summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake_gen.ml
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/BigN/NMake_gen.ml')
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml3511
1 files changed, 923 insertions, 2588 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
index 67a62c40..59d440c3 100644
--- a/theories/Numbers/Natural/BigN/NMake_gen.ml
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,100 +8,88 @@
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NMake_gen.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
+(*S NMake_gen.ml : this file generates NMake_gen.v *)
-(*S NMake_gen.ml : this file generates NMake.v *)
-
-(*s The two parameters that control the generation: *)
+(*s The parameter that control the generation: *)
let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ
process before relying on a generic construct *)
-let gen_proof = true (* should we generate proofs ? *)
-
(*s Some utilities *)
-let t = "t"
-let c = "N"
-let pz n = if n == 0 then "w_0" else "W0"
-let rec gen2 n = if n == 0 then "1" else if n == 1 then "2"
- else "2 * " ^ (gen2 (n - 1))
-let rec genxO n s =
- if n == 0 then s else " (xO" ^ (genxO (n - 1) s) ^ ")"
+let rec iter_str n s = if n = 0 then "" else (iter_str (n-1) s) ^ s
-(* NB: in ocaml >= 3.10, we could use Printf.ifprintf for printing to
- /dev/null, but for being compatible with earlier ocaml and not
- relying on system-dependent stuff like open_out "/dev/null",
- let's use instead a magical hack *)
+let rec iter_str_gen n f = if n < 0 then "" else (iter_str_gen (n-1) f) ^ (f n)
-(* Standard printer, with a final newline *)
-let pr s = Printf.printf (s^^"\n")
-(* Printing to /dev/null *)
-let pn = (fun s -> Obj.magic (fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ -> ())
- : ('a, out_channel, unit) format -> 'a)
-(* Proof printer : prints iff gen_proof is true *)
-let pp = if gen_proof then pr else pn
-(* Printer for admitted parts : prints iff gen_proof is false *)
-let pa = if not gen_proof then pr else pn
-(* Same as before, but without the final newline *)
-let pr0 = Printf.printf
-let pp0 = if gen_proof then pr0 else pn
+let rec iter_name i j base sep =
+ if i >= j then base^(string_of_int i)
+ else (iter_name i (j-1) base sep)^sep^" "^base^(string_of_int j)
+let pr s = Printf.printf (s^^"\n")
(*s The actual printing *)
let _ =
- pr "(************************************************************************)";
- pr "(* v * The Coq Proof Assistant / The Coq Development Team *)";
- pr "(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)";
- pr "(* \\VV/ **************************************************************)";
- pr "(* // * This file is distributed under the terms of the *)";
- pr "(* * GNU Lesser General Public License Version 2.1 *)";
- pr "(************************************************************************)";
- pr "(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)";
- pr "(************************************************************************)";
- pr "";
- pr "(** * NMake *)";
- pr "";
- pr "(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)";
- pr "";
- pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)";
- pr "";
- pr "Require Import BigNumPrelude ZArith CyclicAxioms";
- pr " DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic";
- pr " Wf_nat StreamMemo.";
- pr "";
- pr "Module Make (Import W0:CyclicType).";
- pr "";
+pr
+"(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \\VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
- pr " Definition w0 := W0.w.";
- for i = 1 to size do
- pr " Definition w%i := zn2z w%i." i (i-1)
- done;
- pr "";
+(** * NMake_gen *)
- pr " Definition w0_op := W0.w_op.";
- for i = 1 to 3 do
- pr " Definition w%i_op := mk_zn2z_op w%i_op." i (i-1)
- done;
- for i = 4 to size + 3 do
- pr " Definition w%i_op := mk_zn2z_op_karatsuba w%i_op." i (i-1)
- done;
- pr "";
+(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)
+
+(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)
+
+Require Import BigNumPrelude ZArith Ndigits CyclicAxioms
+ DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic
+ Wf_nat StreamMemo.
+
+Module Make (W0:CyclicType) <: NAbstract.
+
+ (** * The word types *)
+";
+
+pr " Local Notation w0 := W0.t.";
+for i = 1 to size do
+ pr " Definition w%i := zn2z w%i." i (i-1)
+done;
+pr "";
+
+pr " (** * The operation type classes for the word types *)
+";
+
+pr " Local Notation w0_op := W0.ops.";
+for i = 1 to min 3 size do
+ pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops w%i_op." i i (i-1)
+done;
+for i = 4 to size do
+ pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops_karatsuba w%i_op." i i (i-1)
+done;
+for i = size+1 to size+3 do
+ pr " Instance w%i_op : ZnZ.Ops (word w%i %i) := mk_zn2z_ops_karatsuba w%i_op." i size (i-size) (i-1)
+done;
+pr "";
pr " Section Make_op.";
- pr " Variable mk : forall w', znz_op w' -> znz_op (zn2z w').";
+ pr " Variable mk : forall w', ZnZ.Ops w' -> ZnZ.Ops (zn2z w').";
pr "";
- pr " Fixpoint make_op_aux (n:nat) : znz_op (word w%i (S n)):=" size;
- pr " match n return znz_op (word w%i (S n)) with" size;
+ pr " Fixpoint make_op_aux (n:nat) : ZnZ.Ops (word w%i (S n)):=" size;
+ pr " match n return ZnZ.Ops (word w%i (S n)) with" size;
pr " | O => w%i_op" (size+1);
pr " | S n1 =>";
- pr " match n1 return znz_op (word w%i (S (S n1))) with" size;
+ pr " match n1 return ZnZ.Ops (word w%i (S (S n1))) with" size;
pr " | O => w%i_op" (size+2);
pr " | S n2 =>";
- pr " match n2 return znz_op (word w%i (S (S (S n2)))) with" size;
+ pr " match n2 return ZnZ.Ops (word w%i (S (S (S n2)))) with" size;
pr " | O => w%i_op" (size+3);
pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
pr " end";
@@ -110,2565 +98,912 @@ let _ =
pr "";
pr " End Make_op.";
pr "";
- pr " Definition omake_op := make_op_aux mk_zn2z_op_karatsuba.";
+ pr " Definition omake_op := make_op_aux mk_zn2z_ops_karatsuba.";
pr "";
pr "";
pr " Definition make_op_list := dmemo_list _ omake_op.";
pr "";
- pr " Definition make_op n := dmemo_get _ omake_op n make_op_list.";
- pr "";
- pr " Lemma make_op_omake: forall n, make_op n = omake_op n.";
- pr " intros n; unfold make_op, make_op_list.";
- pr " refine (dmemo_get_correct _ _ _).";
- pr " Qed.";
+ pr " Instance make_op n : ZnZ.Ops (word w%i (S n))" size;
+ pr " := dmemo_get _ omake_op n make_op_list.";
pr "";
- pr " Inductive %s_ :=" t;
- for i = 0 to size do
- pr " | %s%i : w%i -> %s_" c i i t
- done;
- pr " | %sn : forall n, word w%i (S n) -> %s_." c size t;
- pr "";
- pr " Definition %s := %s_." t t;
- pr "";
- pr " Definition w_0 := w0_op.(znz_0).";
- pr "";
+pr " Ltac unfold_ops := unfold omake_op, make_op_aux, w%i_op, w%i_op." (size+3) (size+2);
- for i = 0 to size do
- pr " Definition one%i := w%i_op.(znz_1)." i i
- done;
- pr "";
+pr
+"
+ Lemma make_op_omake: forall n, make_op n = omake_op n.
+ Proof.
+ intros n; unfold make_op, make_op_list.
+ refine (dmemo_get_correct _ _ _).
+ Qed.
+ Theorem make_op_S: forall n,
+ make_op (S n) = mk_zn2z_ops_karatsuba (make_op n).
+ Proof.
+ intros n. do 2 rewrite make_op_omake.
+ revert n. fix IHn 1.
+ do 3 (destruct n; [unfold_ops; reflexivity|]).
+ simpl mk_zn2z_ops_karatsuba. simpl word in *.
+ rewrite <- (IHn n). auto.
+ Qed.
- pr " Definition zero := %s0 w_0." c;
- pr " Definition one := %s0 one0." c;
- pr "";
+ (** * The main type [t], isomorphic with [exists n, word w0 n] *)
+";
- pr " Definition to_Z x :=";
- pr " match x with";
+ pr " Inductive t' :=";
for i = 0 to size do
- pr " | %s%i wx => w%i_op.(znz_to_Z) wx" c i i
+ pr " | N%i : w%i -> t'" i i
done;
- pr " | %sn n wx => (make_op n).(znz_to_Z) wx" c;
- pr " end.";
+ pr " | Nn : forall n, word w%i (S n) -> t'." size;
pr "";
-
- pr " Open Scope Z_scope.";
- pr " Notation \"[ x ]\" := (to_Z x).";
- pr "";
-
- pr " Definition to_N x := Zabs_N (to_Z x).";
+ pr " Definition t := t'.";
pr "";
-
- pr " Definition eq x y := (to_Z x = to_Z y).";
- pr "";
-
- pp " (* Regular make op (no karatsuba) *)";
- pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) :";
- pp " znz_op (word ww n) :=";
- pp " match n return znz_op (word ww n) with";
- pp " O => ww_op";
- pp " | S n1 => mk_zn2z_op (nmake_op ww ww_op n1)";
- pp " end.";
- pp "";
- pp " (* Simplification by rewriting for nmake_op *)";
- pp " Theorem nmake_op_S: forall ww (w_op: znz_op ww) x,";
- pp " nmake_op _ w_op (S x) = mk_zn2z_op (nmake_op _ w_op x).";
- pp " auto.";
- pp " Qed.";
- pp "";
-
-
- pr " (* Eval and extend functions for each level *)";
- for i = 0 to size do
- pp " Let nmake_op%i := nmake_op _ w%i_op." i i;
- pp " Let eval%in n := znz_to_Z (nmake_op%i n)." i i;
- if i == 0 then
- pr " Let extend%i := DoubleBase.extend (WW w_0)." i
- else
- pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
- done;
+ pr " Bind Scope abstract_scope with t t'.";
pr "";
-
- pp " Theorem digits_doubled:forall n ww (w_op: znz_op ww),";
- pp " znz_digits (nmake_op _ w_op n) =";
- pp " DoubleBase.double_digits (znz_digits w_op) n.";
- pp " Proof.";
- pp " intros n; elim n; auto; clear n.";
- pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits.";
- pp " rewrite <- Hrec; auto.";
- pp " Qed.";
- pp "";
- pp " Theorem nmake_double: forall n ww (w_op: znz_op ww),";
- pp " znz_to_Z (nmake_op _ w_op n) =";
- pp " @DoubleBase.double_to_Z _ (znz_digits w_op) (znz_to_Z w_op) n.";
- pp " Proof.";
- pp " intros n; elim n; auto; clear n.";
- pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.";
- pp " rewrite <- Hrec; auto.";
- pp " unfold DoubleBase.double_wB; rewrite <- digits_doubled; auto.";
- pp " Qed.";
- pp "";
-
-
- pp " Theorem digits_nmake:forall n ww (w_op: znz_op ww),";
- pp " znz_digits (nmake_op _ w_op (S n)) =";
- pp " xO (znz_digits (nmake_op _ w_op n)).";
- pp " Proof.";
- pp " auto.";
- pp " Qed.";
- pp "";
-
-
- pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,";
- pp " znz_to_Z (nmake_op ww ww_op (S n)) (WW xh xl) =";
- pp " znz_to_Z (nmake_op ww ww_op n) xh *";
- pp " base (znz_digits (nmake_op ww ww_op n)) +";
- pp " znz_to_Z (nmake_op ww ww_op n) xl.";
- pp " Proof.";
- pp " auto.";
- pp " Qed.";
- pp "";
-
- pp " Theorem make_op_S: forall n,";
- pp " make_op (S n) = mk_zn2z_op_karatsuba (make_op n).";
- pp " intro n.";
- pp " do 2 rewrite make_op_omake.";
- pp " pattern n; apply lt_wf_ind; clear n.";
- pp " intros n; case n; clear n.";
- pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 2);
- pp " intros n; case n; clear n.";
- pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 3);
- pp " intros n; case n; clear n.";
- pp " intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2);
- pp " intros n Hrec.";
- pp " change (omake_op (S (S (S (S n))))) with";
- pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op (S n))))).";
- pp " change (omake_op (S (S (S n)))) with";
- pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op n)))).";
- pp " rewrite Hrec; auto with arith.";
- pp " Qed.";
- pp "";
-
-
- for i = 1 to size + 2 do
- pp " Let znz_to_Z_%i: forall x y," i;
- pp " znz_to_Z w%i_op (WW x y) =" i;
- pp " znz_to_Z w%i_op x * base (znz_digits w%i_op) + znz_to_Z w%i_op y." (i-1) (i-1) (i-1);
- pp " Proof.";
- pp " auto.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Let znz_to_Z_n: forall n x y,";
- pp " znz_to_Z (make_op (S n)) (WW x y) =";
- pp " znz_to_Z (make_op n) x * base (znz_digits (make_op n)) + znz_to_Z (make_op n) y.";
- pp " Proof.";
- pp " intros n x y; rewrite make_op_S; auto.";
- pp " Qed.";
- pp "";
-
- pp " Let w0_spec: znz_spec w0_op := W0.w_spec.";
- for i = 1 to 3 do
- pp " Let w%i_spec: znz_spec w%i_op := mk_znz2_spec w%i_spec." i i (i-1)
- done;
- for i = 4 to size + 3 do
- pp " Let w%i_spec : znz_spec w%i_op := mk_znz2_karatsuba_spec w%i_spec." i i (i-1)
- done;
- pp "";
-
- pp " Let wn_spec: forall n, znz_spec (make_op n).";
- pp " intros n; elim n; clear n.";
- pp " exact w%i_spec." (size + 1);
- pp " intros n Hrec; rewrite make_op_S.";
- pp " exact (mk_znz2_karatsuba_spec Hrec).";
- pp " Qed.";
- pp "";
-
- for i = 0 to size do
- pr " Definition w%i_eq0 := w%i_op.(znz_eq0)." i i;
- pr " Let spec_w%i_eq0: forall x, if w%i_eq0 x then [%s%i x] = 0 else True." i i c i;
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; unfold w%i_eq0, to_Z; generalize (spec_eq0 w%i_spec x);" i i;
- pp " case znz_eq0; auto.";
- pp " Qed.";
- pr "";
- done;
+ pr " (** * A generic toolbox for building and deconstructing [t] *)";
pr "";
-
- for i = 0 to size do
- pp " Theorem digits_w%i: znz_digits w%i_op = znz_digits (nmake_op _ w0_op %i)." i i i;
- if i == 0 then
- pp " auto."
- else
- pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1);
- pp " Qed.";
- pp "";
- pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (znz_digits w%i_op) (znz_to_Z w%i_op) n." i i i i;
- pp " Proof.";
- pp " intros n; exact (nmake_double n w%i w%i_op)." i i;
- pp " Qed.";
- pp "";
- done;
-
- for i = 0 to size do
- for j = 0 to (size - i) do
- pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
- pp " Proof.";
- if j == 0 then
- if i == 0 then
- pp " auto."
- else
- begin
- pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
- pp " auto.";
- pp " unfold nmake_op; auto.";
- end
- else
- begin
- pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
- pp " auto.";
- pp " rewrite digits_nmake.";
- pp " rewrite digits_w%in%i." i (j - 1);
- pp " auto.";
- end;
- pp " Qed.";
- pp "";
- pp " Let spec_eval%in%i: forall x, [%s%i x] = eval%in %i x." i j c (i + j) i j;
- pp " Proof.";
- if j == 0 then
- pp " intros x; rewrite spec_double_eval%in; unfold DoubleBase.double_to_Z, to_Z; auto." i
- else
- begin
- pp " intros x; case x.";
- pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (i + j);
- pp " rewrite digits_w%in%i." i (j - 1);
- pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1);
- pp " unfold eval%in, nmake_op%i." i i;
- pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (j - 1);
- end;
- pp " Qed.";
- if i + j <> size then
- begin
- pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j;
- if j == 0 then
- begin
- pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." i (i + j);
- pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
- pp " rewrite (spec_0 w%i_spec); auto." (i + j);
- end
- else
- begin
- pp " intros x; change (extend%i %i x) with (WW (znz_0 w%i_op) (extend%i %i x))." i j (i + j) i (j - 1);
- pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
- pp " rewrite (spec_0 w%i_spec)." (i + j);
- pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j);
- pp " intros HH; rewrite <- HH; auto.";
- end;
- pp " Qed.";
- pp "";
- end;
- done;
-
- pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
- pp " Proof.";
- pp " apply trans_equal with (xO (znz_digits w%i_op))." size;
- pp " auto.";
- pp " rewrite digits_nmake.";
- pp " rewrite digits_w%in%i." i (size - i);
- pp " auto.";
- pp " Qed.";
- pp "";
-
- pp " Let spec_eval%in%i: forall x, [%sn 0 x] = eval%in %i x." i (size - i + 1) c i (size - i + 1);
- pp " Proof.";
- pp " intros x; case x.";
- pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 1);
- pp " rewrite digits_w%in%i." i (size - i);
- pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i);
- pp " unfold eval%in, nmake_op%i." i i;
- pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size - i);
- pp " Qed.";
- pp "";
-
- pp " Let spec_eval%in%i: forall x, [%sn 1 x] = eval%in %i x." i (size - i + 2) c i (size - i + 2);
- pp " intros x; case x.";
- pp " auto.";
- pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 2);
- pp " rewrite digits_w%in%i." i (size + 1 - i);
- pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1);
- pp " unfold eval%in, nmake_op%i." i i;
- pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size + 1 - i);
- pp " Qed.";
- pp "";
- done;
-
- pp " Let digits_w%in: forall n," size;
- pp " znz_digits (make_op n) = znz_digits (nmake_op _ w%i_op (S n))." size;
- pp " intros n; elim n; clear n.";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
- pp " rewrite nmake_op_S; apply sym_equal; auto.";
- pp " intros n Hrec.";
- pp " replace (znz_digits (make_op (S n))) with (xO (znz_digits (make_op n))).";
- pp " rewrite Hrec.";
- pp " rewrite nmake_op_S; apply sym_equal; auto.";
- pp " rewrite make_op_S; apply sym_equal; auto.";
- pp " Qed.";
- pp "";
-
- pp " Let spec_eval%in: forall n x, [%sn n x] = eval%in (S n) x." size c size;
- pp " intros n; elim n; clear n.";
- pp " exact spec_eval%in1." size;
- pp " intros n Hrec x; case x; clear x.";
- pp " unfold to_Z, eval%in, nmake_op%i." size size;
- pp " rewrite make_op_S; rewrite nmake_op_S; auto.";
- pp " intros xh xl.";
- pp " unfold to_Z in Hrec |- *.";
- pp " rewrite znz_to_Z_n.";
- pp " rewrite digits_w%in." size;
- pp " repeat rewrite Hrec.";
- pp " unfold eval%in, nmake_op%i." size size;
- pp " apply sym_equal; rewrite nmake_op_S; auto.";
- pp " Qed.";
- pp "";
-
- pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ;
- pp " intros n; elim n; clear n.";
- pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." size size;
- pp " unfold to_Z.";
- pp " change (make_op 0) with w%i_op." (size + 1);
- pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto." (size + 1) size;
- pp " intros n Hrec x.";
- pp " change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size;
- pp " unfold to_Z in Hrec |- *; rewrite znz_to_Z_n; auto.";
- pp " rewrite <- Hrec.";
- pp " replace (znz_to_Z (make_op n) W0) with 0; auto.";
- pp " case n; auto; intros; rewrite make_op_S; auto.";
- pp " Qed.";
- pp "";
-
- pr " Theorem spec_pos: forall x, 0 <= [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x.";
- for i = 0 to size do
- pp " intros x; case (spec_to_Z w%i_spec x); auto." i;
- done;
- pp " intros n x; case (spec_to_Z (wn_spec n) x); auto.";
- pp " Qed.";
+ pr " Local Notation SizePlus n := %sn%s."
+ (iter_str size "(S ") (iter_str size ")");
+ pr " Local Notation Size := (SizePlus O).";
pr "";
- pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c;
- pp " intros n; elim n; auto.";
- pp " intros n1 Hrec wx; simpl extend; rewrite <- Hrec; auto.";
- pp " unfold to_Z.";
- pp " case n1; auto; intros n2; repeat rewrite make_op_S; auto.";
- pp " Qed.";
- pp "";
- pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c;
- pp " Proof.";
- pp " intros n x; unfold to_Z.";
- pp " rewrite znz_to_Z_n.";
- pp " rewrite <- (Zplus_0_l (znz_to_Z (make_op n) x)).";
- pp " apply (f_equal2 Zplus); auto.";
- pp " case n; auto.";
- pp " intros n1; rewrite make_op_S; auto.";
- pp " Qed.";
- pp "";
- pp " Let spec_extend_tr: forall m n (w: word _ (S n)),";
- pp " [%sn (m + n) (extend_tr w m)] = [%sn n w]." c c;
- pp " Proof.";
- pp " induction m; auto.";
- pp " intros n x; simpl extend_tr.";
- pp " simpl plus; rewrite spec_extendn0_0; auto.";
- pp " Qed.";
- pp "";
- pp " Let spec_cast_l: forall n m x1,";
- pp " [%sn (Max.max n m)" c;
- pp " (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))] =";
- pp " [%sn n x1]." c;
- pp " Proof.";
- pp " intros n m x1; case (diff_r n m); simpl castm.";
- pp " rewrite spec_extend_tr; auto.";
- pp " Qed.";
- pp "";
- pp " Let spec_cast_r: forall n m x1,";
- pp " [%sn (Max.max n m)" c;
- pp " (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))] =";
- pp " [%sn m x1]." c;
- pp " Proof.";
- pp " intros n m x1; case (diff_l n m); simpl castm.";
- pp " rewrite spec_extend_tr; auto.";
- pp " Qed.";
- pp "";
-
-
- pr " Section LevelAndIter.";
- pr "";
- pr " Variable res: Type.";
- pr " Variable xxx: res.";
- pr " Variable P: Z -> Z -> res -> Prop.";
- pr " (* Abstraction function for each level *)";
- for i = 0 to size do
- pr " Variable f%i: w%i -> w%i -> res." i i i;
- pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
- pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
- pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
- if i == size then
- begin
- pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
- pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
- end
- else
- begin
- pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
- pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
- end;
- pr "";
- done;
- pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
- pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
- pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
- pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
- pr "";
- pr " (* Special zero functions *)";
- pr " Variable f0t: t_ -> res.";
- pp " Variable Pf0t: forall x, P 0 [x] (f0t x).";
- pr " Variable ft0: t_ -> res.";
- pp " Variable Pft0: forall x, P [x] 0 (ft0 x).";
+ pr " Tactic Notation \"do_size\" tactic(t) := do %i t." (size+1);
pr "";
-
- pr " (* We level the two arguments before applying *)";
- pr " (* the functions at each leval *)";
- pr " Definition same_level (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
- for i = 0 to size do
- pr0 "extend%i " i;
- done;
- pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x, y with";
+ pr " Definition dom_t n := match n with";
for i = 0 to size do
- for j = 0 to i - 1 do
- pr " | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1);
- done;
- pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
- for j = i + 1 to size do
- pr " | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1);
- done;
- if i == size then
- pr " | %s%i wx, %sn m wy => fnn m (extend%i m wx) wy" c size c size
- else
- pr " | %s%i wx, %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
+ pr " | %i => w%i" i i;
done;
- for i = 0 to size do
- if i == size then
- pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n wy)" c c size size
- else
- pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
- done;
- pr " | %sn n wx, Nn m wy =>" c;
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " fnn mn";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
- pr " end.";
+ pr " | %sn => word w%i n" (if size=0 then "" else "SizePlus ") size;
+ pr " end.";
pr "";
- pp " Lemma spec_same_level: forall x y, P [x] [y] (same_level x y).";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold same_level.";
- for i = 0 to size do
- pp " intros x y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y; rewrite spec_extend%in%i; apply Pf%i." j i i;
- done;
- pp " intros y; apply Pf%i." i;
- for j = i + 1 to size do
- pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
- done;
- if i == size then
- pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
- else
- pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
- done;
- pp " intros n x y; case y; clear y.";
- for i = 0 to size do
- if i == size then
- pp " intros y; rewrite (spec_extend%in n); apply Pfnn." size
- else
- pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
- done;
- pp " intros m y; rewrite <- (spec_cast_l n m x);";
- pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
- pp " Qed.";
- pp "";
-
- pr " (* We level the two arguments before applying *)";
- pr " (* the functions at each level (special zero case) *)";
- pr " Definition same_level0 (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
- for i = 0 to size do
- pr0 "extend%i " i;
- done;
- pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx =>" c i;
- if i == 0 then
- pr " if w0_eq0 wx then f0t y else";
- pr " match y with";
- for j = 0 to i - 1 do
- pr " | %s%i wy =>" c j;
- if j == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- pr " f%i wx (extend%i %i wy)" i j (i - j -1);
- done;
- pr " | %s%i wy => f%i wx wy" c i i;
- for j = i + 1 to size do
- pr " | %s%i wy => f%i (extend%i %i wx) wy" c j j i (j - i - 1);
- done;
- if i == size then
- pr " | %sn m wy => fnn m (extend%i m wx) wy" c size
- else
- pr " | %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c size i (size - i - 1);
- pr" end";
- done;
- pr " | %sn n wx =>" c;
- pr " match y with";
- for i = 0 to size do
- pr " | %s%i wy =>" c i;
- if i == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- if i == size then
- pr " fnn n wx (extend%i n wy)" size
- else
- pr " fnn n wx (extend%i n (extend%i %i wy))" size i (size - i - 1);
- done;
- pr " | %sn m wy =>" c;
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " fnn mn";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
- pr " end";
- pr " end.";
- pr "";
+pr
+" Instance dom_op n : ZnZ.Ops (dom_t n) | 10.
+ Proof.
+ do_size (destruct n; [simpl;auto with *|]).
+ unfold dom_t. auto with *.
+ Defined.
+";
- pp " Lemma spec_same_level0: forall x y, P [x] [y] (same_level0 x y).";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold same_level0.";
- for i = 0 to size do
- pp " intros x.";
- if i == 0 then
- begin
- pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
- pp " intros y; rewrite H; apply Pf0t.";
- pp " clear H.";
- end;
- pp " intros y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y.";
- if j == 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
- pp " rewrite spec_extend%in%i; apply Pf%i." j i i;
- done;
- pp " intros y; apply Pf%i." i;
- for j = i + 1 to size do
- pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
- done;
- if i == size then
- pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
- else
- pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
- done;
- pp " intros n x y; case y; clear y.";
+ pr " Definition iter_t {A:Type}(f : forall n, dom_t n -> A) : t -> A :=";
for i = 0 to size do
- pp " intros y.";
- if i = 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
- if i == size then
- pp " rewrite (spec_extend%in n); apply Pfnn." size
- else
- pp " rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ pr " let f%i := f %i in" i i;
done;
- pp " intros m y; rewrite <- (spec_cast_l n m x);";
- pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
- pp " Qed.";
- pp "";
-
- pr " (* We iter the smaller argument with the bigger *)";
- pr " Definition iter (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
+ pr " let fn n := f (SizePlus (S n)) in";
+ pr " fun x => match x with";
for i = 0 to size do
- pr0 "extend%i " i;
+ pr " | N%i wx => f%i wx" i i;
done;
- pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x, y with";
- for i = 0 to size do
- for j = 0 to i - 1 do
- pr " | %s%i wx, %s%i wy => fn%i %i wx wy" c i c j j (i - j - 1);
- done;
- pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
- for j = i + 1 to size do
- pr " | %s%i wx, %s%i wy => f%in %i wx wy" c i c j i (j - i - 1);
- done;
- if i == size then
- pr " | %s%i wx, %sn m wy => f%in m wx wy" c size c size
- else
- pr " | %s%i wx, %sn m wy => f%in m (extend%i %i wx) wy" c i c size i (size - i - 1);
- done;
- for i = 0 to size do
- if i == size then
- pr " | %sn n wx, %s%i wy => fn%i n wx wy" c c size size
- else
- pr " | %sn n wx, %s%i wy => fn%i n wx (extend%i %i wy)" c c i size i (size - i - 1);
- done;
- pr " | %sn n wx, %sn m wy => fnm n m wx wy" c c;
+ pr " | Nn n wx => fn n wx";
pr " end.";
pr "";
- pp " Ltac zg_tac := try";
- pp " (red; simpl Zcompare; auto;";
- pp " let t := fresh \"H\" in (intros t; discriminate t)).";
- pp "";
- pp " Lemma spec_iter: forall x y, P [x] [y] (iter x y).";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold iter.";
- for i = 0 to size do
- pp " intros x y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y; rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
- done;
- pp " intros y; apply Pf%i." i;
- for j = i + 1 to size do
- pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
- done;
- if i == size then
- pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
- else
- pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
- done;
- pp " intros n x y; case y; clear y.";
- for i = 0 to size do
- if i == size then
- pp " intros y; rewrite spec_eval%in; apply Pfn%i." size size
- else
- pp " intros y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
- done;
- pp " intros m y; apply Pfnm.";
- pp " Qed.";
- pp "";
-
-
- pr " (* We iter the smaller argument with the bigger (zero case) *)";
- pr " Definition iter0 (x y: t_): res :=";
- pr0 " Eval lazy zeta beta iota delta [";
- for i = 0 to size do
- pr0 "extend%i " i;
- done;
- pr "";
- pr " DoubleBase.extend DoubleBase.extend_aux";
- pr " ] in";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx =>" c i;
- if i == 0 then
- pr " if w0_eq0 wx then f0t y else";
- pr " match y with";
- for j = 0 to i - 1 do
- pr " | %s%i wy =>" c j;
- if j == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- pr " fn%i %i wx wy" j (i - j - 1);
- done;
- pr " | %s%i wy => f%i wx wy" c i i;
- for j = i + 1 to size do
- pr " | %s%i wy => f%in %i wx wy" c j i (j - i - 1);
- done;
- if i == size then
- pr " | %sn m wy => f%in m wx wy" c size
- else
- pr " | %sn m wy => f%in m (extend%i %i wx) wy" c size i (size - i - 1);
- pr " end";
- done;
- pr " | %sn n wx =>" c;
- pr " match y with";
+ pr " Definition mk_t (n:nat) : dom_t n -> t :=";
+ pr " match n as n' return dom_t n' -> t with";
for i = 0 to size do
- pr " | %s%i wy =>" c i;
- if i == 0 then
- pr " if w0_eq0 wy then ft0 x else";
- if i == size then
- pr " fn%i n wx wy" size
- else
- pr " fn%i n wx (extend%i %i wy)" size i (size - i - 1);
+ pr " | %i => N%i" i i;
done;
- pr " | %sn m wy => fnm n m wx wy" c;
- pr " end";
+ pr " | %s(S n) => Nn n" (if size=0 then "" else "SizePlus ");
pr " end.";
pr "";
- pp " Lemma spec_iter0: forall x y, P [x] [y] (iter0 x y).";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold iter0.";
- for i = 0 to size do
- pp " intros x.";
- if i == 0 then
- begin
- pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
- pp " intros y; rewrite H; apply Pf0t.";
- pp " clear H.";
- end;
- pp " intros y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y.";
- if j == 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
- pp " rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
- done;
- pp " intros y; apply Pf%i." i;
- for j = i + 1 to size do
- pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
- done;
- if i == size then
- pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
- else
- pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
- done;
- pp " intros n x y; case y; clear y.";
- for i = 0 to size do
- pp " intros y.";
- if i = 0 then
- begin
- pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
- pp " rewrite H; apply Pft0.";
- pp " clear H.";
- end;
- if i == size then
- pp " rewrite spec_eval%in; apply Pfn%i." size size
- else
- pp " rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
- done;
- pp " intros m y; apply Pfnm.";
- pp " Qed.";
- pp "";
-
-
- pr " End LevelAndIter.";
- pr "";
+pr
+" Definition level := iter_t (fun n _ => n).
+ Inductive View_t : t -> Prop :=
+ Mk_t : forall n (x : dom_t n), View_t (mk_t n x).
+
+ Lemma destr_t : forall x, View_t x.
+ Proof.
+ intros x. generalize (Mk_t (level x)). destruct x; simpl; auto.
+ Defined.
+
+ Lemma iter_mk_t : forall A (f:forall n, dom_t n -> A),
+ forall n x, iter_t f (mk_t n x) = f n x.
+ Proof.
+ do_size (destruct n; try reflexivity).
+ Qed.
+
+ (** * Projection to ZArith *)
+
+ Definition to_Z : t -> Z :=
+ Eval lazy beta iota delta [iter_t dom_t dom_op] in
+ iter_t (fun _ x => ZnZ.to_Z x).
+
+ Notation \"[ x ]\" := (to_Z x).
+
+ Theorem spec_mk_t : forall n (x:dom_t n), [mk_t n x] = ZnZ.to_Z x.
+ Proof.
+ intros. change to_Z with (iter_t (fun _ x => ZnZ.to_Z x)).
+ rewrite iter_mk_t; auto.
+ Qed.
+
+ (** * Regular make op, without memoization or karatsuba
+
+ This will normally never be used for actual computations,
+ but only for specification purpose when using
+ [word (dom_t n) m] intermediate values. *)
+
+ Fixpoint nmake_op (ww:Type) (ww_op: ZnZ.Ops ww) (n: nat) :
+ ZnZ.Ops (word ww n) :=
+ match n return ZnZ.Ops (word ww n) with
+ O => ww_op
+ | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1)
+ end.
+
+ Let eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m).
+
+ Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x,
+ nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x).
+ Proof.
+ auto.
+ Qed.
+
+ Theorem digits_nmake_S :forall n ww (w_op: ZnZ.Ops ww),
+ ZnZ.digits (nmake_op _ w_op (S n)) =
+ xO (ZnZ.digits (nmake_op _ w_op n)).
+ Proof.
+ auto.
+ Qed.
+
+ Theorem digits_nmake : forall n ww (w_op: ZnZ.Ops ww),
+ ZnZ.digits (nmake_op _ w_op n) = Pos.shiftl_nat (ZnZ.digits w_op) n.
+ Proof.
+ induction n. auto.
+ intros ww ww_op. rewrite Pshiftl_nat_S, <- IHn; auto.
+ Qed.
+
+ Theorem nmake_double: forall n ww (w_op: ZnZ.Ops ww),
+ ZnZ.to_Z (Ops:=nmake_op _ w_op n) =
+ @DoubleBase.double_to_Z _ (ZnZ.digits w_op) (ZnZ.to_Z (Ops:=w_op)) n.
+ Proof.
+ intros n; elim n; auto; clear n.
+ intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.
+ rewrite <- Hrec; auto.
+ unfold DoubleBase.double_wB; rewrite <- digits_nmake; auto.
+ Qed.
+
+ Theorem nmake_WW: forall ww ww_op n xh xl,
+ (ZnZ.to_Z (Ops:=nmake_op ww ww_op (S n)) (WW xh xl) =
+ ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xh *
+ base (ZnZ.digits (nmake_op ww ww_op n)) +
+ ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xl)%%Z.
+ Proof.
+ auto.
+ Qed.
+
+ (** * The specification proofs for the word operators *)
+";
+
+ if size <> 0 then
+ pr " Typeclasses Opaque %s." (iter_name 1 size "w" "");
+ pr "";
+
+ pr " Instance w0_spec: ZnZ.Specs w0_op := W0.specs.";
+ for i = 1 to min 3 size do
+ pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs w%i_spec." i i (i-1)
+ done;
+ for i = 4 to size do
+ pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1)
+ done;
+ pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." (size+1) (size+1) size;
+
+
+pr "
+ Instance wn_spec (n:nat) : ZnZ.Specs (make_op n).
+ Proof.
+ induction n.
+ rewrite make_op_omake; simpl; auto with *.
+ rewrite make_op_S. exact (mk_zn2z_specs_karatsuba IHn).
+ Qed.
+
+ Instance dom_spec n : ZnZ.Specs (dom_op n) | 10.
+ Proof.
+ do_size (destruct n; auto with *). apply wn_spec.
+ Qed.
+
+ Let make_op_WW : forall n x y,
+ (ZnZ.to_Z (Ops:=make_op (S n)) (WW x y) =
+ ZnZ.to_Z (Ops:=make_op n) x * base (ZnZ.digits (make_op n))
+ + ZnZ.to_Z (Ops:=make_op n) y)%%Z.
+ Proof.
+ intros n x y; rewrite make_op_S; auto.
+ Qed.
+
+ (** * Zero *)
+
+ Definition zero0 : w0 := ZnZ.zero.
+
+ Definition zeron n : dom_t n :=
+ match n with
+ | O => zero0
+ | SizePlus (S n) => W0
+ | _ => W0
+ end.
+
+ Lemma spec_zeron : forall n, ZnZ.to_Z (zeron n) = 0%%Z.
+ Proof.
+ do_size (destruct n; [exact ZnZ.spec_0|]).
+ destruct n; auto. simpl. rewrite make_op_S. exact ZnZ.spec_0.
+ Qed.
+
+ (** * Digits *)
+
+ Lemma digits_make_op_0 : forall n,
+ ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op Size)) (S n).
+ Proof.
+ induction n.
+ auto.
+ replace (ZnZ.digits (make_op (S n))) with (xO (ZnZ.digits (make_op n))).
+ rewrite IHn; auto.
+ rewrite make_op_S; auto.
+ Qed.
+
+ Lemma digits_make_op : forall n,
+ ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) (SizePlus (S n)).
+ Proof.
+ intros. rewrite digits_make_op_0.
+ replace (SizePlus (S n)) with (S n + Size) by (rewrite <- plus_comm; auto).
+ rewrite Pshiftl_nat_plus. auto.
+ Qed.
+
+ Lemma digits_dom_op : forall n,
+ ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) n.
+ Proof.
+ do_size (destruct n; try reflexivity).
+ exact (digits_make_op n).
+ Qed.
+
+ Lemma digits_dom_op_nmake : forall n m,
+ ZnZ.digits (dom_op (m+n)) = ZnZ.digits (nmake_op _ (dom_op n) m).
+ Proof.
+ intros. rewrite digits_nmake, 2 digits_dom_op. apply Pshiftl_nat_plus.
+ Qed.
+
+ (** * Conversion between [zn2z (dom_t n)] and [dom_t (S n)].
+
+ These two types are provably equal, but not convertible,
+ hence we need some work. We now avoid using generic casts
+ (i.e. rewrite via proof of equalities in types), since
+ proving things with them is a mess.
+ *)
+
+ Definition succ_t n : zn2z (dom_t n) -> dom_t (S n) :=
+ match n with
+ | SizePlus (S _) => fun x => x
+ | _ => fun x => x
+ end.
+
+ Lemma spec_succ_t : forall n x,
+ ZnZ.to_Z (succ_t n x) =
+ zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
+ Proof.
+ do_size (destruct n ; [reflexivity|]).
+ intros. simpl. rewrite make_op_S. simpl. auto.
+ Qed.
+
+ Definition pred_t n : dom_t (S n) -> zn2z (dom_t n) :=
+ match n with
+ | SizePlus (S _) => fun x => x
+ | _ => fun x => x
+ end.
+
+ Lemma succ_pred_t : forall n x, succ_t n (pred_t n x) = x.
+ Proof.
+ do_size (destruct n ; [reflexivity|]). reflexivity.
+ Qed.
+
+ (** We can hence project from [zn2z (dom_t n)] to [t] : *)
+
+ Definition mk_t_S n (x : zn2z (dom_t n)) : t :=
+ mk_t (S n) (succ_t n x).
+
+ Lemma spec_mk_t_S : forall n x,
+ [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
+ Proof.
+ intros. unfold mk_t_S. rewrite spec_mk_t. apply spec_succ_t.
+ Qed.
+
+ Lemma mk_t_S_level : forall n x, level (mk_t_S n x) = S n.
+ Proof.
+ intros. unfold mk_t_S, level. rewrite iter_mk_t; auto.
+ Qed.
+
+ (** * Conversion from [word (dom_t n) m] to [dom_t (m+n)].
+
+ Things are more complex here. We start with a naive version
+ that breaks zn2z-trees and reconstruct them. Doing this is
+ quite unfortunate, but I don't know how to fully avoid that.
+ (cast someday ?). Then we build an optimized version where
+ all basic cases (n<=6 or m<=7) are nicely handled.
+ *)
+
+ Definition zn2z_map {A} {B} (f:A->B) (x:zn2z A) : zn2z B :=
+ match x with
+ | W0 => W0
+ | WW h l => WW (f h) (f l)
+ end.
+
+ Lemma zn2z_map_id : forall A f (x:zn2z A), (forall u, f u = u) ->
+ zn2z_map f x = x.
+ Proof.
+ destruct x; auto; intros.
+ simpl; f_equal; auto.
+ Qed.
+
+ (** The naive version *)
+
+ Fixpoint plus_t n m : word (dom_t n) m -> dom_t (m+n) :=
+ match m as m' return word (dom_t n) m' -> dom_t (m'+n) with
+ | O => fun x => x
+ | S m => fun x => succ_t _ (zn2z_map (plus_t n m) x)
+ end.
+
+ Theorem spec_plus_t : forall n m (x:word (dom_t n) m),
+ ZnZ.to_Z (plus_t n m x) = eval n m x.
+ Proof.
+ unfold eval.
+ induction m.
+ simpl; auto.
+ intros.
+ simpl plus_t; simpl plus. rewrite spec_succ_t.
+ destruct x.
+ simpl; auto.
+ fold word in w, w0.
+ simpl. rewrite 2 IHm. f_equal. f_equal. f_equal.
+ apply digits_dom_op_nmake.
+ Qed.
+
+ Definition mk_t_w n m (x:word (dom_t n) m) : t :=
+ mk_t (m+n) (plus_t n m x).
+
+ Theorem spec_mk_t_w : forall n m (x:word (dom_t n) m),
+ [mk_t_w n m x] = eval n m x.
+ Proof.
+ intros. unfold mk_t_w. rewrite spec_mk_t. apply spec_plus_t.
+ Qed.
+
+ (** The optimized version.
+
+ NB: the last particular case for m could depend on n,
+ but it's simplier to just expand everywhere up to m=7
+ (cf [mk_t_w'] later).
+ *)
+
+ Definition plus_t' n : forall m, word (dom_t n) m -> dom_t (m+n) :=
+ match n return (forall m, word (dom_t n) m -> dom_t (m+n)) with
+ | SizePlus (S n') as n => plus_t n
+ | _ as n =>
+ fun m => match m return (word (dom_t n) m -> dom_t (m+n)) with
+ | SizePlus (S (S m')) as m => plus_t n m
+ | _ => fun x => x
+ end
+ end.
+
+ Lemma plus_t_equiv : forall n m x,
+ plus_t' n m x = plus_t n m x.
+ Proof.
+ (do_size try destruct n); try reflexivity;
+ (do_size try destruct m); try destruct m; try reflexivity;
+ simpl; symmetry; repeat (intros; apply zn2z_map_id; trivial).
+ Qed.
+
+ Lemma spec_plus_t' : forall n m x,
+ ZnZ.to_Z (plus_t' n m x) = eval n m x.
+ Proof.
+ intros; rewrite plus_t_equiv. apply spec_plus_t.
+ Qed.
+
+ (** Particular cases [Nk x] = eval i j x with specific k,i,j
+ can be solved by the following tactic *)
+
+ Ltac solve_eval :=
+ intros; rewrite <- spec_plus_t'; unfold to_Z; simpl dom_op; reflexivity.
+
+ (** The last particular case that remains useful *)
+
+ Lemma spec_eval_size : forall n x, [Nn n x] = eval Size (S n) x.
+ Proof.
+ induction n.
+ solve_eval.
+ destruct x as [ | xh xl ].
+ simpl. unfold eval. rewrite make_op_S. rewrite nmake_op_S. auto.
+ simpl word in xh, xl |- *.
+ unfold to_Z in *. rewrite make_op_WW.
+ unfold eval in *. rewrite nmake_WW.
+ f_equal; auto.
+ f_equal; auto.
+ f_equal.
+ rewrite <- digits_dom_op_nmake. rewrite plus_comm; auto.
+ Qed.
+
+ (** An optimized [mk_t_w].
+
+ We could say mk_t_w' := mk_t _ (plus_t' n m x)
+ (TODO: WHY NOT, BTW ??).
+ Instead we directly define functions for all intersting [n],
+ reverting to naive [mk_t_w] at places that should normally
+ never be used (see [mul] and [div_gt]).
+ *)
+";
+
+for i = 0 to size-1 do
+let pattern = (iter_str (size+1-i) "(S ") ^ "_" ^ (iter_str (size+1-i) ")") in
+pr
+" Let mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in
+ match m return word w%i (S m) -> t with
+ | %s as p => mk_t_w %i (S p)
+ | p => mk_t (%i+p)
+ end.
+" i i pattern i (i+1)
+done;
+
+pr
+" Let mk_t_w' n : forall m, word (dom_t n) (S m) -> t :=
+ match n return (forall m, word (dom_t n) (S m) -> t) with";
+for i = 0 to size-1 do pr " | %i => mk_t_%iw" i i done;
+pr
+" | Size => Nn
+ | _ as n' => fun m => mk_t_w n' (S m)
+ end.
+";
+
+pr
+" Ltac solve_spec_mk_t_w' :=
+ rewrite <- spec_plus_t';
+ match goal with _ : word (dom_t ?n) ?m |- _ => apply (spec_mk_t (n+m)) end.
+
+ Theorem spec_mk_t_w' :
+ forall n m x, [mk_t_w' n m x] = eval n (S m) x.
+ Proof.
+ intros.
+ repeat (apply spec_mk_t_w || (destruct n;
+ [repeat (apply spec_mk_t_w || (destruct m; [solve_spec_mk_t_w'|]))|])).
+ apply spec_eval_size.
+ Qed.
+
+ (** * Extend : injecting [dom_t n] into [word (dom_t n) (S m)] *)
+
+ Definition extend n m (x:dom_t n) : word (dom_t n) (S m) :=
+ DoubleBase.extend_aux m (WW (zeron n) x).
+
+ Lemma spec_extend : forall n m x,
+ [mk_t n x] = eval n (S m) (extend n m x).
+ Proof.
+ intros. unfold eval, extend.
+ rewrite spec_mk_t.
+ assert (H : forall (x:dom_t n),
+ (ZnZ.to_Z (zeron n) * base (ZnZ.digits (dom_op n)) + ZnZ.to_Z x =
+ ZnZ.to_Z x)%%Z).
+ clear; intros; rewrite spec_zeron; auto.
+ rewrite <- (@DoubleBase.spec_extend _
+ (WW (zeron n)) (ZnZ.digits (dom_op n)) ZnZ.to_Z H m x).
+ simpl. rewrite digits_nmake, <- nmake_double. auto.
+ Qed.
+
+ (** A particular case of extend, used in [same_level]:
+ [extend_size] is [extend Size] *)
+
+ Definition extend_size := DoubleBase.extend (WW (W0:dom_t Size)).
+
+ Lemma spec_extend_size : forall n x, [mk_t Size x] = [Nn n (extend_size n x)].
+ Proof.
+ intros. rewrite spec_eval_size. apply (spec_extend Size n).
+ Qed.
+
+ (** Misc results about extensions *)
+
+ Let spec_extend_WW : forall n x,
+ [Nn (S n) (WW W0 x)] = [Nn n x].
+ Proof.
+ intros n x.
+ set (N:=SizePlus (S n)).
+ change ([Nn (S n) (extend N 0 x)]=[mk_t N x]).
+ rewrite (spec_extend N 0).
+ solve_eval.
+ Qed.
+
+ Let spec_extend_tr: forall m n w,
+ [Nn (m + n) (extend_tr w m)] = [Nn n w].
+ Proof.
+ induction m; auto.
+ intros n x; simpl extend_tr.
+ simpl plus; rewrite spec_extend_WW; auto.
+ Qed.
+
+ Let spec_cast_l: forall n m x1,
+ [Nn n x1] =
+ [Nn (Max.max n m) (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))].
+ Proof.
+ intros n m x1; case (diff_r n m); simpl castm.
+ rewrite spec_extend_tr; auto.
+ Qed.
+
+ Let spec_cast_r: forall n m x1,
+ [Nn m x1] =
+ [Nn (Max.max n m) (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))].
+ Proof.
+ intros n m x1; case (diff_l n m); simpl castm.
+ rewrite spec_extend_tr; auto.
+ Qed.
+
+ Ltac unfold_lets :=
+ match goal with
+ | h : _ |- _ => unfold h; clear h; unfold_lets
+ | _ => idtac
+ end.
+
+ (** * [same_level]
+
+ Generic binary operator construction, by extending the smaller
+ argument to the level of the other.
+ *)
+
+ Section SameLevel.
+
+ Variable res: Type.
+ Variable P : Z -> Z -> res -> Prop.
+ Variable f : forall n, dom_t n -> dom_t n -> res.
+ Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).
+";
+
+for i = 0 to size do
+pr " Let f%i : w%i -> w%i -> res := f %i." i i i i
+done;
+pr
+" Let fn n := f (SizePlus (S n)).
+
+ Let Pf' :
+ forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y).
+ Proof.
+ intros. subst. rewrite 2 spec_mk_t. apply Pf.
+ Qed.
+";
+
+let ext i j s =
+ if j <= i then s else Printf.sprintf "(extend %i %i %s)" i (j-i-1) s
+in
+
+pr " Notation same_level_folded := (fun x y => match x, y with";
+for i = 0 to size do
+ for j = 0 to size do
+ pr " | N%i wx, N%i wy => f%i %s %s" i j (max i j) (ext i j "wx") (ext j i "wy")
+ done;
+ pr " | N%i wx, Nn m wy => fn m (extend_size m %s) wy" i (ext i size "wx")
+done;
+for i = 0 to size do
+ pr " | Nn n wx, N%i wy => fn n wx (extend_size n %s)" i (ext i size "wy")
+done;
+pr
+" | Nn n wx, Nn m wy =>
+ let mn := Max.max n m in
+ let d := diff n m in
+ fn mn
+ (castm (diff_r n m) (extend_tr wx (snd d)))
+ (castm (diff_l n m) (extend_tr wy (fst d)))
+ end).
+";
+
+pr
+" Definition same_level := Eval lazy beta iota delta
+ [ DoubleBase.extend DoubleBase.extend_aux extend zeron ]
+ in same_level_folded.
+
+ Lemma spec_same_level_0: forall x y, P [x] [y] (same_level x y).
+ Proof.
+ change same_level with same_level_folded. unfold_lets.
+ destruct x, y; apply Pf'; simpl mk_t; rewrite <- ?spec_extend_size;
+ match goal with
+ | |- context [ extend ?n ?m _ ] => apply (spec_extend n m)
+ | |- context [ castm _ _ ] => apply spec_cast_l || apply spec_cast_r
+ | _ => reflexivity
+ end.
+ Qed.
+
+ End SameLevel.
+
+ Arguments same_level [res] f x y.
+
+ Theorem spec_same_level_dep :
+ forall res
+ (P : nat -> Z -> Z -> res -> Prop)
+ (Pantimon : forall n m z z' r, n <= m -> P m z z' r -> P n z z' r)
+ (f : forall n, dom_t n -> dom_t n -> res)
+ (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
+ forall x y, P (level x) [x] [y] (same_level f x y).
+ Proof.
+ intros res P Pantimon f Pf.
+ set (f' := fun n x y => (n, f n x y)).
+ set (P' := fun z z' r => P (fst r) z z' (snd r)).
+ assert (FST : forall x y, level x <= fst (same_level f' x y))
+ by (destruct x, y; simpl; omega with * ).
+ assert (SND : forall x y, same_level f x y = snd (same_level f' x y))
+ by (destruct x, y; reflexivity).
+ intros. eapply Pantimon; [eapply FST|].
+ rewrite SND. eapply (@spec_same_level_0 _ P' f'); eauto.
+ Qed.
+
+ (** * [iter]
+
+ Generic binary operator construction, by splitting the larger
+ argument in blocks and applying the smaller argument to them.
+ *)
+
+ Section Iter.
+
+ Variable res: Type.
+ Variable P: Z -> Z -> res -> Prop.
+
+ Variable f : forall n, dom_t n -> dom_t n -> res.
+ Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).
+
+ Variable fd : forall n m, dom_t n -> word (dom_t n) (S m) -> res.
+ Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res.
+ Variable Pfd : forall n m x y, P (ZnZ.to_Z x) (eval n (S m) y) (fd n m x y).
+ Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y).
+
+ Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res.
+ Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y).
+
+ Let Pf' :
+ forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y).
+ Proof.
+ intros. subst. rewrite 2 spec_mk_t. apply Pf.
+ Qed.
+
+ Let Pfd' : forall n m x y u v, u = [mk_t n x] -> v = eval n (S m) y ->
+ P u v (fd n m x y).
+ Proof.
+ intros. subst. rewrite spec_mk_t. apply Pfd.
+ Qed.
+
+ Let Pfg' : forall n m x y u v, u = eval n (S m) x -> v = [mk_t n y] ->
+ P u v (fg n m x y).
+ Proof.
+ intros. subst. rewrite spec_mk_t. apply Pfg.
+ Qed.
+";
+
+for i = 0 to size do
+pr " Let f%i := f %i." i i
+done;
+
+for i = 0 to size do
+pr " Let f%in := fd %i." i i;
+pr " Let fn%i := fg %i." i i;
+done;
+
+pr " Notation iter_folded := (fun x y => match x, y with";
+for i = 0 to size do
+ for j = 0 to size do
+ pr " | N%i wx, N%i wy => f%s wx wy" i j
+ (if i = j then string_of_int i
+ else if i < j then string_of_int i ^ "n " ^ string_of_int (j-i-1)
+ else "n" ^ string_of_int j ^ " " ^ string_of_int (i-j-1))
+ done;
+ pr " | N%i wx, Nn m wy => f%in m %s wy" i size (ext i size "wx")
+done;
+for i = 0 to size do
+ pr " | Nn n wx, N%i wy => fn%i n wx %s" i size (ext i size "wy")
+done;
+pr
+" | Nn n wx, Nn m wy => fnm n m wx wy
+ end).
+";
+
+pr
+" Definition iter := Eval lazy beta iota delta
+ [extend DoubleBase.extend DoubleBase.extend_aux zeron]
+ in iter_folded.
+
+ Lemma spec_iter: forall x y, P [x] [y] (iter x y).
+ Proof.
+ change iter with iter_folded; unfold_lets.
+ destruct x; destruct y; apply Pf' || apply Pfd' || apply Pfg' || apply Pfnm;
+ simpl mk_t;
+ match goal with
+ | |- ?x = ?x => reflexivity
+ | |- [Nn _ _] = _ => apply spec_eval_size
+ | |- context [extend ?n ?m _] => apply (spec_extend n m)
+ | _ => idtac
+ end;
+ unfold to_Z; rewrite <- spec_plus_t'; simpl dom_op; reflexivity.
+ Qed.
+
+ End Iter.
+";
+
+pr
+" Definition switch
+ (P:nat->Type)%s
+ (fn:forall n, P n) n :=
+ match n return P n with"
+ (iter_str_gen size (fun i -> Printf.sprintf "(f%i:P %i)" i i));
+for i = 0 to size do pr " | %i => f%i" i i done;
+pr
+" | n => fn n
+ end.
+";
+
+pr
+" Lemma spec_switch : forall P (f:forall n, P n) n,
+ switch P %sf n = f n.
+ Proof.
+ repeat (destruct n; try reflexivity).
+ Qed.
+" (iter_str_gen size (fun i -> Printf.sprintf "(f %i) " i));
+
+pr
+" (** * [iter_sym]
+
+ A variant of [iter] for symmetric functions, or pseudo-symmetric
+ functions (when f y x can be deduced from f x y).
+ *)
+
+ Section IterSym.
+
+ Variable res: Type.
+ Variable P: Z -> Z -> res -> Prop.
+
+ Variable f : forall n, dom_t n -> dom_t n -> res.
+ Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).
+
+ Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res.
+ Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y).
+
+ Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res.
+ Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y).
+
+ Variable opp: res -> res.
+ Variable Popp : forall u v r, P u v r -> P v u (opp r).
+";
+
+for i = 0 to size do
+pr " Let f%i := f %i." i i
+done;
+
+for i = 0 to size do
+pr " Let fn%i := fg %i." i i;
+done;
+
+pr " Let f' := switch _ %s f." (iter_name 0 size "f" "");
+pr " Let fg' := switch _ %s fg." (iter_name 0 size "fn" "");
+
+pr
+" Local Notation iter_sym_folded :=
+ (iter res f' (fun n m x y => opp (fg' n m y x)) fg' fnm).
+
+ Definition iter_sym :=
+ Eval lazy beta zeta iota delta [iter f' fg' switch] in iter_sym_folded.
+
+ Lemma spec_iter_sym: forall x y, P [x] [y] (iter_sym x y).
+ Proof.
+ intros. change iter_sym with iter_sym_folded. apply spec_iter; clear x y.
+ unfold_lets.
+ intros. rewrite spec_switch. auto.
+ intros. apply Popp. unfold_lets. rewrite spec_switch; auto.
+ intros. unfold_lets. rewrite spec_switch; auto.
+ auto.
+ Qed.
+
+ End IterSym.
+
+ (** * Reduction
+
+ [reduce] can be used instead of [mk_t], it will choose the
+ lowest possible level. NB: We only search and remove leftmost
+ W0's via ZnZ.eq0, any non-W0 block ends the process, even
+ if its value is 0.
+ *)
+
+ (** First, a direct version ... *)
+
+ Fixpoint red_t n : dom_t n -> t :=
+ match n return dom_t n -> t with
+ | O => N0
+ | S n => fun x =>
+ let x' := pred_t n x in
+ reduce_n1 _ _ (N0 zero0) ZnZ.eq0 (red_t n) (mk_t_S n) x'
+ end.
+
+ Lemma spec_red_t : forall n x, [red_t n x] = [mk_t n x].
+ Proof.
+ induction n.
+ reflexivity.
+ intros.
+ simpl red_t. unfold reduce_n1.
+ rewrite <- (succ_pred_t n x) at 2.
+ remember (pred_t n x) as x'.
+ rewrite spec_mk_t, spec_succ_t.
+ destruct x' as [ | xh xl]. simpl. apply ZnZ.spec_0.
+ generalize (ZnZ.spec_eq0 xh); case ZnZ.eq0; intros H.
+ rewrite IHn, spec_mk_t. simpl. rewrite H; auto.
+ apply spec_mk_t_S.
+ Qed.
+
+ (** ... then a specialized one *)
+";
+
+for i = 0 to size do
+pr " Definition eq0%i := @ZnZ.eq0 _ w%i_op." i i;
+done;
+
+pr "
+ Definition reduce_0 := N0.";
+for i = 1 to size do
+ pr " Definition reduce_%i :=" i;
+ pr " Eval lazy beta iota delta [reduce_n1] in";
+ pr " reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i N%i." (i-1) (i-1) i
+done;
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Reduction *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- pr " Definition reduce_0 (x:w) := %s0 x." c;
- pr " Definition reduce_1 :=";
- pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w0_eq0 %s0 %s1." c c;
- for i = 2 to size do
- pr " Definition reduce_%i :=" i;
- pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i %s%i."
- (i-1) (i-1) c i
- done;
pr " Definition reduce_%i :=" (size+1);
- pr " Eval lazy beta iota delta[reduce_n1] in";
- pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i (%sn 0)."
- size size c;
+ pr " Eval lazy beta iota delta [reduce_n1] in";
+ pr " reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i (Nn 0)." size size;
pr " Definition reduce_n n :=";
- pr " Eval lazy beta iota delta[reduce_n] in";
- pr " reduce_n _ _ zero reduce_%i %sn n." (size + 1) c;
- pr "";
-
- pp " Let spec_reduce_0: forall x, [reduce_0 x] = [%s0 x]." c;
- pp " Proof.";
- pp " intros x; unfold to_Z, reduce_0.";
- pp " auto.";
- pp " Qed.";
- pp "";
-
- for i = 1 to size + 1 do
- if i == size + 1 then
- pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%sn 0 x]." i i c
- else
- pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i;
- pp " Proof.";
- pp " intros x; case x; unfold reduce_%i." i;
- pp " exact (spec_0 w0_spec).";
- pp " intros x1 y1.";
- pp " generalize (spec_w%i_eq0 x1);" (i - 1);
- pp " case w%i_eq0; intros H1; auto." (i - 1);
- if i <> 1 then
- pp " rewrite spec_reduce_%i." (i - 1);
- pp " unfold to_Z; rewrite znz_to_Z_%i." i;
- pp " unfold to_Z in H1; rewrite H1; auto.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_reduce_n: forall n x, [reduce_n n x] = [%sn n x]." c;
- pp " Proof.";
- pp " intros n; elim n; simpl reduce_n.";
- pp " intros x; rewrite <- spec_reduce_%i; auto." (size + 1);
- pp " intros n1 Hrec x; case x.";
- pp " unfold to_Z; rewrite make_op_S; auto.";
- pp " exact (spec_0 w0_spec).";
- pp " intros x1 y1; case x1; auto.";
- pp " rewrite Hrec.";
- pp " rewrite spec_extendn0_0; auto.";
- pp " Qed.";
- pp "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Successor *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_succ_c := w%i_op.(znz_succ_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_succ := w%i_op.(znz_succ)." i i
- done;
- pr "";
-
- pr " Definition succ x :=";
- pr " match x with";
- for i = 0 to size-1 do
- pr " | %s%i wx =>" c i;
- pr " match w%i_succ_c wx with" i;
- pr " | C0 r => %s%i r" c i;
- pr " | C1 r => %s%i (WW one%i r)" c (i+1) i;
- pr " end";
- done;
- pr " | %s%i wx =>" c size;
- pr " match w%i_succ_c wx with" size;
- pr " | C0 r => %s%i r" c size;
- pr " | C1 r => %sn 0 (WW one%i r)" c size ;
- pr " end";
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " match op.(znz_succ_c) wx with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => %sn (S n) (WW op.(znz_1) r)" c;
- pr " end";
- pr " end.";
- pr "";
-
- pr " Theorem spec_succ: forall n, [succ n] = [n] + 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros n; case n; unfold succ, to_Z.";
- for i = 0 to size do
- pp " intros n1; generalize (spec_succ_c w%i_spec n1);" i;
- pp " unfold succ, to_Z, w%i_succ_c; case znz_succ_c; auto." i;
- pp " intros ww H; rewrite <- H.";
- pp " (rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 w%i_spec))." i;
- done;
- pp " intros k n1; generalize (spec_succ_c (wn_spec k) n1).";
- pp " unfold succ, to_Z; case znz_succ_c; auto.";
- pp " intros ww H; rewrite <- H.";
- pp " (rewrite (znz_to_Z_n k); unfold interp_carry;";
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 (wn_spec k))).";
- pp " Qed.";
- pr "";
-
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Adddition *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_add_c := znz_add_c w%i_op." i i;
- pr " Definition w%i_add x y :=" i;
- pr " match w%i_add_c x y with" i;
- pr " | C0 r => %s%i r" c i;
- if i == size then
- pr " | C1 r => %sn 0 (WW one%i r)" c size
- else
- pr " | C1 r => %s%i (WW one%i r)" c (i + 1) i;
- pr " end.";
- pr "";
- done ;
- pr " Definition addn n (x y : word w%i (S n)) :=" size;
- pr " let op := make_op n in";
- pr " match op.(znz_add_c) x y with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => %sn (S n) (WW op.(znz_1) r) end." c;
- pr "";
-
-
- for i = 0 to size do
- pp " Let spec_w%i_add: forall x y, [w%i_add x y] = [%s%i x] + [%s%i y]." i i c i c i;
- pp " Proof.";
- pp " intros n m; unfold to_Z, w%i_add, w%i_add_c." i i;
- pp " generalize (spec_add_c w%i_spec n m); case znz_add_c; auto." i;
- pp " intros ww H; rewrite <- H.";
- pp " rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 w%i_spec)." i;
- pp " Qed.";
- pp "";
- done;
- pp " Let spec_wn_add: forall n x y, [addn n x y] = [%sn n x] + [%sn n y]." c c;
- pp " Proof.";
- pp " intros k n m; unfold to_Z, addn.";
- pp " generalize (spec_add_c (wn_spec k) n m); case znz_add_c; auto.";
- pp " intros ww H; rewrite <- H.";
- pp " rewrite (znz_to_Z_n k); unfold interp_carry;";
- pp " apply f_equal2 with (f := Zplus); auto;";
- pp " apply f_equal2 with (f := Zmult); auto;";
- pp " exact (spec_1 (wn_spec k)).";
- pp " Qed.";
-
- pr " Definition add := Eval lazy beta delta [same_level] in";
- pr0 " (same_level t_ ";
- for i = 0 to size do
- pr0 "w%i_add " i;
- done;
- pr "addn).";
- pr "";
-
- pr " Theorem spec_add: forall x y, [add x y] = [x] + [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold add.";
- pp " generalize (spec_same_level t_ (fun x y res => [res] = x + y)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_add." i;
- done;
- pp " exact spec_wn_add.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Predecessor *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_pred_c := w%i_op.(znz_pred_c)." i i
- done;
- pr "";
-
- pr " Definition pred x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx =>" c i;
- pr " match w%i_pred_c wx with" i;
- pr " | C0 r => reduce_%i r" i;
- pr " | C1 r => zero";
- pr " end";
- done;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " match op.(znz_pred_c) wx with";
- pr " | C0 r => reduce_n n r";
- pr " | C1 r => zero";
- pr " end";
- pr " end.";
- pr "";
-
- pr " Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold pred.";
- for i = 0 to size do
- pp " intros x1 H1; unfold w%i_pred_c;" i;
- pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
- pp " rewrite spec_reduce_%i; auto." i;
- pp " unfold interp_carry; unfold to_Z.";
- pp " case (spec_to_Z w%i_spec x1); intros HH1 HH2." i;
- pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4 HH5." i;
- pp " assert (znz_to_Z w%i_op x1 - 1 < 0); auto with zarith." i;
- pp " unfold to_Z in H1; auto with zarith.";
- done;
- pp " intros n x1 H1;";
- pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
- pp " rewrite spec_reduce_n; auto.";
- pp " unfold interp_carry; unfold to_Z.";
- pp " case (spec_to_Z (wn_spec n) x1); intros HH1 HH2.";
- pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4 HH5.";
- pp " assert (znz_to_Z (make_op n) x1 - 1 < 0); auto with zarith.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " Qed.";
- pp "";
-
- pp " Let spec_pred0: forall x, [x] = 0 -> [pred x] = 0.";
- pp " Proof.";
- pp " intros x; case x; unfold pred.";
- for i = 0 to size do
- pp " intros x1 H1; unfold w%i_pred_c;" i;
- pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
- pp " unfold interp_carry; unfold to_Z.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4; auto with zarith." i;
- pp " intros; exact (spec_0 w0_spec).";
- done;
- pp " intros n x1 H1;";
- pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
- pp " unfold interp_carry; unfold to_Z.";
- pp " unfold to_Z in H1; auto with zarith.";
- pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4; auto with zarith.";
- pp " intros; exact (spec_0 w0_spec).";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Subtraction *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sub_c := w%i_op.(znz_sub_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sub x y :=" i;
- pr " match w%i_sub_c x y with" i;
- pr " | C0 r => reduce_%i r" i;
- pr " | C1 r => zero";
- pr " end."
- done;
- pr "";
-
- pr " Definition subn n (x y : word w%i (S n)) :=" size;
- pr " let op := make_op n in";
- pr " match op.(znz_sub_c) x y with";
- pr " | C0 r => %sn n r" c;
- pr " | C1 r => N0 w_0";
- pr " end.";
- pr "";
-
- for i = 0 to size do
- pp " Let spec_w%i_sub: forall x y, [%s%i y] <= [%s%i x] -> [w%i_sub x y] = [%s%i x] - [%s%i y]." i c i c i i c i c i;
- pp " Proof.";
- pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
- pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c;" i;
- if i == 0 then
- pp " intros x; auto."
- else
- pp " intros x; try rewrite spec_reduce_%i; auto." i;
- pp " unfold interp_carry; unfold zero, w_0, to_Z.";
- pp " rewrite (spec_0 w0_spec).";
- pp " case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_wn_sub: forall n x y, [%sn n y] <= [%sn n x] -> [subn n x y] = [%sn n x] - [%sn n y]." c c c c;
- pp " Proof.";
- pp " intros k n m; unfold subn.";
- pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c;";
- pp " intros x; auto.";
- pp " unfold interp_carry, to_Z.";
- pp " case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
- pp " Qed.";
- pp "";
-
- pr " Definition sub := Eval lazy beta delta [same_level] in";
- pr0 " (same_level t_ ";
- for i = 0 to size do
- pr0 "w%i_sub " i;
- done;
- pr "subn).";
- pr "";
-
- pr " Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold sub.";
- pp " generalize (spec_same_level t_ (fun x y res => y <= x -> [res] = x - y)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_sub." i;
- done;
- pp " exact spec_wn_sub.";
- pp " Qed.";
- pr "";
-
- for i = 0 to size do
- pp " Let spec_w%i_sub0: forall x y, [%s%i x] < [%s%i y] -> [w%i_sub x y] = 0." i c i c i i;
- pp " Proof.";
- pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
- pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c;" i;
- pp " intros x; unfold interp_carry.";
- pp " unfold to_Z; case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
- pp " intros; unfold to_Z, zero, w_0; rewrite (spec_0 w0_spec); auto.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_wn_sub0: forall n x y, [%sn n x] < [%sn n y] -> [subn n x y] = 0." c c;
- pp " Proof.";
- pp " intros k n m; unfold subn.";
- pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c;";
- pp " intros x; unfold interp_carry.";
- pp " unfold to_Z; case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
- pp " intros; unfold to_Z, w_0; rewrite (spec_0 (w0_spec)); auto.";
- pp " Qed.";
- pp "";
-
- pr " Theorem spec_sub0: forall x y, [x] < [y] -> [sub x y] = 0.";
- pa " Admitted.";
- pp " Proof.";
- pp " unfold sub.";
- pp " generalize (spec_same_level t_ (fun x y res => x < y -> [res] = 0)).";
- pp " unfold same_level; intros HH; apply HH; clear HH.";
- for i = 0 to size do
- pp " exact spec_w%i_sub0." i;
- done;
- pp " exact spec_wn_sub0.";
- pp " Qed.";
- pr "";
-
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Comparison *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition compare_%i := w%i_op.(znz_compare)." i i;
- pr " Definition comparen_%i :=" i;
- pr " compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i
- done;
- pr "";
-
- pr " Definition comparenm n m wx wy :=";
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " let op := make_op mn in";
- pr " op.(znz_compare)";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d))).";
- pr "";
-
- pr " Definition compare := Eval lazy beta delta [iter] in";
- pr " (iter _";
- for i = 0 to size do
- pr " compare_%i" i;
- pr " (fun n x y => CompOpp (comparen_%i (S n) y x))" i;
- pr " (fun n => comparen_%i (S n))" i;
- done;
- pr " comparenm).";
- pr "";
-
- for i = 0 to size do
- pp " Let spec_compare_%i: forall x y," i;
- pp " match compare_%i x y with" i;
- pp " Eq => [%s%i x] = [%s%i y]" c i c i;
- pp " | Lt => [%s%i x] < [%s%i y]" c i c i;
- pp " | Gt => [%s%i x] > [%s%i y]" c i c i;
- pp " end.";
- pp " Proof.";
- pp " unfold compare_%i, to_Z; exact (spec_compare w%i_spec)." i i;
- pp " Qed.";
- pp "";
-
- pp " Let spec_comparen_%i:" i;
- pp " forall (n : nat) (x : word w%i n) (y : w%i)," i i;
- pp " match comparen_%i n x y with" i;
- pp " | Eq => eval%in n x = [%s%i y]" i c i;
- pp " | Lt => eval%in n x < [%s%i y]" i c i;
- pp " | Gt => eval%in n x > [%s%i y]" i c i;
- pp " end.";
- pp " intros n x y.";
- pp " unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i;
- pp " apply spec_compare_mn_1.";
- pp " exact (spec_0 w%i_spec)." i;
- pp " intros x1; exact (spec_compare w%i_spec %s x1)." i (pz i);
- pp " exact (spec_to_Z w%i_spec)." i;
- pp " exact (spec_compare w%i_spec)." i;
- pp " exact (spec_compare w%i_spec)." i;
- pp " exact (spec_to_Z w%i_spec)." i;
- pp " Qed.";
- pp "";
- done;
-
- pp " Let spec_opp_compare: forall c (u v: Z),";
- pp " match c with Eq => u = v | Lt => u < v | Gt => u > v end ->";
- pp " match CompOpp c with Eq => v = u | Lt => v < u | Gt => v > u end.";
- pp " Proof.";
- pp " intros c u v; case c; unfold CompOpp; auto with zarith.";
- pp " Qed.";
- pp "";
-
-
- pr " Theorem spec_compare_aux: forall x y,";
- pr " match compare x y with";
- pr " Eq => [x] = [y]";
- pr " | Lt => [x] < [y]";
- pr " | Gt => [x] > [y]";
- pr " end.";
- pa " Admitted.";
- pp " Proof.";
- pp " refine (spec_iter _ (fun x y res =>";
- pp " match res with";
- pp " Eq => x = y";
- pp " | Lt => x < y";
- pp " | Gt => x > y";
- pp " end)";
- for i = 0 to size do
- pp " compare_%i" i;
- pp " (fun n x y => CompOpp (comparen_%i (S n) y x))" i;
- pp " (fun n => comparen_%i (S n)) _ _ _" i;
- done;
- pp " comparenm _).";
-
- for i = 0 to size - 1 do
- pp " exact spec_compare_%i." i;
- pp " intros n x y H;apply spec_opp_compare; apply spec_comparen_%i." i;
- pp " intros n x y H; exact (spec_comparen_%i (S n) x y)." i;
- done;
- pp " exact spec_compare_%i." size;
- pp " intros n x y;apply spec_opp_compare; apply spec_comparen_%i." size;
- pp " intros n; exact (spec_comparen_%i (S n))." size;
- pp " intros n m x y; unfold comparenm.";
- pp " rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y).";
- pp " unfold to_Z; apply (spec_compare (wn_spec (Max.max n m))).";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Multiplication *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_mul_c := w%i_op.(znz_mul_c)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_mul_add :=" i;
- pr " Eval lazy beta delta [w_mul_add] in";
- pr " @w_mul_add w%i %s w%i_succ w%i_add_c w%i_mul_c." i (pz i) i i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_0W := znz_0W w%i_op." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_WW := znz_WW w%i_op." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_mul_add_n1 :=" i;
- pr " @double_mul_add_n1 w%i %s w%i_WW w%i_0W w%i_mul_add." i (pz i) i i i
- done;
- pr "";
-
- for i = 0 to size - 1 do
- pr " Let to_Z%i n :=" i;
- pr " match n return word w%i (S n) -> t_ with" i;
- for j = 0 to size - i do
- if (i + j) == size then
- begin
- pr " | %i%s => fun x => %sn 0 x" j "%nat" c;
- pr " | %i%s => fun x => %sn 1 x" (j + 1) "%nat" c
- end
- else
- pr " | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1)
- done;
- pr " | _ => fun _ => N0 w_0";
- pr " end.";
- pr "";
- done;
-
-
- for i = 0 to size - 1 do
- pp "Theorem to_Z%i_spec:" i;
- pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = znz_to_Z (nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
- for j = 1 to size + 2 - i do
- pp " intros n; case n; clear n.";
- pp " unfold to_Z%i." i;
- pp " intros x H; rewrite spec_eval%in%i; auto." i j;
- done;
- pp " intros n x.";
- pp " repeat rewrite inj_S; unfold Zsucc; auto with zarith.";
- pp " Qed.";
- pp "";
- done;
-
-
- for i = 0 to size do
- pr " Definition w%i_mul n x y :=" i;
- pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i);
- if i == size then
- begin
- pr " if w%i_eq0 w then %sn n r" i c;
- pr " else %sn (S n) (WW (extend%i n w) r)." c i;
- end
- else
- begin
- pr " if w%i_eq0 w then to_Z%i n r" i i;
- pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i;
- end;
- pr "";
- done;
-
- pr " Definition mulnm n m x y :=";
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " let op := make_op mn in";
- pr " reduce_n (S mn) (op.(znz_mul_c)";
- pr " (castm (diff_r n m) (extend_tr x (snd d)))";
- pr " (castm (diff_l n m) (extend_tr y (fst d)))).";
- pr "";
-
- pr " Definition mul := Eval lazy beta delta [iter0] in";
- pr " (iter0 t_";
- for i = 0 to size do
- pr " (fun x y => reduce_%i (w%i_mul_c x y))" (i + 1) i;
- pr " (fun n x y => w%i_mul n y x)" i;
- pr " w%i_mul" i;
- done;
- pr " mulnm";
- pr " (fun _ => N0 w_0)";
- pr " (fun _ => N0 w_0)";
- pr " ).";
- pr "";
- for i = 0 to size do
- pp " Let spec_w%i_mul_add: forall x y z," i;
- pp " let (q,r) := w%i_mul_add x y z in" i;
- pp " znz_to_Z w%i_op q * (base (znz_digits w%i_op)) + znz_to_Z w%i_op r =" i i i;
- pp " znz_to_Z w%i_op x * znz_to_Z w%i_op y + znz_to_Z w%i_op z :=" i i i ;
- pp " (spec_mul_add w%i_spec)." i;
- pp "";
- done;
-
- for i = 0 to size do
- pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i;
- pp " let (q,r) := w%i_mul_add_n1 n x y z in" i;
- pp " znz_to_Z w%i_op q * (base (znz_digits (nmake_op _ w%i_op n))) +" i i;
- pp " znz_to_Z (nmake_op _ w%i_op n) r =" i;
- pp " znz_to_Z (nmake_op _ w%i_op n) x * znz_to_Z w%i_op y +" i i;
- pp " znz_to_Z w%i_op z." i;
- pp " Proof.";
- pp " intros n x y z; unfold w%i_mul_add_n1." i;
- pp " rewrite nmake_double.";
- pp " rewrite digits_doubled.";
- pp " change (base (DoubleBase.double_digits (znz_digits w%i_op) n)) with" i;
- pp " (DoubleBase.double_wB (znz_digits w%i_op) n)." i;
- pp " apply spec_double_mul_add_n1; auto.";
- if i == 0 then pp " exact (spec_0 w%i_spec)." i;
- pp " exact (spec_WW w%i_spec)." i;
- pp " exact (spec_0W w%i_spec)." i;
- pp " exact (spec_mul_add w%i_spec)." i;
- pp " Qed.";
- pp "";
- done;
-
- pp " Lemma nmake_op_WW: forall ww ww1 n x y,";
- pp " znz_to_Z (nmake_op ww ww1 (S n)) (WW x y) =";
- pp " znz_to_Z (nmake_op ww ww1 n) x * base (znz_digits (nmake_op ww ww1 n)) +";
- pp " znz_to_Z (nmake_op ww ww1 n) y.";
- pp " auto.";
- pp " Qed.";
- pp "";
-
- for i = 0 to size do
- pp " Lemma extend%in_spec: forall n x1," i;
- pp " znz_to_Z (nmake_op _ w%i_op (S n)) (extend%i n x1) =" i i;
- pp " znz_to_Z w%i_op x1." i;
- pp " Proof.";
- pp " intros n1 x2; rewrite nmake_double.";
- pp " unfold extend%i." i;
- pp " rewrite DoubleBase.spec_extend; auto.";
- if i == 0 then
- pp " intros l; simpl; unfold w_0; rewrite (spec_0 w0_spec); ring.";
- pp " Qed.";
- pp "";
- done;
-
- pp " Lemma spec_muln:";
- pp " forall n (x: word _ (S n)) y,";
- pp " [%sn (S n) (znz_mul_c (make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
- pp " Proof.";
- pp " intros n x y; unfold to_Z.";
- pp " rewrite <- (spec_mul_c (wn_spec n)).";
- pp " rewrite make_op_S.";
- pp " case znz_mul_c; auto.";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_mul: forall x y, [mul x y] = [x] * [y].";
- pa " Admitted.";
- pp " Proof.";
- for i = 0 to size do
- pp " assert(F%i:" i;
- pp " forall n x y,";
- if i <> size then
- pp0 " Z_of_nat n <= %i -> " (size - i);
- pp " [w%i_mul n x y] = eval%in (S n) x * [%s%i y])." i i c i;
- if i == size then
- pp " intros n x y; unfold w%i_mul." i
- else
- pp " intros n x y H; unfold w%i_mul." i;
- pp " generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i);
- pp " case w%i_mul_add_n1; intros x1 y1." i;
- pp " change (znz_to_Z (nmake_op _ w%i_op (S n)) x) with (eval%in (S n) x)." i i;
- pp " change (znz_to_Z w%i_op y) with ([%s%i y])." i c i;
- if i == 0 then
- pp " unfold w_0; rewrite (spec_0 w0_spec); rewrite Zplus_0_r."
- else
- pp " change (znz_to_Z w%i_op W0) with 0; rewrite Zplus_0_r." i;
- pp " intros H1; rewrite <- H1; clear H1.";
- pp " generalize (spec_w%i_eq0 x1); case w%i_eq0; intros HH." i i;
- pp " unfold to_Z in HH; rewrite HH.";
- if i == size then
- begin
- pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i;
- pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i." i i i
- end
- else
- begin
- pp " rewrite to_Z%i_spec; auto with zarith." i;
- pp " rewrite to_Z%i_spec; try (rewrite inj_S; auto with zarith)." i
- end;
- pp " rewrite nmake_op_WW; rewrite extend%in_spec; auto." i;
- done;
- pp " refine (spec_iter0 t_ (fun x y res => [res] = x * y)";
- for i = 0 to size do
- pp " (fun x y => reduce_%i (w%i_mul_c x y))" (i + 1) i;
- pp " (fun n x y => w%i_mul n y x)" i;
- pp " w%i_mul _ _ _" i;
- done;
- pp " mulnm _";
- pp " (fun _ => N0 w_0) _";
- pp " (fun _ => N0 w_0) _";
- pp " ).";
- for i = 0 to size do
- pp " intros x y; rewrite spec_reduce_%i." (i + 1);
- pp " unfold w%i_mul_c, to_Z." i;
- pp " generalize (spec_mul_c w%i_spec x y)." i;
- pp " intros HH; rewrite <- HH; clear HH; auto.";
- if i == size then
- begin
- pp " intros n x y; rewrite F%i; auto with zarith." i;
- pp " intros n x y; rewrite F%i; auto with zarith." i;
- end
- else
- begin
- pp " intros n x y H; rewrite F%i; auto with zarith." i;
- pp " intros n x y H; rewrite F%i; auto with zarith." i;
- end;
- done;
- pp " intros n m x y; unfold mulnm.";
- pp " rewrite spec_reduce_n.";
- pp " rewrite <- (spec_cast_l n m x).";
- pp " rewrite <- (spec_cast_r n m y).";
- pp " rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto.";
- pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
- pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Square *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_square_c := w%i_op.(znz_square_c)." i i
- done;
- pr "";
-
- pr " Definition square x :=";
- pr " match x with";
- pr " | %s0 wx => reduce_1 (w0_square_c wx)" c;
- for i = 1 to size - 1 do
- pr " | %s%i wx => %s%i (w%i_square_c wx)" c i c (i+1) i
- done;
- pr " | %s%i wx => %sn 0 (w%i_square_c wx)" c size c size;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " %sn (S n) (op.(znz_square_c) wx)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_square: forall x, [square x] = [x] * [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold square; clear x.";
- pp " intros x; rewrite spec_reduce_1; unfold to_Z.";
- pp " exact (spec_square_c w%i_spec x)." 0;
- for i = 1 to size do
- pp " intros x; unfold to_Z.";
- pp " exact (spec_square_c w%i_spec x)." i;
- done;
- pp " intros n x; unfold to_Z.";
- pp " rewrite make_op_S.";
- pp " exact (spec_square_c (wn_spec n) x).";
- pp "Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Square root *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_sqrt := w%i_op.(znz_sqrt)." i i
- done;
- pr "";
-
- pr " Definition sqrt x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx => reduce_%i (w%i_sqrt wx)" c i i i;
- done;
- pr " | %sn n wx =>" c;
- pr " let op := make_op n in";
- pr " reduce_n n (op.(znz_sqrt) wx)";
- pr " end.";
- pr "";
-
- pr " Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; unfold sqrt; case x; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_sqrt w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_sqrt (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Division *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_div_gt := w%i_op.(znz_div_gt)." i i
- done;
- pr "";
-
- pp " Let spec_divn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) :=";
- pp " (spec_double_divn1";
- pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
- pp " (znz_WW ww_op) ww_op.(znz_head0)";
- pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
- pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
- pp " (spec_to_Z ww_spec)";
- pp " (spec_zdigits ww_spec)";
- pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
- pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec)";
- pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
- pp "";
-
- for i = 0 to size do
- pr " Definition w%i_divn1 n x y :=" i;
- pr " let (u, v) :=";
- pr " double_divn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
- pr " (znz_WW w%i_op) w%i_op.(znz_head0)" i i;
- pr " w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i;
- pr " w%i_op.(znz_compare) w%i_op.(znz_sub) (S n) x y in" i i;
- if i == size then
- pr " (%sn _ u, %s%i v)." c c i
- else
- pr " (to_Z%i _ u, %s%i v)." i c i;
- done;
- pr "";
-
- for i = 0 to size do
- pp " Lemma spec_get_end%i: forall n x y," i;
- pp " eval%in n x <= [%s%i y] ->" i c i;
- pp " [%s%i (DoubleBase.get_low %s n x)] = eval%in n x." c i (pz i) i;
- pp " Proof.";
- pp " intros n x y H.";
- pp " rewrite spec_double_eval%in; unfold to_Z." i;
- pp " apply DoubleBase.spec_get_low.";
- pp " exact (spec_0 w%i_spec)." i;
- pp " exact (spec_to_Z w%i_spec)." i;
- pp " apply Zle_lt_trans with [%s%i y]; auto." c i;
- pp " rewrite <- spec_double_eval%in; auto." i;
- pp " unfold to_Z; case (spec_to_Z w%i_spec y); auto." i;
- pp " Qed.";
- pp "";
- done;
-
- for i = 0 to size do
- pr " Let div_gt%i x y := let (u,v) := (w%i_div_gt x y) in (reduce_%i u, reduce_%i v)." i i i i;
- done;
- pr "";
-
-
- pr " Let div_gtnm n m wx wy :=";
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " let op := make_op mn in";
- pr " let (q, r):= op.(znz_div_gt)";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d))) in";
- pr " (reduce_n mn q, reduce_n mn r).";
- pr "";
-
- pr " Definition div_gt := Eval lazy beta delta [iter] in";
- pr " (iter _";
- for i = 0 to size do
- pr " div_gt%i" i;
- pr " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
- pr " w%i_divn1" i;
- done;
- pr " div_gtnm).";
- pr "";
-
- pr " Theorem spec_div_gt: forall x y,";
- pr " [x] > [y] -> 0 < [y] ->";
- pr " let (q,r) := div_gt x y in";
- pr " [q] = [x] / [y] /\\ [r] = [x] mod [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (FO:";
- pp " forall x y, [x] > [y] -> 0 < [y] ->";
- pp " let (q,r) := div_gt x y in";
- pp " [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y]).";
- pp " refine (spec_iter (t_*t_) (fun x y res => x > y -> 0 < y ->";
- pp " let (q,r) := res in";
- pp " x = [q] * y + [r] /\\ 0 <= [r] < y)";
- for i = 0 to size do
- pp " div_gt%i" i;
- pp " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
- pp " w%i_divn1 _ _ _" i;
- done;
- pp " div_gtnm _).";
- for i = 0 to size do
- pp " intros x y H1 H2; unfold div_gt%i, w%i_div_gt." i i;
- pp " generalize (spec_div_gt w%i_spec x y H1 H2); case znz_div_gt." i;
- pp " intros xx yy; repeat rewrite spec_reduce_%i; auto." i;
- if i == size then
- pp " intros n x y H2 H3; unfold div_gt%i, w%i_div_gt." i i
- else
- pp " intros n x y H1 H2 H3; unfold div_gt%i, w%i_div_gt." i i;
- pp " generalize (spec_div_gt w%i_spec x" i;
- pp " (DoubleBase.get_low %s (S n) y))." (pz i);
- pp0 "";
- for j = 0 to i do
- pp0 "unfold w%i; " (i-j);
- done;
- pp "case znz_div_gt.";
- pp " intros xx yy H4; repeat rewrite spec_reduce_%i." i;
- pp " generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i;
- pp " unfold to_Z in H2; rewrite H5 in H4; auto with zarith.";
- if i == size then
- pp " intros n x y H2 H3."
- else
- pp " intros n x y H1 H2 H3.";
- pp " generalize";
- pp " (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i;
- pp0 " unfold w%i_divn1; " i;
- for j = 0 to i do
- pp0 "unfold w%i; " (i-j);
- done;
- pp "case double_divn1.";
- pp " intros xx yy H4.";
- if i == size then
- begin
- pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
- pp " rewrite spec_eval%in; auto." i;
- end
- else
- begin
- pp " rewrite to_Z%i_spec; auto with zarith." i;
- pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
- end;
- done;
- pp " intros n m x y H1 H2; unfold div_gtnm.";
- pp " generalize (spec_div_gt (wn_spec (Max.max n m))";
- pp " (castm (diff_r n m)";
- pp " (extend_tr x (snd (diff n m))))";
- pp " (castm (diff_l n m)";
- pp " (extend_tr y (fst (diff n m))))).";
- pp " case znz_div_gt.";
- pp " intros xx yy HH.";
- pp " repeat rewrite spec_reduce_n.";
- pp " rewrite <- (spec_cast_l n m x).";
- pp " rewrite <- (spec_cast_r n m y).";
- pp " unfold to_Z; apply HH.";
- pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
- pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
- pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
- pp " intros x y H1 H2; generalize (FO x y H1 H2); case div_gt.";
- pp " intros q r (H3, H4); split.";
- pp " apply (Zdiv_unique [x] [y] [q] [r]); auto.";
- pp " rewrite Zmult_comm; auto.";
- pp " apply (Zmod_unique [x] [y] [q] [r]); auto.";
- pp " rewrite Zmult_comm; auto.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Modulo *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_mod_gt := w%i_op.(znz_mod_gt)." i i
- done;
- pr "";
-
- for i = 0 to size do
- pr " Definition w%i_modn1 :=" i;
- pr " double_modn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
- pr " w%i_op.(znz_head0) w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i i;
- pr " w%i_op.(znz_compare) w%i_op.(znz_sub)." i i;
- done;
- pr "";
-
- pr " Let mod_gtnm n m wx wy :=";
- pr " let mn := Max.max n m in";
- pr " let d := diff n m in";
- pr " let op := make_op mn in";
- pr " reduce_n mn (op.(znz_mod_gt)";
- pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
- pr " (castm (diff_l n m) (extend_tr wy (fst d)))).";
- pr "";
-
- pr " Definition mod_gt := Eval lazy beta delta[iter] in";
- pr " (iter _";
- for i = 0 to size do
- pr " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
- pr " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
- pr " (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i;
- done;
- pr " mod_gtnm).";
- pr "";
-
- pp " Let spec_modn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) :=";
- pp " (spec_double_modn1";
- pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
- pp " (znz_WW ww_op) ww_op.(znz_head0)";
- pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
- pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
- pp " (spec_to_Z ww_spec)";
- pp " (spec_zdigits ww_spec)";
- pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
- pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec)";
- pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
- pp "";
-
- pr " Theorem spec_mod_gt:";
- pr " forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].";
- pa " Admitted.";
- pp " Proof.";
- pp " refine (spec_iter _ (fun x y res => x > y -> 0 < y ->";
- pp " [res] = x mod y)";
- for i = 0 to size do
- pp " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
- pp " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
- pp " (fun n x y => reduce_%i (w%i_modn1 (S n) x y)) _ _ _" i i;
- done;
- pp " mod_gtnm _).";
- for i = 0 to size do
- pp " intros x y H1 H2; rewrite spec_reduce_%i." i;
- pp " exact (spec_mod_gt w%i_spec x y H1 H2)." i;
- if i == size then
- pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
- else
- pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
- pp " unfold w%i_mod_gt." i;
- pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i;
- pp " unfold to_Z; apply (spec_mod_gt w%i_spec); auto." i;
- pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i;
- pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i;
- if i == size then
- pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
- else
- pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
- pp " unfold w%i_modn1, to_Z; rewrite spec_double_eval%in." i i;
- pp " apply (spec_modn1 _ _ w%i_spec); auto." i;
- done;
- pp " intros n m x y H1 H2; unfold mod_gtnm.";
- pp " repeat rewrite spec_reduce_n.";
- pp " rewrite <- (spec_cast_l n m x).";
- pp " rewrite <- (spec_cast_r n m y).";
- pp " unfold to_Z; apply (spec_mod_gt (wn_spec (Max.max n m))).";
- pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
- pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
- pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
- pp " Qed.";
- pr "";
-
- pr " (** digits: a measure for gcd *)";
- pr "";
-
- pr " Definition digits x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i _ => w%i_op.(znz_digits)" c i i;
- done;
- pr " | %sn n _ => (make_op n).(znz_digits)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x.";
- for i = 0 to size do
- pp " intros x; unfold to_Z, digits;";
- pp " generalize (spec_to_Z w%i_spec x); unfold base; intros H; exact H." i;
- done;
- pp " intros n x; unfold to_Z, digits;";
- pp " generalize (spec_to_Z (wn_spec n) x); unfold base; intros H; exact H.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Conversion *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- pr " Definition pheight p :=";
- pr " Peano.pred (nat_of_P (get_height w0_op.(znz_digits) (plength p))).";
- pr "";
-
- pr " Theorem pheight_correct: forall p,";
- pr " Zpos p < 2 ^ (Zpos (znz_digits w0_op) * 2 ^ (Z_of_nat (pheight p))).";
- pr " Proof.";
- pr " intros p; unfold pheight.";
- pr " assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).";
- pr " intros x.";
- pr " assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.";
- pr " rewrite <- inj_S.";
- pr " rewrite <- (fun x => S_pred x 0); auto with zarith.";
- pr " rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.";
- pr " apply lt_le_trans with 1%snat; auto with zarith." "%";
- pr " exact (le_Pmult_nat x 1).";
- pr " rewrite F1; clear F1.";
- pr " assert (F2:= (get_height_correct (znz_digits w0_op) (plength p))).";
- pr " apply Zlt_le_trans with (Zpos (Psucc p)).";
- pr " rewrite Zpos_succ_morphism; auto with zarith.";
- pr " apply Zle_trans with (1 := plength_pred_correct (Psucc p)).";
- pr " rewrite Ppred_succ.";
- pr " apply Zpower_le_monotone; auto with zarith.";
- pr " Qed.";
- pr "";
-
- pr " Definition of_pos x :=";
- pr " let h := pheight x in";
- pr " match h with";
- for i = 0 to size do
- pr " | %i%snat => reduce_%i (snd (w%i_op.(znz_of_pos) x))" i "%" i i;
- done;
- pr " | _ =>";
- pr " let n := minus h %i in" (size + 1);
- pr " reduce_n n (snd ((make_op n).(znz_of_pos) x))";
- pr " end.";
- pr "";
-
- pr " Theorem spec_of_pos: forall x,";
- pr " [of_pos x] = Zpos x.";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F := spec_more_than_1_digit w0_spec).";
- pp " intros x; unfold of_pos; case_eq (pheight x).";
- for i = 0 to size do
- if i <> 0 then
- pp " intros n; case n; clear n.";
- pp " intros H1; rewrite spec_reduce_%i; unfold to_Z." i;
- pp " apply (znz_of_pos_correct w%i_spec)." i;
- pp " apply Zlt_le_trans with (1 := pheight_correct x).";
- pp " rewrite H1; simpl Z_of_nat; change (2^%i) with (%s)." i (gen2 i);
- pp " unfold base.";
- pp " apply Zpower_le_monotone; split; auto with zarith.";
- if i <> 0 then
- begin
- pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
- pp " repeat rewrite <- Zpos_xO.";
- pp " refine (Zle_refl _).";
- end;
- done;
- pp " intros n.";
- pp " intros H1; rewrite spec_reduce_n; unfold to_Z.";
- pp " simpl minus; rewrite <- minus_n_O.";
- pp " apply (znz_of_pos_correct (wn_spec n)).";
- pp " apply Zlt_le_trans with (1 := pheight_correct x).";
- pp " unfold base.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " rewrite H1.";
- pp " elim n; clear n H1.";
- pp " simpl Z_of_nat; change (2^%i) with (%s)." (size + 1) (gen2 (size + 1));
- pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
- pp " repeat rewrite <- Zpos_xO.";
- pp " refine (Zle_refl _).";
- pp " intros n Hrec.";
- pp " rewrite make_op_S.";
- pp " change (@znz_digits (word _ (S (S n))) (mk_zn2z_op_karatsuba (make_op n))) with";
- pp " (xO (znz_digits (make_op n))).";
- pp " rewrite (fun x y => (Zpos_xO (@znz_digits x y))).";
- pp " rewrite inj_S; unfold Zsucc.";
- pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r.";
- pp " assert (tmp: forall x y z, x * (y * z) = y * (x * z));";
- pp " [intros; ring | rewrite tmp; clear tmp].";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " Qed.";
- pr "";
-
- pr " (***************************************************************)";
- pr " (* *)";
- pr " (** * Shift *)";
- pr " (* *)";
- pr " (***************************************************************)";
- pr "";
-
- (* Head0 *)
- pr " Definition head0 w := match w with";
- for i = 0 to size do
- pr " | %s%i w=> reduce_%i (w%i_op.(znz_head0) w)" c i i i;
- done;
- pr " | %sn n w=> reduce_n n ((make_op n).(znz_head0) w)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_head00: forall x, [x] = 0 ->[head0 x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold head0; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_head00 w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_head00 (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_head0: forall x, 0 < [x] ->";
- pr " 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: forall x, (x - 1) + 1 = x).";
- pp " intros; ring.";
- pp " intros x; case x; unfold digits, head0; clear x.";
- for i = 0 to size do
- pp " intros x Hx; rewrite spec_reduce_%i." i;
- pp " assert (F1:= spec_more_than_1_digit w%i_spec)." i;
- pp " generalize (spec_head0 w%i_spec x Hx)." i;
- pp " unfold base.";
- pp " pattern (Zpos (znz_digits w%i_op)) at 1;" i;
- pp " rewrite <- (fun x => (F0 (Zpos x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
- done;
- pp " intros n x Hx; rewrite spec_reduce_n.";
- pp " assert (F1:= spec_more_than_1_digit (wn_spec n)).";
- pp " generalize (spec_head0 (wn_spec n) x Hx).";
- pp " unfold base.";
- pp " pattern (Zpos (znz_digits (make_op n))) at 1;";
- pp " rewrite <- (fun x => (F0 (Zpos x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
- pp " Qed.";
- pr "";
-
-
- (* Tail0 *)
- pr " Definition tail0 w := match w with";
- for i = 0 to size do
- pr " | %s%i w=> reduce_%i (w%i_op.(znz_tail0) w)" c i i i;
- done;
- pr " | %sn n w=> reduce_n n ((make_op n).(znz_tail0) w)" c;
- pr " end.";
- pr "";
-
-
- pr " Theorem spec_tail00: forall x, [x] = 0 ->[tail0 x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold tail0; clear x.";
- for i = 0 to size do
- pp " intros x; rewrite spec_reduce_%i; exact (spec_tail00 w%i_spec x)." i i;
- done;
- pp " intros n x; rewrite spec_reduce_n; exact (spec_tail00 (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_tail0: forall x,";
- pr " 0 < [x] -> exists y, 0 <= y /\\ [x] = (2 * y + 1) * 2 ^ [tail0 x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold tail0.";
- for i = 0 to size do
- pp " intros x Hx; rewrite spec_reduce_%i; exact (spec_tail0 w%i_spec x Hx)." i i;
- done;
- pp " intros n x Hx; rewrite spec_reduce_n; exact (spec_tail0 (wn_spec n) x Hx).";
- pp " Qed.";
- pr "";
-
-
- (* Number of digits *)
- pr " Definition %sdigits x :=" c;
- pr " match x with";
- pr " | %s0 _ => %s0 w0_op.(znz_zdigits)" c c;
- for i = 1 to size do
- pr " | %s%i _ => reduce_%i w%i_op.(znz_zdigits)" c i i i;
- done;
- pr " | %sn n _ => reduce_n n (make_op n).(znz_zdigits)" c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; clear x; unfold Ndigits, digits.";
- for i = 0 to size do
- pp " intros _; try rewrite spec_reduce_%i; exact (spec_zdigits w%i_spec)." i i;
- done;
- pp " intros n _; try rewrite spec_reduce_n; exact (spec_zdigits (wn_spec n)).";
- pp " Qed.";
- pr "";
-
-
- (* Shiftr *)
- for i = 0 to size do
- pr " Definition unsafe_shiftr%i n x := w%i_op.(znz_add_mul_div) (w%i_op.(znz_sub) w%i_op.(znz_zdigits) n) w%i_op.(znz_0) x." i i i i i;
- done;
- pr " Definition unsafe_shiftrn n p x := (make_op n).(znz_add_mul_div) ((make_op n).(znz_sub) (make_op n).(znz_zdigits) p) (make_op n).(znz_0) x.";
- pr "";
-
- pr " Definition unsafe_shiftr := Eval lazy beta delta [same_level] in";
- pr " same_level _ (fun n x => %s0 (unsafe_shiftr0 n x))" c;
- for i = 1 to size do
- pr " (fun n x => reduce_%i (unsafe_shiftr%i n x))" i i;
- done;
- pr " (fun n p x => reduce_n n (unsafe_shiftrn n p x)).";
- pr "";
-
-
- pr " Theorem spec_unsafe_shiftr: forall n x,";
- pr " [n] <= [Ndigits x] -> [unsafe_shiftr n x] = [x] / 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: forall x y, x - (x - y) = y).";
- pp " intros; ring.";
- pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
- pp " intros x y z HH HH1 HH2.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
- pp " apply Zdiv_le_upper_bound; auto with zarith.";
- pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
- pp " apply Zmult_le_compat_l; auto.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite Zpower_0_r; ring.";
- pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
- pp " intros xx y HH HH1.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with xx; auto with zarith.";
- pp " apply Zpower2_lt_lin; auto with zarith.";
- pp " assert (F4: forall ww ww1 ww2";
- pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
- pp " xx yy xx1 yy1,";
- pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_zdigits ww1_op) ->";
- pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
- pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
- pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
- pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
- pp " znz_to_Z ww_op";
- pp " (znz_add_mul_div ww_op (znz_sub ww_op (znz_zdigits ww_op) yy1)";
- pp " (znz_0 ww_op) xx1) = znz_to_Z ww1_op xx / 2 ^ znz_to_Z ww2_op yy).";
- pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
- pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
- pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
- pp " rewrite <- Hx.";
- pp " rewrite <- Hy.";
- pp " generalize (spec_add_mul_div Hw";
- pp " (znz_0 ww_op) xx1";
- pp " (znz_sub ww_op (znz_zdigits ww_op)";
- pp " yy1)";
- pp " ).";
- pp " rewrite (spec_0 Hw).";
- pp " rewrite Zmult_0_l; rewrite Zplus_0_l.";
- pp " rewrite (CyclicAxioms.spec_sub Hw).";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " rewrite (spec_zdigits Hw).";
- pp " rewrite F0.";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " unfold base; rewrite (spec_zdigits Hw) in Hl1 |- *;";
- pp " auto with zarith.";
- pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
- pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
- pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
- pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
- pp " rewrite make_op_S.";
- pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
- pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
- pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
- pp " apply F5; auto with arith.";
- pp " intros x; case x; clear x; unfold unsafe_shiftr, same_level.";
- for i = 0 to size do
- pp " intros x y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." i;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits w%i_spec)." j;
- pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
- pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
-
- done;
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." i;
- pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
- for j = i + 1 to size do
- pp " intros y; unfold unsafe_shiftr%i, Ndigits." j;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
- pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
- done;
- if i == size then
- begin
- pp " intros m y; unfold unsafe_shiftrn, Ndigits.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
- pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
- end
- else
- begin
- pp " intros m y; unfold unsafe_shiftrn, Ndigits.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
- pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
- end
- done;
- pp " intros n x y; case y; clear y;";
- pp " intros y; unfold unsafe_shiftrn, Ndigits; try rewrite spec_reduce_n.";
- for i = 0 to size do
- pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits (wn_spec n)).";
- pp " apply Zle_trans with (2 := F6 n).";
- pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
- if i == size then
- pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
- else
- pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in n); auto." size;
- if i <> size then
- pp " try (rewrite <- spec_extend%in%i; auto)." i size;
- done;
- pp " generalize y; clear y; intros m y.";
- pp " rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
- pp " rewrite (spec_zdigits (wn_spec m)).";
- pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
- pp " apply F5; auto with arith.";
- pp " exact (spec_cast_r n m y).";
- pp " exact (spec_cast_l n m x).";
- pp " Qed.";
- pr "";
-
- (* Unsafe_Shiftl *)
- for i = 0 to size do
- pr " Definition unsafe_shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i
- done;
- pr " Definition unsafe_shiftln n p x := (make_op n).(znz_add_mul_div) p x (make_op n).(znz_0).";
- pr " Definition unsafe_shiftl := Eval lazy beta delta [same_level] in";
- pr " same_level _ (fun n x => %s0 (unsafe_shiftl0 n x))" c;
- for i = 1 to size do
- pr " (fun n x => reduce_%i (unsafe_shiftl%i n x))" i i;
- done;
- pr " (fun n p x => reduce_n n (unsafe_shiftln n p x)).";
- pr "";
- pr "";
-
-
- pr " Theorem spec_unsafe_shiftl: forall n x,";
- pr " [n] <= [head0 x] -> [unsafe_shiftl n x] = [x] * 2 ^ [n].";
- pa " Admitted.";
- pp " Proof.";
- pp " assert (F0: forall x y, x - (x - y) = y).";
- pp " intros; ring.";
- pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
- pp " intros x y z HH HH1 HH2.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
- pp " apply Zdiv_le_upper_bound; auto with zarith.";
- pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
- pp " apply Zmult_le_compat_l; auto.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite Zpower_0_r; ring.";
- pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
- pp " intros xx y HH HH1.";
- pp " split; auto with zarith.";
- pp " apply Zle_lt_trans with xx; auto with zarith.";
- pp " apply Zpower2_lt_lin; auto with zarith.";
- pp " assert (F4: forall ww ww1 ww2";
- pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
- pp " xx yy xx1 yy1,";
- pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_head0 ww1_op xx) ->";
- pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
- pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
- pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
- pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
- pp " znz_to_Z ww_op";
- pp " (znz_add_mul_div ww_op yy1";
- pp " xx1 (znz_0 ww_op)) = znz_to_Z ww1_op xx * 2 ^ znz_to_Z ww2_op yy).";
- pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
- pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
- pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
- pp " rewrite <- Hx.";
- pp " rewrite <- Hy.";
- pp " generalize (spec_add_mul_div Hw xx1 (znz_0 ww_op) yy1).";
- pp " rewrite (spec_0 Hw).";
- pp " assert (F1: znz_to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (znz_digits ww1_op)).";
- pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
- pp " apply Zlt_le_weak.";
- pp " case (CyclicAxioms.spec_head0 Hw1 xx).";
- pp " rewrite <- Hx; auto.";
- pp " intros _ Hu; unfold base in Hu.";
- pp " case (Zle_or_lt (Zpos (znz_digits ww1_op))";
- pp " (znz_to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1.";
- pp " absurd (2 ^ (Zpos (znz_digits ww1_op)) <= 2 ^ (znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
- pp " apply Zlt_not_le.";
- pp " case (spec_to_Z Hw1 xx); intros HHx3 HHx4.";
- pp " rewrite <- (Zmult_1_r (2 ^ znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
- pp " apply Zle_lt_trans with (2 := Hu).";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
- pp " rewrite Zdiv_0_l; auto with zarith.";
- pp " rewrite Zplus_0_r.";
- pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " intros HH; apply HH.";
- pp " rewrite Hy; apply Zle_trans with (1:= Hl).";
- pp " rewrite <- (spec_zdigits Hw).";
- pp " apply Zle_trans with (2 := Hl1); auto.";
- pp " rewrite (spec_zdigits Hw1); auto with zarith.";
- pp " split; auto with zarith .";
- pp " apply Zlt_le_trans with (base (znz_digits ww1_op)).";
- pp " rewrite Hx.";
- pp " case (CyclicAxioms.spec_head0 Hw1 xx); auto.";
- pp " rewrite <- Hx; auto.";
- pp " intros _ Hu; rewrite Zmult_comm in Hu.";
- pp " apply Zle_lt_trans with (2 := Hu).";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " unfold base; apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
- pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
- pp " rewrite <- HH5.";
- pp " rewrite Zmult_0_l.";
- pp " rewrite Zmod_small; auto with zarith.";
- pp " intros HH; apply HH.";
- pp " rewrite Hy; apply Zle_trans with (1 := Hl).";
- pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
- pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
- pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
- pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
- pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
- pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
- pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
- pp " rewrite make_op_S.";
- pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
- pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
- pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
- pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
- pp " rewrite Zpos_xO.";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
- pp " apply F5; auto with arith.";
- pp " intros x; case x; clear x; unfold unsafe_shiftl, same_level.";
- for i = 0 to size do
- pp " intros x y; case y; clear y.";
- for j = 0 to i - 1 do
- pp " intros y; unfold unsafe_shiftl%i, head0." i;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits w%i_spec)." j;
- pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
- pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
- done;
- pp " intros y; unfold unsafe_shiftl%i, head0." i;
- pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
- for j = i + 1 to size do
- pp " intros y; unfold unsafe_shiftl%i, head0." j;
- pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
- pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
- pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
- done;
- if i == size then
- begin
- pp " intros m y; unfold unsafe_shiftln, head0.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
- pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
- end
- else
- begin
- pp " intros m y; unfold unsafe_shiftln, head0.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
- pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
- end
- done;
- pp " intros n x y; case y; clear y;";
- pp " intros y; unfold unsafe_shiftln, head0; try rewrite spec_reduce_n.";
- for i = 0 to size do
- pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
- pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
- pp " rewrite (spec_zdigits w%i_spec)." i;
- pp " rewrite (spec_zdigits (wn_spec n)).";
- pp " apply Zle_trans with (2 := F6 n).";
- pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
- pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
- pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
- pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
- if i == size then
- pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
- else
- pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
- pp " rewrite <- (spec_extend%in n); auto." size;
- if i <> size then
- pp " try (rewrite <- spec_extend%in%i; auto)." i size;
- done;
- pp " generalize y; clear y; intros m y.";
- pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
- pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
- pp " rewrite (spec_zdigits (wn_spec m)).";
- pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
- pp " apply F5; auto with arith.";
- pp " exact (spec_cast_r n m y).";
- pp " exact (spec_cast_l n m x).";
- pp " Qed.";
- pr "";
-
- (* Double size *)
- pr " Definition double_size w := match w with";
- for i = 0 to size-1 do
- pr " | %s%i x => %s%i (WW (znz_0 w%i_op) x)" c i c (i + 1) i;
- done;
- pr " | %s%i x => %sn 0 (WW (znz_0 w%i_op) x)" c size c size;
- pr " | %sn n x => %sn (S n) (WW (znz_0 (make_op n)) x)" c c;
- pr " end.";
- pr "";
-
- pr " Theorem spec_double_size_digits:";
- pr " forall x, digits (double_size x) = xO (digits x).";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold double_size, digits; clear x; auto.";
- pp " intros n x; rewrite make_op_S; auto.";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_double_size: forall x, [double_size x] = [x].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold double_size; clear x.";
- for i = 0 to size do
- pp " intros x; unfold to_Z, make_op;";
- pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto with zarith." (i + 1) i;
- done;
- pp " intros n x; unfold to_Z;";
- pp " generalize (znz_to_Z_n n); simpl word.";
- pp " intros HH; rewrite HH; clear HH.";
- pp " generalize (spec_0 (wn_spec n)); simpl word.";
- pp " intros HH; rewrite HH; clear HH; auto with zarith.";
- pp " Qed.";
- pr "";
-
-
- pr " Theorem spec_double_size_head0:";
- pr " forall x, 2 * [head0 x] <= [head0 (double_size x)].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x.";
- pp " assert (F1:= spec_pos (head0 x)).";
- pp " assert (F2: 0 < Zpos (digits x)).";
- pp " red; auto.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.";
- pp " generalize HH; rewrite <- (spec_double_size x); intros HH1.";
- pp " case (spec_head0 x HH); intros _ HH2.";
- pp " case (spec_head0 _ HH1).";
- pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
- pp " intros HH3 _.";
- pp " case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.";
- pp " absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.";
- pp " apply Zle_not_lt.";
- pp " apply Zmult_le_compat_r; auto with zarith.";
- pp " apply Zpower_le_monotone; auto; auto with zarith.";
- pp " generalize (spec_pos (head0 (double_size x))); auto with zarith.";
- pp " assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).";
- pp " case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.";
- pp " apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.";
- pp " rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.";
- pp " assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].";
- pp " apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).";
- pp " apply Zmult_le_compat_l; auto with zarith.";
- pp " rewrite Zpower_1_r; auto with zarith.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.";
- pp " absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.";
- pp " rewrite <- HH5; rewrite Zmult_1_r.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " rewrite (Zmult_comm 2).";
- pp " rewrite Zpower_mult; auto with zarith.";
- pp " rewrite Zpower_2.";
- pp " apply Zlt_le_trans with (2 := HH3).";
- pp " rewrite <- Zmult_assoc.";
- pp " replace (Zpos (xO (digits x)) - 1) with";
- pp " ((Zpos (digits x) - 1) + (Zpos (digits x))).";
- pp " rewrite Zpower_exp; auto with zarith.";
- pp " apply Zmult_lt_compat2; auto with zarith.";
- pp " split; auto with zarith.";
- pp " apply Zmult_lt_0_compat; auto with zarith.";
- pp " rewrite Zpos_xO; ring.";
- pp " apply Zlt_le_weak; auto.";
- pp " repeat rewrite spec_head00; auto.";
- pp " rewrite spec_double_size_digits.";
- pp " rewrite Zpos_xO; auto with zarith.";
- pp " rewrite spec_double_size; auto.";
- pp " Qed.";
- pr "";
-
- pr " Theorem spec_double_size_head0_pos:";
- pr " forall x, 0 < [head0 (double_size x)].";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x.";
- pp " assert (F: 0 < Zpos (digits x)).";
- pp " red; auto.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.";
- pp " apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.";
- pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.";
- pp " generalize F3; rewrite <- (spec_double_size x); intros F4.";
- pp " absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).";
- pp " apply Zle_not_lt.";
- pp " apply Zpower_le_monotone; auto with zarith.";
- pp " split; auto with zarith.";
- pp " rewrite Zpos_xO; auto with zarith.";
- pp " case (spec_head0 x F3).";
- pp " rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.";
- pp " apply Zle_lt_trans with (2 := HH).";
- pp " case (spec_head0 _ F4).";
- pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
- pp " rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.";
- pp " generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.";
- pp " Qed.";
- pr "";
-
- (* even *)
- pr " Definition is_even x :=";
- pr " match x with";
- for i = 0 to size do
- pr " | %s%i wx => w%i_op.(znz_is_even) wx" c i i
- done;
- pr " | %sn n wx => (make_op n).(znz_is_even) wx" c;
- pr " end.";
- pr "";
-
-
- pr " Theorem spec_is_even: forall x,";
- pr " if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1.";
- pa " Admitted.";
- pp " Proof.";
- pp " intros x; case x; unfold is_even, to_Z; clear x.";
- for i = 0 to size do
- pp " intros x; exact (spec_is_even w%i_spec x)." i;
- done;
- pp " intros n x; exact (spec_is_even (wn_spec n) x).";
- pp " Qed.";
- pr "";
-
- pr "End Make.";
- pr "";
-
+ pr " Eval lazy beta iota delta [reduce_n] in";
+ pr " reduce_n _ _ (N0 zero0) reduce_%i Nn n." (size + 1);
+ pr "";
+
+pr " Definition reduce n : dom_t n -> t :=";
+pr " match n with";
+for i = 0 to size do
+pr " | %i => reduce_%i" i i;
+done;
+pr " | %s(S n) => reduce_n n" (if size=0 then "" else "SizePlus ");
+pr " end.";
+pr "";
+
+pr " Ltac unfold_red := unfold reduce, %s." (iter_name 1 size "reduce_" ",");
+
+pr "
+ Ltac solve_red :=
+ let H := fresh in let G := fresh in
+ match goal with
+ | |- ?P (S ?n) => assert (H:P n) by solve_red
+ | _ => idtac
+ end;
+ intros n G x; destruct (le_lt_eq_dec _ _ G) as [LT|EQ];
+ solve [
+ apply (H _ (lt_n_Sm_le _ _ LT)) |
+ inversion LT |
+ subst; change (reduce 0 x = red_t 0 x); reflexivity |
+ specialize (H (pred n)); subst; destruct x;
+ [|unfold_red; rewrite H; auto]; reflexivity
+ ].
+
+ Lemma reduce_equiv : forall n x, n <= Size -> reduce n x = red_t n x.
+ Proof.
+ set (P N := forall n, n <= N -> forall x, reduce n x = red_t n x).
+ intros n x H. revert n H x. change (P Size). solve_red.
+ Qed.
+
+ Lemma spec_reduce_n : forall n x, [reduce_n n x] = [Nn n x].
+ Proof.
+ assert (H : forall x, reduce_%i x = red_t (SizePlus 1) x).
+ destruct x; [|unfold reduce_%i; rewrite (reduce_equiv Size)]; auto.
+ induction n.
+ intros. rewrite H. apply spec_red_t.
+ destruct x as [|xh xl].
+ simpl. rewrite make_op_S. exact ZnZ.spec_0.
+ fold word in *.
+ destruct xh; auto.
+ simpl reduce_n.
+ rewrite IHn.
+ rewrite spec_extend_WW; auto.
+ Qed.
+" (size+1) (size+1);
+
+pr
+" Lemma spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x.
+ Proof.
+ do_size (destruct n;
+ [intros; rewrite reduce_equiv;[apply spec_red_t|auto with arith]|]).
+ apply spec_reduce_n.
+ Qed.
+
+End Make.
+";