute the necessary height *)
-
-Fixpoint plength (p: positive) : positive :=
- match p with
- xH => xH
- | xO p1 => Pos.succ (plength p1)
- | xI p1 => Pos.succ (plength p1)
- end.
-
-Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
-assert (F: (forall p, 2 ^ (Zpos (Pos.succ p)) = 2 * 2 ^ Zpos p)%Z).
-intros p; replace (Zpos (Pos.succ p)) with (1 + Zpos p)%Z.
-rewrite Zpower_exp; auto with zarith.
-rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith.
-intros p; elim p; simpl plength; auto.
-intros p1 Hp1; rewrite F; repeat rewrite Pos2Z.inj_xI.
-assert (tmp: (forall p, 2 * p = p + p)%Z);
- try repeat rewrite tmp; auto with zarith.
-intros p1 Hp1; rewrite F; rewrite (Pos2Z.inj_xO p1).
-assert (tmp: (forall p, 2 * p = p + p)%Z);
- try repeat rewrite tmp; auto with zarith.
-rewrite Z.pow_1_r; auto with zarith.
-Qed.
-
-Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Pos.pred p)))%Z.
-intros p; case (Pos.succ_pred_or p); intros H1.
-subst; simpl plength.
-rewrite Z.pow_1_r; auto with zarith.
-pattern p at 1; rewrite <- H1.
-rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith.
-generalize (plength_correct (Pos.pred p)); auto with zarith.
-Qed.
-
-Definition Pdiv p q :=
- match Z.div (Zpos p) (Zpos q) with
- Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
- Z0 => q1
- | _ => (Pos.succ q1)
- end
- | _ => xH
- end.
-
-Theorem Pdiv_le: forall p q,
- Zpos p <= Zpos q * Zpos (Pdiv p q).
-intros p q.
-unfold Pdiv.
-assert (H1: Zpos q > 0); auto with zarith.
-assert (H1b: Zpos p >= 0); auto with zarith.
-generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b).
-generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Z.div.
- intros HH _; rewrite HH; rewrite Z.mul_0_r; rewrite Z.mul_1_r; simpl.
-case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith.
-intros q1 H2.
-replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q).
- 2: pattern (Zpos p) at 2; rewrite H2; auto with zarith.
-generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2;
- case Z.modulo.
- intros HH _; rewrite HH; auto with zarith.
- intros r1 HH (_,HH1); rewrite HH; rewrite Pos2Z.inj_succ.
- unfold Z.succ; rewrite Z.mul_add_distr_l; auto with zarith.
- intros r1 _ (HH,_); case HH; auto.
-intros q1 HH; rewrite HH.
-unfold Z.ge; simpl Z.compare; intros HH1; case HH1; auto.
-Qed.
-
-Definition is_one p := match p with xH => true | _ => false end.
-
-Theorem is_one_one: forall p, is_one p = true -> p = xH.
-intros p; case p; auto; intros p1 H1; discriminate H1.
-Qed.
-
-Definition get_height digits p :=
- let r := Pdiv p digits in
- if is_one r then xH else Pos.succ (plength (Pos.pred r)).
-
-Theorem get_height_correct:
- forall digits N,
- Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
-intros digits N.
-unfold get_height.
-assert (H1 := Pdiv_le N digits).
-case_eq (is_one (Pdiv N digits)); intros H2.
-rewrite (is_one_one _ H2) in H1.
-rewrite Z.mul_1_r in H1.
-change (2^(1-1))%Z with 1; rewrite Z.mul_1_r; auto.
-clear H2.
-apply Z.le_trans with (1 := H1).
-apply Z.mul_le_mono_nonneg_l; auto with zarith.
-rewrite Pos2Z.inj_succ; unfold Z.succ.
-rewrite Z.add_comm; rewrite Z.add_simpl_l.
-apply plength_pred_correct.
-Qed.
-
-Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
- fix zn2z_word_comm 2.
- intros w n; case n.
- reflexivity.
- intros n0;simpl.
- case (zn2z_word_comm w n0).
- reflexivity.
-Defined.
-
-Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) :=
- match n return forall w:Type, zn2z w -> word w (S n) with
- | O => fun w x => x
- | S m =>
- let aux := extend m in
- fun w x => WW W0 (aux w x)
- end.
-
-Section ExtendMax.
-
-Open Scope nat_scope.
-
-Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat :=
- match n return (n + S m = S (n + m))%nat with
- | 0 => eq_refl (S m)
- | S n1 =>
- let v := S (S n1 + m) in
- eq_ind_r (fun n => S n = v) (eq_refl v) (plusnS n1 m)
- end.
-
-Fixpoint plusn0 n : n + 0 = n :=
- match n return (n + 0 = n) with
- | 0 => eq_refl 0
- | S n1 =>
- let v := S n1 in
- eq_ind_r (fun n : nat => S n = v) (eq_refl v) (plusn0 n1)
- end.
-
- Fixpoint diff (m n: nat) {struct m}: nat * nat :=
- match m, n with
- O, n => (O, n)
- | m, O => (m, O)
- | S m1, S n1 => diff m1 n1
- end.
-
-Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n :=
- match m return fst (diff m n) + n = max m n with
- | 0 =>
- match n return (n = max 0 n) with
- | 0 => eq_refl _
- | S n0 => eq_refl _
- end
- | S m1 =>
- match n return (fst (diff (S m1) n) + n = max (S m1) n)
- with
- | 0 => plusn0 _
- | S n1 =>
- let v := fst (diff m1 n1) + n1 in
- let v1 := fst (diff m1 n1) + S n1 in
- eq_ind v (fun n => v1 = S n)
- (eq_ind v1 (fun n => v1 = n) (eq_refl v1) (S v) (plusnS _ _))
- _ (diff_l _ _)
- end
- end.
-
-Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n :=
- match m return (snd (diff m n) + m = max m n) with
- | 0 =>
- match n return (snd (diff 0 n) + 0 = max 0 n) with
- | 0 => eq_refl _
- | S _ => plusn0 _
- end
- | S m =>
- match n return (snd (diff (S m) n) + S m = max (S m) n) with
- | 0 => eq_refl (snd (diff (S m) 0) + S m)
- | S n1 =>
- let v := S (max m n1) in
- eq_ind_r (fun n => n = v)
- (eq_ind_r (fun n => S n = v)
- (eq_refl v) (diff_r _ _)) (plusnS _ _)
- end
- end.
-
- Variable w: Type.
-
- Definition castm (m n: nat) (H: m = n) (x: word w (S m)):
- (word w (S n)) :=
- match H in (_ = y) return (word w (S y)) with
- | eq_refl => x
- end.
-
-Variable m: nat.
-Variable v: (word w (S m)).
-
-Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) :=
- match n return (word w (S (n + m))) with
- | O => v
- | S n1 => WW W0 (extend_tr n1)
- end.
-
-End ExtendMax.
-
-Arguments extend_tr [w m] v n.
-Arguments castm [w m n] H x.
-
-
-
-Section Reduce.
-
- Variable w : Type.
- Variable nT : Type.
- Variable N0 : nT.
- Variable eq0 : w -> bool.
- Variable reduce_n : w -> nT.
- Variable zn2z_to_Nt : zn2z w -> nT.
-
- Definition reduce_n1 (x:zn2z w) :=
- match x with
- | W0 => N0
- | WW xh xl =>
- if eq0 xh then reduce_n xl
- else zn2z_to_Nt x
- end.
-
-End Reduce.
-
-Section ReduceRec.
-
- Variable w : Type.
- Variable nT : Type.
- Variable N0 : nT.
- Variable reduce_1n : zn2z w -> nT.
- Variable c : forall n, word w (S n) -> nT.
-
- Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
- match n return word w (S n) -> nT with
- | O => reduce_1n
- | S m => fun x =>
- match x with
- | W0 => N0
- | WW xh xl =>
- match xh with
- | W0 => @reduce_n m xl
- | _ => @c (S m) x
- end
- end
- end.
-
-End ReduceRec.
-
-Section CompareRec.
-
- Variable wm w : Type.
- Variable w_0 : w.
- Variable compare : w -> w -> comparison.
- Variable compare0_m : wm -> comparison.
- Variable compare_m : wm -> w -> comparison.
-
- Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
- match n return word wm n -> comparison with
- | O => compare0_m
- | S m => fun x =>
- match x with
- | W0 => Eq
- | WW xh xl =>
- match compare0_mn m xh with
- | Eq => compare0_mn m xl
- | r => Lt
- end
- end
- end.
-
- Variable wm_base: positive.
- Variable wm_to_Z: wm -> Z.
- Variable w_to_Z: w -> Z.
- Variable w_to_Z_0: w_to_Z w_0 = 0.
- Variable spec_compare0_m: forall x,
- compare0_m x = (w_to_Z w_0 ?= wm_to_Z x).
- Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.
-
- Let double_to_Z := double_to_Z wm_base wm_to_Z.
- Let double_wB := double_wB wm_base.
-
- Lemma base_xO: forall n, base (xO n) = (base n)^2.
- Proof.
- intros n1; unfold base.
- rewrite (Pos2Z.inj_xO n1); rewrite Z.mul_comm; rewrite Z.pow_mul_r; auto with zarith.
- Qed.
-
- Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
- (spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).
-
- Declare Equivalent Keys compare0_mn compare0_m.
-
- Lemma spec_compare0_mn: forall n x,
- compare0_mn n x = (0 ?= double_to_Z n x).
- Proof.
- intros n; elim n; clear n; auto.
- intros x; rewrite spec_compare0_m; rewrite w_to_Z_0; auto.
- intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto.
- fold word in *.
- intros xh xl.
- rewrite 2 Hrec.
- simpl double_to_Z.
- set (wB := DoubleBase.double_wB wm_base n).
- case Z.compare_spec; intros Cmp.
- rewrite <- Cmp. reflexivity.
- symmetry. apply Z.gt_lt, Z.lt_gt. (* ;-) *)
- assert (0 < wB).
- unfold wB, DoubleBase.double_wB, base; auto with zarith.
- change 0 with (0 + 0); apply Z.add_lt_le_mono; auto with zarith.
- apply Z.mul_pos_pos; auto with zarith.
- case (double_to_Z_pos n xl); auto with zarith.
- case (double_to_Z_pos n xh); intros; exfalso; omega.
- Qed.
-
- Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
- match n return word wm n -> w -> comparison with
- | O => compare_m
- | S m => fun x y =>
- match x with
- | W0 => compare w_0 y
- | WW xh xl =>
- match compare0_mn m xh with
- | Eq => compare_mn_1 m xl y
- | r => Gt
- end
- end
- end.
-
- Variable spec_compare: forall x y,
- compare x y = Z.compare (w_to_Z x) (w_to_Z y).
- Variable spec_compare_m: forall x y,
- compare_m x y = Z.compare (wm_to_Z x) (w_to_Z y).
- Variable wm_base_lt: forall x,
- 0 <= w_to_Z x < base (wm_base).
-
- Let double_wB_lt: forall n x,
- 0 <= w_to_Z x < (double_wB n).
- Proof.
- intros n x; elim n; simpl; auto; clear n.
- intros n (H0, H); split; auto.
- apply Z.lt_le_trans with (1:= H).
- unfold double_wB, DoubleBase.double_wB; simpl.
- rewrite base_xO.
- set (u := base (Pos.shiftl_nat wm_base n)).
- assert (0 < u).
- unfold u, base; auto with zarith.
- replace (u^2) with (u * u); simpl; auto with zarith.
- apply Z.le_trans with (1 * u); auto with zarith.
- unfold Z.pow_pos; simpl; ring.
- Qed.
-
-
- Lemma spec_compare_mn_1: forall n x y,
- compare_mn_1 n x y = Z.compare (double_to_Z n x) (w_to_Z y).
- Proof.
- intros n; elim n; simpl; auto; clear n.
- intros n Hrec x; case x; clear x; auto.
- intros y; rewrite spec_compare; rewrite w_to_Z_0. reflexivity.
- intros xh xl y; simpl;
- rewrite spec_compare0_mn, Hrec. case Z.compare_spec.
- intros H1b.
- rewrite <- H1b; rewrite Z.mul_0_l; rewrite Z.add_0_l; auto.
- symmetry. apply Z.lt_gt.
- case (double_wB_lt n y); intros _ H0.
- apply Z.lt_le_trans with (1:= H0).
- fold double_wB.
- case (double_to_Z_pos n xl); intros H1 H2.
- apply Z.le_trans with (double_to_Z n xh * double_wB n); auto with zarith.
- apply Z.le_trans with (1 * double_wB n); auto with zarith.
- case (double_to_Z_pos n xh); intros; exfalso; omega.
- Qed.
-
-End CompareRec.
-
-
-Section AddS.
-
- Variable w wm : Type.
- Variable incr : wm -> carry wm.
- Variable addr : w -> wm -> carry wm.
- Variable injr : w -> zn2z wm.
-
- Variable w_0 u: w.
- Fixpoint injs (n:nat): word w (S n) :=
- match n return (word w (S n)) with
- O => WW w_0 u
- | S n1 => (WW W0 (injs n1))
- end.
-
- Definition adds x y :=
- match y with
- W0 => C0 (injr x)
- | WW hy ly => match addr x ly with
- C0 z => C0 (WW hy z)
- | C1 z => match incr hy with
- C0 z1 => C0 (WW z1 z)
- | C1 z1 => C1 (WW z1 z)
- end
- end
- end.
-
-End AddS.
-
- Fixpoint length_pos x :=
- match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.
-
- Theorem length_pos_lt: forall x y,
- (length_pos x < length_pos y)%nat -> Zpos x < Zpos y.
- Proof.
- intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac];
- intros y; case y; clear y; intros y1 H || intros H; simpl length_pos;
- try (rewrite (Pos2Z.inj_xI x1) || rewrite (Pos2Z.inj_xO x1));
- try (rewrite (Pos2Z.inj_xI y1) || rewrite (Pos2Z.inj_xO y1));
- try (inversion H; fail);
- try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith);
- assert (0 < Zpos y1); auto with zarith; red; auto.
- Qed.
-
- Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x.
- Proof.
- intros A B f g x H; rewrite H; auto.
- Qed.
-
-
- Section SimplOp.
-
- Variable w: Type.
-
- Theorem digits_zop: forall t (ops : ZnZ.Ops t),
- ZnZ.digits (mk_zn2z_ops ops) = xO (ZnZ.digits ops).
- Proof.
- intros ww x; auto.
- Qed.
-
- Theorem digits_kzop: forall t (ops : ZnZ.Ops t),
- ZnZ.digits (mk_zn2z_ops_karatsuba ops) = xO (ZnZ.digits ops).
- Proof.
- intros ww x; auto.
- Qed.
-
- Theorem make_zop: forall t (ops : ZnZ.Ops t),
- @ZnZ.to_Z _ (mk_zn2z_ops ops) =
- fun z => match z with
- | W0 => 0
- | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
- + ZnZ.to_Z xl
- end.
- Proof.
- intros ww x; auto.
- Qed.
-
- Theorem make_kzop: forall t (ops: ZnZ.Ops t),
- @ZnZ.to_Z _ (mk_zn2z_ops_karatsuba ops) =
- fun z => match z with
- | W0 => 0
- | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
- + ZnZ.to_Z xl
- end.
- Proof.
- intros ww x; auto.
- Qed.
-
- End SimplOp.
-
-(** Abstract vision of a datatype of arbitrary-large numbers.
- Concrete operations can be derived from these generic
- fonctions, in particular from [iter_t] and [same_level].
-*)
-
-Module Type NAbstract.
-
-(** The domains: a sequence of [Z/nZ] structures *)
-
-Parameter dom_t : nat -> Type.
-Declare Instance dom_op n : ZnZ.Ops (dom_t n).
-Declare Instance dom_spec n : ZnZ.Specs (dom_op n).
-
-Axiom digits_dom_op : forall n,
- ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op 0)) n.
-
-(** The type [t] of arbitrary-large numbers, with abstract constructor [mk_t]
- and destructor [destr_t] and iterator [iter_t] *)
-
-Parameter t : Type.
-
-Parameter mk_t : forall (n:nat), dom_t n -> t.
-
-Inductive View_t : t -> Prop :=
- Mk_t : forall n (x : dom_t n), View_t (mk_t n x).
-
-Axiom destr_t : forall x, View_t x. (* i.e. every x is a (mk_t n xw) *)
-
-Parameter iter_t : forall {A:Type}(f : forall n, dom_t n -> A), t -> A.
-
-Axiom iter_mk_t : forall A (f:forall n, dom_t n -> A),
- forall n x, iter_t f (mk_t n x) = f n x.
-
-(** Conversion to [ZArith] *)
-
-Parameter to_Z : t -> Z.
-Local Notation "[ x ]" := (to_Z x).
-
-Axiom spec_mk_t : forall n x, [mk_t n x] = ZnZ.to_Z x.
-
-(** [reduce] is like [mk_t], but try to minimise the level of the number *)
-
-Parameter reduce : forall (n:nat), dom_t n -> t.
-Axiom spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x.
-
-(** Number of level in the tree representation of a number.
- NB: This function isn't a morphism for setoid [eq]. *)
-
-Definition level := iter_t (fun n _ => n).
-
-(** [same_level] and its rich specification, indexed by [level] *)
-
-Parameter same_level : forall {A:Type}
- (f : forall n, dom_t n -> dom_t n -> A), t -> t -> A.
-
-Axiom spec_same_level_dep :
- forall res
- (P : nat -> Z -> Z -> res -> Prop)
- (Pantimon : forall n m z z' r, (n <= m)%nat -> P m z z' r -> P n z z' r)
- (f : forall n, dom_t n -> dom_t n -> res)
- (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
- forall x y, P (level x) [x] [y] (same_level f x y).
-
-(** [mk_t_S] : building a number of the next level *)
-
-Parameter mk_t_S : forall (n:nat), zn2z (dom_t n) -> t.
-
-Axiom spec_mk_t_S : forall n (x:zn2z (dom_t n)),
- [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
-
-Axiom mk_t_S_level : forall n x, level (mk_t_S n x) = S n.
-
-End NAbstract.