summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/BigN/NMake.v')
-rw-r--r--theories/Numbers/Natural/BigN/NMake.v1448
1 files changed, 1295 insertions, 153 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v
index 2b70f1bb..952f6183 100644
--- a/theories/Numbers/Natural/BigN/NMake.v
+++ b/theories/Numbers/Natural/BigN/NMake.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,18 +16,176 @@
representation. The representation-dependent (and macro-generated) part
is now in [NMake_gen]. *)
-Require Import BigNumPrelude ZArith CyclicAxioms.
-Require Import Nbasic Wf_nat StreamMemo NSig NMake_gen.
+Require Import Bool BigNumPrelude ZArith Nnat Ndigits CyclicAxioms DoubleType
+ Nbasic Wf_nat StreamMemo NSig NMake_gen.
-Module Make (Import W0:CyclicType) <: NType.
+Module Make (W0:CyclicType) <: NType.
- (** Macro-generated part *)
+ (** Let's include the macro-generated part. Even if we can't functorize
+ things (due to Eval red_t below), the rest of the module only uses
+ elements mentionned in interface [NAbstract]. *)
Include NMake_gen.Make W0.
+ Open Scope Z_scope.
+
+ Local Notation "[ x ]" := (to_Z x).
+
+ Definition eq (x y : t) := [x] = [y].
+
+ Declare Reduction red_t :=
+ lazy beta iota delta
+ [iter_t reduce same_level mk_t mk_t_S succ_t dom_t dom_op].
+
+ Ltac red_t :=
+ match goal with |- ?u => let v := (eval red_t in u) in change v end.
+
+ (** * Generic results *)
+
+ Tactic Notation "destr_t" constr(x) "as" simple_intropattern(pat) :=
+ destruct (destr_t x) as pat; cbv zeta;
+ rewrite ?iter_mk_t, ?spec_mk_t, ?spec_reduce.
+
+ Lemma spec_same_level : forall A (P:Z->Z->A->Prop)
+ (f : forall n, dom_t n -> dom_t n -> A),
+ (forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)) ->
+ forall x y, P [x] [y] (same_level f x y).
+ Proof.
+ intros. apply spec_same_level_dep with (P:=fun _ => P); auto.
+ Qed.
+
+ Theorem spec_pos: forall x, 0 <= [x].
+ Proof.
+ intros x. destr_t x as (n,x). now case (ZnZ.spec_to_Z x).
+ Qed.
+
+ Lemma digits_dom_op_incr : forall n m, (n<=m)%nat ->
+ (ZnZ.digits (dom_op n) <= ZnZ.digits (dom_op m))%positive.
+ Proof.
+ intros.
+ change (Zpos (ZnZ.digits (dom_op n)) <= Zpos (ZnZ.digits (dom_op m))).
+ rewrite !digits_dom_op, !Pshiftl_nat_Zpower.
+ apply Zmult_le_compat_l; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ Definition to_N (x : t) := Z.to_N (to_Z x).
+
+ (** * Zero, One *)
+
+ Definition zero := mk_t O ZnZ.zero.
+ Definition one := mk_t O ZnZ.one.
+
+ Theorem spec_0: [zero] = 0.
+ Proof.
+ unfold zero. rewrite spec_mk_t. exact ZnZ.spec_0.
+ Qed.
+
+ Theorem spec_1: [one] = 1.
+ Proof.
+ unfold one. rewrite spec_mk_t. exact ZnZ.spec_1.
+ Qed.
+
+ (** * Successor *)
+
+ (** NB: it is crucial here and for the rest of this file to preserve
+ the let-in's. They allow to pre-compute once and for all the
+ field access to Z/nZ initial structures (when n=0..6). *)
+
+ Local Notation succn := (fun n =>
+ let op := dom_op n in
+ let succ_c := ZnZ.succ_c in
+ let one := ZnZ.one in
+ fun x => match succ_c x with
+ | C0 r => mk_t n r
+ | C1 r => mk_t_S n (WW one r)
+ end).
+
+ Definition succ : t -> t := Eval red_t in iter_t succn.
+
+ Lemma succ_fold : succ = iter_t succn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_succ: forall n, [succ n] = [n] + 1.
+ Proof.
+ intros x. rewrite succ_fold. destr_t x as (n,x).
+ generalize (ZnZ.spec_succ_c x); case ZnZ.succ_c.
+ intros. rewrite spec_mk_t. assumption.
+ intros. unfold interp_carry in *.
+ rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_1. assumption.
+ Qed.
+
+ (** Two *)
+
+ (** Not really pretty, but since W0 might be Z/2Z, we're not sure
+ there's a proper 2 there. *)
+
+ Definition two := succ one.
+
+ Lemma spec_2 : [two] = 2.
+ Proof.
+ unfold two. now rewrite spec_succ, spec_1.
+ Qed.
+
+ (** * Addition *)
+
+ Local Notation addn := (fun n =>
+ let op := dom_op n in
+ let add_c := ZnZ.add_c in
+ let one := ZnZ.one in
+ fun x y =>match add_c x y with
+ | C0 r => mk_t n r
+ | C1 r => mk_t_S n (WW one r)
+ end).
+
+ Definition add : t -> t -> t := Eval red_t in same_level addn.
+
+ Lemma add_fold : add = same_level addn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_add: forall x y, [add x y] = [x] + [y].
+ Proof.
+ intros x y. rewrite add_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H.
+ rewrite spec_mk_t. assumption.
+ rewrite spec_mk_t_S. unfold interp_carry in H.
+ simpl. rewrite ZnZ.spec_1. assumption.
+ Qed.
(** * Predecessor *)
+ Local Notation predn := (fun n =>
+ let pred_c := ZnZ.pred_c in
+ fun x => match pred_c x with
+ | C0 r => reduce n r
+ | C1 _ => zero
+ end).
+
+ Definition pred : t -> t := Eval red_t in iter_t predn.
+
+ Lemma pred_fold : pred = iter_t predn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1.
+ Proof.
+ intros x. rewrite pred_fold. destr_t x as (n,x). intros H.
+ generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
+ rewrite spec_reduce. assumption.
+ exfalso. unfold interp_carry in *.
+ generalize (ZnZ.spec_to_Z x) (ZnZ.spec_to_Z y); auto with zarith.
+ Qed.
+
+ Theorem spec_pred0 : forall x, [x] = 0 -> [pred x] = 0.
+ Proof.
+ intros x. rewrite pred_fold. destr_t x as (n,x). intros H.
+ generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
+ rewrite spec_reduce.
+ unfold interp_carry in H'.
+ generalize (ZnZ.spec_to_Z y); auto with zarith.
+ exact spec_0.
+ Qed.
+
Lemma spec_pred : forall x, [pred x] = Zmax 0 ([x]-1).
Proof.
intros. destruct (Zle_lt_or_eq _ _ (spec_pos x)).
@@ -36,9 +194,42 @@ Module Make (Import W0:CyclicType) <: NType.
rewrite <- H; apply spec_pred0; auto.
Qed.
-
(** * Subtraction *)
+ Local Notation subn := (fun n =>
+ let sub_c := ZnZ.sub_c in
+ fun x y => match sub_c x y with
+ | C0 r => reduce n r
+ | C1 r => zero
+ end).
+
+ Definition sub : t -> t -> t := Eval red_t in same_level subn.
+
+ Lemma sub_fold : sub = same_level subn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y].
+ Proof.
+ intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
+ rewrite spec_reduce. assumption.
+ unfold interp_carry in H.
+ exfalso.
+ generalize (ZnZ.spec_to_Z z); auto with zarith.
+ Qed.
+
+ Theorem spec_sub0 : forall x y, [x] < [y] -> [sub x y] = 0.
+ Proof.
+ intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
+ intros n x y. simpl.
+ generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
+ rewrite spec_reduce.
+ unfold interp_carry in H.
+ generalize (ZnZ.spec_to_Z z); auto with zarith.
+ exact spec_0.
+ Qed.
+
Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]).
Proof.
intros. destruct (Zle_or_lt [y] [x]).
@@ -48,35 +239,112 @@ Module Make (Import W0:CyclicType) <: NType.
(** * Comparison *)
- Theorem spec_compare : forall x y, compare x y = Zcompare [x] [y].
+ Definition comparen_m n :
+ forall m, word (dom_t n) (S m) -> dom_t n -> comparison :=
+ let op := dom_op n in
+ let zero := @ZnZ.zero _ op in
+ let compare := @ZnZ.compare _ op in
+ let compare0 := compare zero in
+ fun m => compare_mn_1 (dom_t n) (dom_t n) zero compare compare0 compare (S m).
+
+ Let spec_comparen_m:
+ forall n m (x : word (dom_t n) (S m)) (y : dom_t n),
+ comparen_m n m x y = Zcompare (eval n (S m) x) (ZnZ.to_Z y).
+ Proof.
+ intros n m x y.
+ unfold comparen_m, eval.
+ rewrite nmake_double.
+ apply spec_compare_mn_1.
+ exact ZnZ.spec_0.
+ intros. apply ZnZ.spec_compare.
+ exact ZnZ.spec_to_Z.
+ exact ZnZ.spec_compare.
+ exact ZnZ.spec_compare.
+ exact ZnZ.spec_to_Z.
+ Qed.
+
+ Definition comparenm n m wx wy :=
+ let mn := Max.max n m in
+ let d := diff n m in
+ let op := make_op mn in
+ ZnZ.compare
+ (castm (diff_r n m) (extend_tr wx (snd d)))
+ (castm (diff_l n m) (extend_tr wy (fst d))).
+
+ Local Notation compare_folded :=
+ (iter_sym _
+ (fun n => @ZnZ.compare _ (dom_op n))
+ comparen_m
+ comparenm
+ CompOpp).
+
+ Definition compare : t -> t -> comparison :=
+ Eval lazy beta iota delta [iter_sym dom_op dom_t comparen_m] in
+ compare_folded.
+
+ Lemma compare_fold : compare = compare_folded.
Proof.
- intros x y. generalize (spec_compare_aux x y); destruct compare;
- intros; symmetry; try rewrite Zcompare_Eq_iff_eq; assumption.
+ lazy beta iota delta [iter_sym dom_op dom_t comparen_m]. reflexivity.
Qed.
- Definition eq_bool x y :=
+(** TODO: no need for ZnZ.Spec_rect , Spec_ind, and so on... *)
+
+ Theorem spec_compare : forall x y,
+ compare x y = Zcompare [x] [y].
+ Proof.
+ intros x y. rewrite compare_fold. apply spec_iter_sym; clear x y.
+ intros. apply ZnZ.spec_compare.
+ intros. cbv beta zeta. apply spec_comparen_m.
+ intros n m x y; unfold comparenm.
+ rewrite (spec_cast_l n m x), (spec_cast_r n m y).
+ unfold to_Z; apply ZnZ.spec_compare.
+ intros. subst. apply Zcompare_antisym.
+ Qed.
+
+ Definition eqb (x y : t) : bool :=
match compare x y with
| Eq => true
| _ => false
end.
- Theorem spec_eq_bool : forall x y, eq_bool x y = Zeq_bool [x] [y].
+ Theorem spec_eqb x y : eqb x y = Z.eqb [x] [y].
Proof.
- intros. unfold eq_bool, Zeq_bool. rewrite spec_compare; reflexivity.
+ apply eq_iff_eq_true.
+ unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare.
+ split; [now destruct Z.compare | now intros ->].
Qed.
- Theorem spec_eq_bool_aux: forall x y,
- if eq_bool x y then [x] = [y] else [x] <> [y].
+ Definition lt (n m : t) := [n] < [m].
+ Definition le (n m : t) := [n] <= [m].
+
+ Definition ltb (x y : t) : bool :=
+ match compare x y with
+ | Lt => true
+ | _ => false
+ end.
+
+ Theorem spec_ltb x y : ltb x y = Z.ltb [x] [y].
Proof.
- intros x y; unfold eq_bool.
- generalize (spec_compare_aux x y); case compare; auto with zarith.
+ apply eq_iff_eq_true.
+ rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare.
+ split; [now destruct Z.compare | now intros ->].
Qed.
- Definition lt n m := [n] < [m].
- Definition le n m := [n] <= [m].
+ Definition leb (x y : t) : bool :=
+ match compare x y with
+ | Gt => false
+ | _ => true
+ end.
+
+ Theorem spec_leb x y : leb x y = Z.leb [x] [y].
+ Proof.
+ apply eq_iff_eq_true.
+ rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare.
+ destruct Z.compare; split; try easy. now destruct 1.
+ Qed.
- Definition min n m := match compare n m with Gt => m | _ => n end.
- Definition max n m := match compare n m with Lt => m | _ => n end.
+ Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end.
+ Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end.
Theorem spec_max : forall n m, [max n m] = Zmax [n] [m].
Proof.
@@ -88,46 +356,239 @@ Module Make (Import W0:CyclicType) <: NType.
intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity.
Qed.
+ (** * Multiplication *)
+
+ Definition wn_mul n : forall m, word (dom_t n) (S m) -> dom_t n -> t :=
+ let op := dom_op n in
+ let zero := @ZnZ.zero _ op in
+ let succ := @ZnZ.succ _ op in
+ let add_c := @ZnZ.add_c _ op in
+ let mul_c := @ZnZ.mul_c _ op in
+ let ww := @ZnZ.WW _ op in
+ let ow := @ZnZ.OW _ op in
+ let eq0 := @ZnZ.eq0 _ op in
+ let mul_add := @DoubleMul.w_mul_add _ zero succ add_c mul_c in
+ let mul_add_n1 := @DoubleMul.double_mul_add_n1 _ zero ww ow mul_add in
+ fun m x y =>
+ let (w,r) := mul_add_n1 (S m) x y zero in
+ if eq0 w then mk_t_w' n m r
+ else mk_t_w' n (S m) (WW (extend n m w) r).
+
+ Definition mulnm n m x y :=
+ let mn := Max.max n m in
+ let d := diff n m in
+ let op := make_op mn in
+ reduce_n (S mn) (ZnZ.mul_c
+ (castm (diff_r n m) (extend_tr x (snd d)))
+ (castm (diff_l n m) (extend_tr y (fst d)))).
+
+ Local Notation mul_folded :=
+ (iter_sym _
+ (fun n => let mul_c := ZnZ.mul_c in
+ fun x y => reduce (S n) (succ_t _ (mul_c x y)))
+ wn_mul
+ mulnm
+ (fun x => x)).
+
+ Definition mul : t -> t -> t :=
+ Eval lazy beta iota delta
+ [iter_sym dom_op dom_t reduce succ_t extend zeron
+ wn_mul DoubleMul.w_mul_add mk_t_w'] in
+ mul_folded.
+
+ Lemma mul_fold : mul = mul_folded.
+ Proof.
+ lazy beta iota delta
+ [iter_sym dom_op dom_t reduce succ_t extend zeron
+ wn_mul DoubleMul.w_mul_add mk_t_w']. reflexivity.
+ Qed.
- (** * Power *)
+ Lemma spec_muln:
+ forall n (x: word _ (S n)) y,
+ [Nn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [Nn n x] * [Nn n y].
+ Proof.
+ intros n x y; unfold to_Z.
+ rewrite <- ZnZ.spec_mul_c.
+ rewrite make_op_S.
+ case ZnZ.mul_c; auto.
+ Qed.
- Fixpoint power_pos (x:t) (p:positive) {struct p} : t :=
- match p with
- | xH => x
- | xO p => square (power_pos x p)
- | xI p => mul (square (power_pos x p)) x
- end.
+ Lemma spec_mul_add_n1: forall n m x y z,
+ let (q,r) := DoubleMul.double_mul_add_n1 ZnZ.zero ZnZ.WW ZnZ.OW
+ (DoubleMul.w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c)
+ (S m) x y z in
+ ZnZ.to_Z q * (base (ZnZ.digits (nmake_op _ (dom_op n) (S m))))
+ + eval n (S m) r =
+ eval n (S m) x * ZnZ.to_Z y + ZnZ.to_Z z.
+ Proof.
+ intros n m x y z.
+ rewrite digits_nmake.
+ unfold eval. rewrite nmake_double.
+ apply DoubleMul.spec_double_mul_add_n1.
+ apply ZnZ.spec_0.
+ exact ZnZ.spec_WW.
+ exact ZnZ.spec_OW.
+ apply DoubleCyclic.spec_mul_add.
+ Qed.
- Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
+ Lemma spec_wn_mul : forall n m x y,
+ [wn_mul n m x y] = (eval n (S m) x) * ZnZ.to_Z y.
Proof.
- intros x n; generalize x; elim n; clear n x; simpl power_pos.
- intros; rewrite spec_mul; rewrite spec_square; rewrite H.
- rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.
- rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
- rewrite Zpower_2; rewrite Zpower_1_r; auto.
- intros; rewrite spec_square; rewrite H.
- rewrite Zpos_xO; auto with zarith.
- rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
- rewrite Zpower_2; auto.
- intros; rewrite Zpower_1_r; auto.
+ intros; unfold wn_mul.
+ generalize (spec_mul_add_n1 n m x y ZnZ.zero).
+ case DoubleMul.double_mul_add_n1; intros q r Hqr.
+ rewrite ZnZ.spec_0, Zplus_0_r in Hqr. rewrite <- Hqr.
+ generalize (ZnZ.spec_eq0 q); case ZnZ.eq0; intros HH.
+ rewrite HH; auto. simpl. apply spec_mk_t_w'.
+ clear.
+ rewrite spec_mk_t_w'.
+ set (m' := S m) in *.
+ unfold eval.
+ rewrite nmake_WW. f_equal. f_equal.
+ rewrite <- spec_mk_t.
+ symmetry. apply spec_extend.
Qed.
- Definition power x (n:N) := match n with
- | BinNat.N0 => one
- | BinNat.Npos p => power_pos x p
- end.
+ Theorem spec_mul : forall x y, [mul x y] = [x] * [y].
+ Proof.
+ intros x y. rewrite mul_fold. apply spec_iter_sym; clear x y.
+ intros n x y. cbv zeta beta.
+ rewrite spec_reduce, spec_succ_t, <- ZnZ.spec_mul_c; auto.
+ apply spec_wn_mul.
+ intros n m x y; unfold mulnm. rewrite spec_reduce_n.
+ rewrite (spec_cast_l n m x), (spec_cast_r n m y).
+ apply spec_muln.
+ intros. rewrite Zmult_comm; auto.
+ Qed.
- Theorem spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.
+ (** * Division by a smaller number *)
+
+ Definition wn_divn1 n :=
+ let op := dom_op n in
+ let zd := ZnZ.zdigits op in
+ let zero := @ZnZ.zero _ op in
+ let ww := @ZnZ.WW _ op in
+ let head0 := @ZnZ.head0 _ op in
+ let add_mul_div := @ZnZ.add_mul_div _ op in
+ let div21 := @ZnZ.div21 _ op in
+ let compare := @ZnZ.compare _ op in
+ let sub := @ZnZ.sub _ op in
+ let ddivn1 :=
+ DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in
+ fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v).
+
+ Let div_gtnm n m wx wy :=
+ let mn := Max.max n m in
+ let d := diff n m in
+ let op := make_op mn in
+ let (q, r):= ZnZ.div_gt
+ (castm (diff_r n m) (extend_tr wx (snd d)))
+ (castm (diff_l n m) (extend_tr wy (fst d))) in
+ (reduce_n mn q, reduce_n mn r).
+
+ Local Notation div_gt_folded :=
+ (iter _
+ (fun n => let div_gt := ZnZ.div_gt in
+ fun x y => let (u,v) := div_gt x y in (reduce n u, reduce n v))
+ (fun n =>
+ let div_gt := ZnZ.div_gt in
+ fun m x y =>
+ let y' := DoubleBase.get_low (zeron n) (S m) y in
+ let (u,v) := div_gt x y' in (reduce n u, reduce n v))
+ wn_divn1
+ div_gtnm).
+
+ Definition div_gt :=
+ Eval lazy beta iota delta
+ [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t] in
+ div_gt_folded.
+
+ Lemma div_gt_fold : div_gt = div_gt_folded.
Proof.
- destruct n; simpl. apply (spec_1 w0_spec).
- apply spec_power_pos.
+ lazy beta iota delta [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t].
+ reflexivity.
Qed.
+ Lemma spec_get_endn: forall n m x y,
+ eval n m x <= [mk_t n y] ->
+ [mk_t n (DoubleBase.get_low (zeron n) m x)] = eval n m x.
+ Proof.
+ intros n m x y H.
+ unfold eval. rewrite nmake_double.
+ rewrite spec_mk_t in *.
+ apply DoubleBase.spec_get_low.
+ apply spec_zeron.
+ exact ZnZ.spec_to_Z.
+ apply Zle_lt_trans with (ZnZ.to_Z y); auto.
+ rewrite <- nmake_double; auto.
+ case (ZnZ.spec_to_Z y); auto.
+ Qed.
- (** * Div *)
+ Let spec_divn1 n :=
+ DoubleDivn1.spec_double_divn1
+ (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
+ ZnZ.WW ZnZ.head0
+ ZnZ.add_mul_div ZnZ.div21
+ ZnZ.compare ZnZ.sub ZnZ.to_Z
+ ZnZ.spec_to_Z
+ ZnZ.spec_zdigits
+ ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0
+ ZnZ.spec_add_mul_div ZnZ.spec_div21
+ ZnZ.spec_compare ZnZ.spec_sub.
+
+ Lemma spec_div_gt_aux : forall x y, [x] > [y] -> 0 < [y] ->
+ let (q,r) := div_gt x y in
+ [x] = [q] * [y] + [r] /\ 0 <= [r] < [y].
+ Proof.
+ intros x y. rewrite div_gt_fold. apply spec_iter; clear x y.
+ intros n x y H1 H2. simpl.
+ generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt.
+ intros u v. rewrite 2 spec_reduce. auto.
+ intros n m x y H1 H2. cbv zeta beta.
+ generalize (ZnZ.spec_div_gt x
+ (DoubleBase.get_low (zeron n) (S m) y)).
+ case ZnZ.div_gt.
+ intros u v H3; repeat rewrite spec_reduce.
+ generalize (spec_get_endn n (S m) y x). rewrite !spec_mk_t. intros H4.
+ rewrite H4 in H3; auto with zarith.
+ intros n m x y H1 H2.
+ generalize (spec_divn1 n (S m) x y H2).
+ unfold wn_divn1; case DoubleDivn1.double_divn1.
+ intros u v H3.
+ rewrite spec_mk_t_w', spec_mk_t.
+ rewrite <- !nmake_double in H3; auto.
+ intros n m x y H1 H2; unfold div_gtnm.
+ generalize (ZnZ.spec_div_gt
+ (castm (diff_r n m)
+ (extend_tr x (snd (diff n m))))
+ (castm (diff_l n m)
+ (extend_tr y (fst (diff n m))))).
+ case ZnZ.div_gt.
+ intros xx yy HH.
+ repeat rewrite spec_reduce_n.
+ rewrite (spec_cast_l n m x), (spec_cast_r n m y).
+ unfold to_Z; apply HH.
+ rewrite (spec_cast_l n m x) in H1; auto.
+ rewrite (spec_cast_r n m y) in H1; auto.
+ rewrite (spec_cast_r n m y) in H2; auto.
+ Qed.
+
+ Theorem spec_div_gt: forall x y, [x] > [y] -> 0 < [y] ->
+ let (q,r) := div_gt x y in
+ [q] = [x] / [y] /\ [r] = [x] mod [y].
+ Proof.
+ intros x y H1 H2; generalize (spec_div_gt_aux x y H1 H2); case div_gt.
+ intros q r (H3, H4); split.
+ apply (Zdiv_unique [x] [y] [q] [r]); auto.
+ rewrite Zmult_comm; auto.
+ apply (Zmod_unique [x] [y] [q] [r]); auto.
+ rewrite Zmult_comm; auto.
+ Qed.
- Definition div_eucl x y :=
- if eq_bool y zero then (zero,zero) else
+ (** * General Division *)
+
+ Definition div_eucl (x y : t) : t * t :=
+ if eqb y zero then (zero,zero) else
match compare x y with
| Eq => (one, zero)
| Lt => (zero, x)
@@ -138,32 +599,27 @@ Module Make (Import W0:CyclicType) <: NType.
let (q,r) := div_eucl x y in
([q], [r]) = Zdiv_eucl [x] [y].
Proof.
- assert (F0: [zero] = 0).
- exact (spec_0 w0_spec).
- assert (F1: [one] = 1).
- exact (spec_1 w0_spec).
intros x y. unfold div_eucl.
- generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
- intro H. rewrite H. destruct [x]; auto.
- intro H'.
- assert (0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ rewrite spec_eqb, spec_compare, spec_0.
+ case Z.eqb_spec.
+ intros ->. rewrite spec_0. destruct [x]; auto.
+ intros H'.
+ assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
clear H'.
- generalize (spec_compare_aux x y); case compare; try rewrite F0;
- try rewrite F1; intros; auto with zarith.
- rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))
- (Z_mod_same [y] (Zlt_gt _ _ H));
+ case Zcompare_spec; intros Cmp;
+ rewrite ?spec_0, ?spec_1; intros; auto with zarith.
+ rewrite Cmp; generalize (Z_div_same [y] (Zlt_gt _ _ H))
+ (Z_mod_same [y] (Zlt_gt _ _ H));
unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
- assert (F2: 0 <= [x] < [y]).
- generalize (spec_pos x); auto.
- generalize (Zdiv_small _ _ F2)
- (Zmod_small _ _ F2);
+ assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto).
+ generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt);
unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
- generalize (spec_div_gt _ _ H0 H); auto.
+ generalize (spec_div_gt _ _ (Zlt_gt _ _ Cmp) H); auto.
unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.
intros a b c d (H1, H2); subst; auto.
Qed.
- Definition div x y := fst (div_eucl x y).
+ Definition div (x y : t) : t := fst (div_eucl x y).
Theorem spec_div:
forall x y, [div x y] = [x] / [y].
@@ -174,11 +630,90 @@ Module Make (Import W0:CyclicType) <: NType.
injection H; auto.
Qed.
+ (** * Modulo by a smaller number *)
+
+ Definition wn_modn1 n :=
+ let op := dom_op n in
+ let zd := ZnZ.zdigits op in
+ let zero := @ZnZ.zero _ op in
+ let head0 := @ZnZ.head0 _ op in
+ let add_mul_div := @ZnZ.add_mul_div _ op in
+ let div21 := @ZnZ.div21 _ op in
+ let compare := @ZnZ.compare _ op in
+ let sub := @ZnZ.sub _ op in
+ let dmodn1 :=
+ DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in
+ fun m x y => reduce n (dmodn1 (S m) x y).
+
+ Let mod_gtnm n m wx wy :=
+ let mn := Max.max n m in
+ let d := diff n m in
+ let op := make_op mn in
+ reduce_n mn (ZnZ.modulo_gt
+ (castm (diff_r n m) (extend_tr wx (snd d)))
+ (castm (diff_l n m) (extend_tr wy (fst d)))).
+
+ Local Notation mod_gt_folded :=
+ (iter _
+ (fun n => let modulo_gt := ZnZ.modulo_gt in
+ fun x y => reduce n (modulo_gt x y))
+ (fun n => let modulo_gt := ZnZ.modulo_gt in
+ fun m x y =>
+ reduce n (modulo_gt x (DoubleBase.get_low (zeron n) (S m) y)))
+ wn_modn1
+ mod_gtnm).
+
+ Definition mod_gt :=
+ Eval lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron] in
+ mod_gt_folded.
+
+ Lemma mod_gt_fold : mod_gt = mod_gt_folded.
+ Proof.
+ lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron].
+ reflexivity.
+ Qed.
+
+ Let spec_modn1 n :=
+ DoubleDivn1.spec_double_modn1
+ (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
+ ZnZ.WW ZnZ.head0
+ ZnZ.add_mul_div ZnZ.div21
+ ZnZ.compare ZnZ.sub ZnZ.to_Z
+ ZnZ.spec_to_Z
+ ZnZ.spec_zdigits
+ ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0
+ ZnZ.spec_add_mul_div ZnZ.spec_div21
+ ZnZ.spec_compare ZnZ.spec_sub.
+
+ Theorem spec_mod_gt:
+ forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].
+ Proof.
+ intros x y. rewrite mod_gt_fold. apply spec_iter; clear x y.
+ intros n x y H1 H2. simpl. rewrite spec_reduce.
+ exact (ZnZ.spec_modulo_gt x y H1 H2).
+ intros n m x y H1 H2. cbv zeta beta. rewrite spec_reduce.
+ rewrite <- spec_mk_t in H1.
+ rewrite <- (spec_get_endn n (S m) y x); auto with zarith.
+ rewrite spec_mk_t.
+ apply ZnZ.spec_modulo_gt; auto.
+ rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H1; auto with zarith.
+ rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H2; auto with zarith.
+ intros n m x y H1 H2. unfold wn_modn1. rewrite spec_reduce.
+ unfold eval; rewrite nmake_double.
+ apply (spec_modn1 n); auto.
+ intros n m x y H1 H2; unfold mod_gtnm.
+ repeat rewrite spec_reduce_n.
+ rewrite (spec_cast_l n m x), (spec_cast_r n m y).
+ unfold to_Z; apply ZnZ.spec_modulo_gt.
+ rewrite (spec_cast_l n m x) in H1; auto.
+ rewrite (spec_cast_r n m y) in H1; auto.
+ rewrite (spec_cast_r n m y) in H2; auto.
+ Qed.
- (** * Modulo *)
+ (** * General Modulo *)
- Definition modulo x y :=
- if eq_bool y zero then zero else
+ Definition modulo (x y : t) : t :=
+ if eqb y zero then zero else
match compare x y with
| Eq => zero
| Lt => x
@@ -188,24 +723,129 @@ Module Make (Import W0:CyclicType) <: NType.
Theorem spec_modulo:
forall x y, [modulo x y] = [x] mod [y].
Proof.
- assert (F0: [zero] = 0).
- exact (spec_0 w0_spec).
- assert (F1: [one] = 1).
- exact (spec_1 w0_spec).
intros x y. unfold modulo.
- generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
- intro H; rewrite H. destruct [x]; auto.
+ rewrite spec_eqb, spec_compare, spec_0.
+ case Z.eqb_spec.
+ intros ->; rewrite spec_0. destruct [x]; auto.
intro H'.
assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
clear H'.
- generalize (spec_compare_aux x y); case compare; try rewrite F0;
- try rewrite F1; intros; try split; auto with zarith.
+ case Zcompare_spec;
+ rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith.
rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.
apply sym_equal; apply Zmod_small; auto with zarith.
generalize (spec_pos x); auto with zarith.
- apply spec_mod_gt; auto.
+ apply spec_mod_gt; auto with zarith.
+ Qed.
+
+ (** * Square *)
+
+ Local Notation squaren := (fun n =>
+ let square_c := ZnZ.square_c in
+ fun x => reduce (S n) (succ_t _ (square_c x))).
+
+ Definition square : t -> t := Eval red_t in iter_t squaren.
+
+ Lemma square_fold : square = iter_t squaren.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_square: forall x, [square x] = [x] * [x].
+ Proof.
+ intros x. rewrite square_fold. destr_t x as (n,x).
+ rewrite spec_succ_t. exact (ZnZ.spec_square_c x).
+ Qed.
+
+ (** * Square Root *)
+
+ Local Notation sqrtn := (fun n =>
+ let sqrt := ZnZ.sqrt in
+ fun x => reduce n (sqrt x)).
+
+ Definition sqrt : t -> t := Eval red_t in iter_t sqrtn.
+
+ Lemma sqrt_fold : sqrt = iter_t sqrtn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_sqrt_aux: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
+ Proof.
+ intros x. rewrite sqrt_fold. destr_t x as (n,x). exact (ZnZ.spec_sqrt x).
+ Qed.
+
+ Theorem spec_sqrt: forall x, [sqrt x] = Z.sqrt [x].
+ Proof.
+ intros x.
+ symmetry. apply Z.sqrt_unique.
+ rewrite <- ! Zpower_2. apply spec_sqrt_aux.
+ Qed.
+
+ (** * Power *)
+
+ Fixpoint pow_pos (x:t)(p:positive) : t :=
+ match p with
+ | xH => x
+ | xO p => square (pow_pos x p)
+ | xI p => mul (square (pow_pos x p)) x
+ end.
+
+ Theorem spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n.
+ Proof.
+ intros x n; generalize x; elim n; clear n x; simpl pow_pos.
+ intros; rewrite spec_mul; rewrite spec_square; rewrite H.
+ rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; rewrite Zpower_1_r; auto.
+ intros; rewrite spec_square; rewrite H.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; auto.
+ intros; rewrite Zpower_1_r; auto.
Qed.
+ Definition pow_N (x:t)(n:N) : t := match n with
+ | BinNat.N0 => one
+ | BinNat.Npos p => pow_pos x p
+ end.
+
+ Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z_of_N n.
+ Proof.
+ destruct n; simpl. apply spec_1.
+ apply spec_pow_pos.
+ Qed.
+
+ Definition pow (x y:t) : t := pow_N x (to_N y).
+
+ Theorem spec_pow : forall x y, [pow x y] = [x] ^ [y].
+ Proof.
+ intros. unfold pow, to_N.
+ now rewrite spec_pow_N, Z2N.id by apply spec_pos.
+ Qed.
+
+
+ (** * digits
+
+ Number of digits in the representation of a numbers
+ (including head zero's).
+ NB: This function isn't a morphism for setoid [eq].
+ *)
+
+ Local Notation digitsn := (fun n =>
+ let digits := ZnZ.digits (dom_op n) in
+ fun _ => digits).
+
+ Definition digits : t -> positive := Eval red_t in iter_t digitsn.
+
+ Lemma digits_fold : digits = iter_t digitsn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).
+ Proof.
+ intros x. rewrite digits_fold. destr_t x as (n,x). exact (ZnZ.spec_to_Z x).
+ Qed.
+
+ Lemma digits_level : forall x, digits x = ZnZ.digits (dom_op (level x)).
+ Proof.
+ intros x. rewrite digits_fold. unfold level. destr_t x as (n,x). reflexivity.
+ Qed.
(** * Gcd *)
@@ -226,15 +866,12 @@ Module Make (Import W0:CyclicType) <: NType.
Zis_gcd [a1] [b1] [cont a1 b1]) ->
Zis_gcd [a] [b] [gcd_gt_body a b cont].
Proof.
- assert (F1: [zero] = 0).
- unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
intros a b cont p H2 H3 H4; unfold gcd_gt_body.
- generalize (spec_compare_aux b zero); case compare; try rewrite F1.
- intros HH; rewrite HH; apply Zis_gcd_0.
+ rewrite ! spec_compare, spec_0. case Zcompare_spec.
+ intros ->; apply Zis_gcd_0.
intros HH; absurd (0 <= [b]); auto with zarith.
case (spec_digits b); auto with zarith.
- intros H5; generalize (spec_compare_aux (mod_gt a b) zero);
- case compare; try rewrite F1.
+ intros H5; case Zcompare_spec.
intros H6; rewrite <- (Zmult_1_r [b]).
rewrite (Z_div_mod_eq [a] [b]); auto with zarith.
rewrite <- spec_mod_gt; auto with zarith.
@@ -273,7 +910,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.
Qed.
- Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=
+ Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t :=
gcd_gt_body a b
(fun a b =>
match p with
@@ -310,12 +947,7 @@ Module Make (Import W0:CyclicType) <: NType.
(Zpos p + n - 1); auto with zarith.
intros a3 b3 H12 H13; apply H4; auto with zarith.
apply Zlt_le_trans with (1 := H12).
- case (Zle_or_lt 1 n); intros HH.
- apply Zpower_le_monotone; auto with zarith.
- apply Zle_trans with 0; auto with zarith.
- assert (HH1: n - 1 < 0); auto with zarith.
- generalize HH1; case (n - 1); auto with zarith.
- intros p1 HH2; discriminate.
+ apply Zpower_le_monotone2; auto with zarith.
intros n a b cont H H2 H3.
simpl gcd_gt_aux.
apply Zspec_gcd_gt_body with (n + 1); auto with zarith.
@@ -345,7 +977,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros; apply False_ind; auto with zarith.
Qed.
- Definition gcd a b :=
+ Definition gcd (a b : t) : t :=
match compare a b with
| Eq => a
| Lt => gcd_gt b a
@@ -357,7 +989,7 @@ Module Make (Import W0:CyclicType) <: NType.
intros a b.
case (spec_digits a); intros H1 H2.
case (spec_digits b); intros H3 H4.
- unfold gcd; generalize (spec_compare_aux a b); case compare.
+ unfold gcd. rewrite spec_compare. case Zcompare_spec.
intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.
apply Zis_gcd_refl.
intros; apply trans_equal with (Zgcd [b] [a]).
@@ -365,13 +997,91 @@ Module Make (Import W0:CyclicType) <: NType.
apply Zis_gcd_gcd; auto with zarith.
apply Zgcd_is_pos.
apply Zis_gcd_sym; apply Zgcd_is_gcd.
- intros; apply spec_gcd_gt; auto.
+ intros; apply spec_gcd_gt; auto with zarith.
+ Qed.
+
+ (** * Parity test *)
+
+ Definition even : t -> bool := Eval red_t in
+ iter_t (fun n x => ZnZ.is_even x).
+
+ Definition odd x := negb (even x).
+
+ Lemma even_fold : even = iter_t (fun n x => ZnZ.is_even x).
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_even_aux: forall x,
+ if even x then [x] mod 2 = 0 else [x] mod 2 = 1.
+ Proof.
+ intros x. rewrite even_fold. destr_t x as (n,x).
+ exact (ZnZ.spec_is_even x).
+ Qed.
+
+ Theorem spec_even: forall x, even x = Zeven_bool [x].
+ Proof.
+ intros x. assert (H := spec_even_aux x). symmetry.
+ rewrite (Z_div_mod_eq_full [x] 2); auto with zarith.
+ destruct (even x); rewrite H, ?Zplus_0_r.
+ rewrite Zeven_bool_iff. apply Zeven_2p.
+ apply not_true_is_false. rewrite Zeven_bool_iff.
+ apply Zodd_not_Zeven. apply Zodd_2p_plus_1.
Qed.
+ Theorem spec_odd: forall x, odd x = Zodd_bool [x].
+ Proof.
+ intros x. unfold odd.
+ assert (H := spec_even_aux x). symmetry.
+ rewrite (Z_div_mod_eq_full [x] 2); auto with zarith.
+ destruct (even x); rewrite H, ?Zplus_0_r; simpl negb.
+ apply not_true_is_false. rewrite Zodd_bool_iff.
+ apply Zeven_not_Zodd. apply Zeven_2p.
+ apply Zodd_bool_iff. apply Zodd_2p_plus_1.
+ Qed.
(** * Conversion *)
- Definition of_N x :=
+ Definition pheight p :=
+ Peano.pred (nat_of_P (get_height (ZnZ.digits (dom_op 0)) (plength p))).
+
+ Theorem pheight_correct: forall p,
+ Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z_of_nat (pheight p))).
+ Proof.
+ intros p; unfold pheight.
+ assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).
+ intros x.
+ assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.
+ rewrite <- inj_S.
+ rewrite <- (fun x => S_pred x 0); auto with zarith.
+ rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.
+ apply lt_le_trans with 1%nat; auto with zarith.
+ exact (le_Pmult_nat x 1).
+ rewrite F1; clear F1.
+ assert (F2:= (get_height_correct (ZnZ.digits (dom_op 0)) (plength p))).
+ apply Zlt_le_trans with (Zpos (Psucc p)).
+ rewrite Zpos_succ_morphism; auto with zarith.
+ apply Zle_trans with (1 := plength_pred_correct (Psucc p)).
+ rewrite Ppred_succ.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ Definition of_pos (x:positive) : t :=
+ let n := pheight x in
+ reduce n (snd (ZnZ.of_pos x)).
+
+ Theorem spec_of_pos: forall x,
+ [of_pos x] = Zpos x.
+ Proof.
+ intros x; unfold of_pos.
+ rewrite spec_reduce.
+ simpl.
+ apply ZnZ.of_pos_correct.
+ unfold base.
+ apply Zlt_le_trans with (1 := pheight_correct x).
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite (digits_dom_op (_ _)), Pshiftl_nat_Zpower. auto with zarith.
+ Qed.
+
+ Definition of_N (x:N) : t :=
match x with
| BinNat.N0 => zero
| Npos p => of_pos p
@@ -381,51 +1091,437 @@ Module Make (Import W0:CyclicType) <: NType.
[of_N x] = Z_of_N x.
Proof.
intros x; case x.
- simpl of_N.
- unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ simpl of_N. exact spec_0.
intros p; exact (spec_of_pos p).
Qed.
+ (** * [head0] and [tail0]
- (** * Shift *)
+ Number of zero at the beginning and at the end of
+ the representation of the number.
+ NB: these functions are not morphism for setoid [eq].
+ *)
- Definition shiftr n x :=
- match compare n (Ndigits x) with
- | Lt => unsafe_shiftr n x
- | _ => N0 w_0
- end.
+ Local Notation head0n := (fun n =>
+ let head0 := ZnZ.head0 in
+ fun x => reduce n (head0 x)).
+
+ Definition head0 : t -> t := Eval red_t in iter_t head0n.
+
+ Lemma head0_fold : head0 = iter_t head0n.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_head00: forall x, [x] = 0 -> [head0 x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite head0_fold, digits_fold. destr_t x as (n,x).
+ exact (ZnZ.spec_head00 x).
+ Qed.
+
+ Lemma pow2_pos_minus_1 : forall z, 0<z -> 2^(z-1) = 2^z / 2.
+ Proof.
+ intros. apply Zdiv_unique with 0; auto with zarith.
+ change 2 with (2^1) at 2.
+ rewrite <- Zpower_exp; auto with zarith.
+ rewrite Zplus_0_r. f_equal. auto with zarith.
+ Qed.
- Theorem spec_shiftr: forall n x,
- [shiftr n x] = [x] / 2 ^ [n].
- Proof.
- intros n x; unfold shiftr;
- generalize (spec_compare_aux n (Ndigits x)); case compare; intros H.
- apply trans_equal with (1 := spec_0 w0_spec).
- apply sym_equal; apply Zdiv_small; rewrite H.
- rewrite spec_Ndigits; exact (spec_digits x).
- rewrite <- spec_unsafe_shiftr; auto with zarith.
- apply trans_equal with (1 := spec_0 w0_spec).
- apply sym_equal; apply Zdiv_small.
- rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.
- split; auto.
- apply Zlt_le_trans with (1 := H2).
- apply Zpower_le_monotone; auto with zarith.
- Qed.
-
- Definition shiftl_aux_body cont n x :=
- match compare n (head0 x) with
- Gt => cont n (double_size x)
- | _ => unsafe_shiftl n x
+ Theorem spec_head0: forall x, 0 < [x] ->
+ 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).
+ Proof.
+ intros x. rewrite pow2_pos_minus_1 by (red; auto).
+ rewrite head0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_head0 x).
+ Qed.
+
+ Local Notation tail0n := (fun n =>
+ let tail0 := ZnZ.tail0 in
+ fun x => reduce n (tail0 x)).
+
+ Definition tail0 : t -> t := Eval red_t in iter_t tail0n.
+
+ Lemma tail0_fold : tail0 = iter_t tail0n.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_tail00: forall x, [x] = 0 -> [tail0 x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite tail0_fold, digits_fold. destr_t x as (n,x).
+ exact (ZnZ.spec_tail00 x).
+ Qed.
+
+ Theorem spec_tail0: forall x,
+ 0 < [x] -> exists y, 0 <= y /\ [x] = (2 * y + 1) * 2 ^ [tail0 x].
+ Proof.
+ intros x. rewrite tail0_fold. destr_t x as (n,x). exact (ZnZ.spec_tail0 x).
+ Qed.
+
+ (** * [Ndigits]
+
+ Same as [digits] but encoded using large integers
+ NB: this function is not a morphism for setoid [eq].
+ *)
+
+ Local Notation Ndigitsn := (fun n =>
+ let d := reduce n (ZnZ.zdigits (dom_op n)) in
+ fun _ => d).
+
+ Definition Ndigits : t -> t := Eval red_t in iter_t Ndigitsn.
+
+ Lemma Ndigits_fold : Ndigits = iter_t Ndigitsn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).
+ Proof.
+ intros x. rewrite Ndigits_fold, digits_fold. destr_t x as (n,x).
+ apply ZnZ.spec_zdigits.
+ Qed.
+
+ (** * Binary logarithm *)
+
+ Local Notation log2n := (fun n =>
+ let op := dom_op n in
+ let zdigits := ZnZ.zdigits op in
+ let head0 := ZnZ.head0 in
+ let sub_carry := ZnZ.sub_carry in
+ fun x => reduce n (sub_carry zdigits (head0 x))).
+
+ Definition log2 : t -> t := Eval red_t in
+ let log2 := iter_t log2n in
+ fun x => if eqb x zero then zero else log2 x.
+
+ Lemma log2_fold :
+ log2 = fun x => if eqb x zero then zero else iter_t log2n x.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma spec_log2_0 : forall x, [x] = 0 -> [log2 x] = 0.
+ Proof.
+ intros x H. rewrite log2_fold.
+ rewrite spec_eqb, H. rewrite spec_0. simpl. exact spec_0.
+ Qed.
+
+ Lemma head0_zdigits : forall n (x : dom_t n),
+ 0 < ZnZ.to_Z x ->
+ ZnZ.to_Z (ZnZ.head0 x) < ZnZ.to_Z (ZnZ.zdigits (dom_op n)).
+ Proof.
+ intros n x H.
+ destruct (ZnZ.spec_head0 x H) as (_,H0).
+ intros.
+ assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
+ assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ unfold base in *.
+ rewrite ZnZ.spec_zdigits in H2 |- *.
+ set (h := ZnZ.to_Z (ZnZ.head0 x)) in *; clearbody h.
+ set (d := ZnZ.digits (dom_op n)) in *; clearbody d.
+ destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso.
+ assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h).
+ apply Zmult_le_compat; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zmult_comm in H0. auto with zarith.
+ Qed.
+
+ Lemma spec_log2_pos : forall x, [x]<>0 ->
+ 2^[log2 x] <= [x] < 2^([log2 x]+1).
+ Proof.
+ intros x H. rewrite log2_fold.
+ rewrite spec_eqb. rewrite spec_0.
+ case Z.eqb_spec.
+ auto with zarith.
+ clear H.
+ destr_t x as (n,x). intros H.
+ rewrite ZnZ.spec_sub_carry.
+ assert (H0 := ZnZ.spec_to_Z x).
+ assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
+ assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ assert (H3 := head0_zdigits n x).
+ rewrite Zmod_small by auto with zarith.
+ rewrite (Z.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x))));
+ auto with zarith.
+ rewrite (Z.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x))));
+ auto with zarith.
+ rewrite <- 2 Zpower_exp; auto with zarith.
+ rewrite Z.add_sub_assoc, Zplus_minus.
+ rewrite Z.sub_simpl_r, Zplus_minus.
+ rewrite ZnZ.spec_zdigits.
+ rewrite pow2_pos_minus_1 by (red; auto).
+ apply ZnZ.spec_head0; auto with zarith.
+ Qed.
+
+ Lemma spec_log2 : forall x, [log2 x] = Z.log2 [x].
+ Proof.
+ intros. destruct (Z_lt_ge_dec 0 [x]).
+ symmetry. apply Z.log2_unique. apply spec_pos.
+ apply spec_log2_pos. intro EQ; rewrite EQ in *; auto with zarith.
+ rewrite spec_log2_0. rewrite Z.log2_nonpos; auto with zarith.
+ generalize (spec_pos x); auto with zarith.
+ Qed.
+
+ Lemma log2_digits_head0 : forall x, 0 < [x] ->
+ [log2 x] = Zpos (digits x) - [head0 x] - 1.
+ Proof.
+ intros. rewrite log2_fold.
+ rewrite spec_eqb. rewrite spec_0.
+ case Z.eqb_spec.
+ auto with zarith.
+ intros _. revert H. rewrite digits_fold, head0_fold. destr_t x as (n,x).
+ rewrite ZnZ.spec_sub_carry.
+ intros.
+ generalize (head0_zdigits n x H).
+ generalize (ZnZ.spec_to_Z (ZnZ.head0 x)).
+ generalize (ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
+ rewrite ZnZ.spec_zdigits. intros. apply Zmod_small.
+ auto with zarith.
+ Qed.
+
+ (** * Right shift *)
+
+ Local Notation shiftrn := (fun n =>
+ let op := dom_op n in
+ let zdigits := ZnZ.zdigits op in
+ let sub_c := ZnZ.sub_c in
+ let add_mul_div := ZnZ.add_mul_div in
+ let zzero := ZnZ.zero in
+ fun x p => match sub_c zdigits p with
+ | C0 d => reduce n (add_mul_div d zzero x)
+ | C1 _ => zero
+ end).
+
+ Definition shiftr : t -> t -> t := Eval red_t in
+ same_level shiftrn.
+
+ Lemma shiftr_fold : shiftr = same_level shiftrn.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma div_pow2_bound :forall x y z,
+ 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z.
+ Proof.
+ intros x y z HH HH1 HH2.
+ split; auto with zarith.
+ apply Zle_lt_trans with (2 := HH2); auto with zarith.
+ apply Zdiv_le_upper_bound; auto with zarith.
+ pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.
+ apply Zmult_le_compat_l; auto.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zpower_0_r; ring.
+ Qed.
+
+ Theorem spec_shiftr_pow2 : forall x n,
+ [shiftr x n] = [x] / 2 ^ [n].
+ Proof.
+ intros x y. rewrite shiftr_fold. apply spec_same_level. clear x y.
+ intros n x p. simpl.
+ assert (Hx := ZnZ.spec_to_Z x).
+ assert (Hy := ZnZ.spec_to_Z p).
+ generalize (ZnZ.spec_sub_c (ZnZ.zdigits (dom_op n)) p).
+ case ZnZ.sub_c; intros d H; unfold interp_carry in *; simpl.
+ (** Subtraction without underflow : [ p <= digits ] *)
+ rewrite spec_reduce.
+ rewrite ZnZ.spec_zdigits in H.
+ rewrite ZnZ.spec_add_mul_div by auto with zarith.
+ rewrite ZnZ.spec_0, Zmult_0_l, Zplus_0_l.
+ rewrite Zmod_small.
+ f_equal. f_equal. auto with zarith.
+ split. auto with zarith.
+ apply div_pow2_bound; auto with zarith.
+ (** Subtraction with underflow : [ digits < p ] *)
+ rewrite ZnZ.spec_0. symmetry.
+ apply Zdiv_small.
+ split; auto with zarith.
+ apply Zlt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith.
+ unfold base. apply Zpower_le_monotone2; auto with zarith.
+ rewrite ZnZ.spec_zdigits in H.
+ generalize (ZnZ.spec_to_Z d); auto with zarith.
+ Qed.
+
+ Lemma spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p].
+ Proof.
+ intros.
+ now rewrite spec_shiftr_pow2, Z.shiftr_div_pow2 by apply spec_pos.
+ Qed.
+
+ (** * Left shift *)
+
+ (** First an unsafe version, working correctly only if
+ the representation is large enough *)
+
+ Local Notation unsafe_shiftln := (fun n =>
+ let op := dom_op n in
+ let add_mul_div := ZnZ.add_mul_div in
+ let zero := ZnZ.zero in
+ fun x p => reduce n (add_mul_div p x zero)).
+
+ Definition unsafe_shiftl : t -> t -> t := Eval red_t in
+ same_level unsafe_shiftln.
+
+ Lemma unsafe_shiftl_fold : unsafe_shiftl = same_level unsafe_shiftln.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_unsafe_shiftl_aux : forall x p K,
+ 0 <= K ->
+ [x] < 2^K ->
+ [p] + K <= Zpos (digits x) ->
+ [unsafe_shiftl x p] = [x] * 2 ^ [p].
+ Proof.
+ intros x p.
+ rewrite unsafe_shiftl_fold. rewrite digits_level.
+ apply spec_same_level_dep.
+ intros n m z z' r LE H K HK H1 H2. apply (H K); auto.
+ transitivity (Zpos (ZnZ.digits (dom_op n))); auto.
+ apply digits_dom_op_incr; auto.
+ clear x p.
+ intros n x p K HK Hx Hp. simpl. rewrite spec_reduce.
+ destruct (ZnZ.spec_to_Z x).
+ destruct (ZnZ.spec_to_Z p).
+ rewrite ZnZ.spec_add_mul_div by (omega with *).
+ rewrite ZnZ.spec_0, Zdiv_0_l, Zplus_0_r.
+ apply Zmod_small. unfold base.
+ split; auto with zarith.
+ rewrite Zmult_comm.
+ apply Zlt_le_trans with (2^(ZnZ.to_Z p + K)).
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ Qed.
+
+ Theorem spec_unsafe_shiftl: forall x p,
+ [p] <= [head0 x] -> [unsafe_shiftl x p] = [x] * 2 ^ [p].
+ Proof.
+ intros.
+ destruct (Z_eq_dec [x] 0) as [EQ|NEQ].
+ (* [x] = 0 *)
+ apply spec_unsafe_shiftl_aux with 0; auto with zarith.
+ now rewrite EQ.
+ rewrite spec_head00 in *; auto with zarith.
+ (* [x] <> 0 *)
+ apply spec_unsafe_shiftl_aux with ([log2 x] + 1); auto with zarith.
+ generalize (spec_pos (log2 x)); auto with zarith.
+ destruct (spec_log2_pos x); auto with zarith.
+ rewrite log2_digits_head0; auto with zarith.
+ generalize (spec_pos x); auto with zarith.
+ Qed.
+
+ (** Then we define a function doubling the size of the representation
+ but without changing the value of the number. *)
+
+ Local Notation double_size_n := (fun n =>
+ let zero := ZnZ.zero in
+ fun x => mk_t_S n (WW zero x)).
+
+ Definition double_size : t -> t := Eval red_t in
+ iter_t double_size_n.
+
+ Lemma double_size_fold : double_size = iter_t double_size_n.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma double_size_level : forall x, level (double_size x) = S (level x).
+ Proof.
+ intros x. rewrite double_size_fold; unfold level at 2. destr_t x as (n,x).
+ apply mk_t_S_level.
+ Qed.
+
+ Theorem spec_double_size_digits:
+ forall x, Zpos (digits (double_size x)) = 2 * (Zpos (digits x)).
+ Proof.
+ intros x. rewrite ! digits_level, double_size_level.
+ rewrite 2 digits_dom_op, 2 Pshiftl_nat_Zpower,
+ inj_S, Zpower_Zsucc; auto with zarith.
+ ring.
+ Qed.
+
+ Theorem spec_double_size: forall x, [double_size x] = [x].
+ Proof.
+ intros x. rewrite double_size_fold. destr_t x as (n,x).
+ rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_0. auto with zarith.
+ Qed.
+
+ Theorem spec_double_size_head0:
+ forall x, 2 * [head0 x] <= [head0 (double_size x)].
+ Proof.
+ intros x.
+ assert (F1:= spec_pos (head0 x)).
+ assert (F2: 0 < Zpos (digits x)).
+ red; auto.
+ case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.
+ generalize HH; rewrite <- (spec_double_size x); intros HH1.
+ case (spec_head0 x HH); intros _ HH2.
+ case (spec_head0 _ HH1).
+ rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
+ intros HH3 _.
+ case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.
+ absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.
+ apply Zle_not_lt.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply Zpower_le_monotone2; auto; auto with zarith.
+ assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).
+ case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.
+ apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.
+ rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.
+ assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].
+ apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).
+ apply Zmult_le_compat_l; auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
+ case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.
+ absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.
+ rewrite <- HH5; rewrite Zmult_1_r.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite (Zmult_comm 2).
+ rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2.
+ apply Zlt_le_trans with (2 := HH3).
+ rewrite <- Zmult_assoc.
+ replace (2 * Zpos (digits x) - 1) with
+ ((Zpos (digits x) - 1) + (Zpos (digits x))).
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat2; auto with zarith.
+ split; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ rewrite Zpos_xO; ring.
+ apply Zlt_le_weak; auto.
+ repeat rewrite spec_head00; auto.
+ rewrite spec_double_size_digits.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite spec_double_size; auto.
+ Qed.
+
+ Theorem spec_double_size_head0_pos:
+ forall x, 0 < [head0 (double_size x)].
+ Proof.
+ intros x.
+ assert (F: 0 < Zpos (digits x)).
+ red; auto.
+ case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.
+ case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.
+ apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.
+ case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.
+ generalize F3; rewrite <- (spec_double_size x); intros F4.
+ absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).
+ apply Zle_not_lt.
+ apply Zpower_le_monotone2; auto with zarith.
+ rewrite Zpos_xO; auto with zarith.
+ case (spec_head0 x F3).
+ rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.
+ apply Zle_lt_trans with (2 := HH).
+ case (spec_head0 _ F4).
+ rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
+ rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.
+ generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.
+ Qed.
+
+ (** Finally we iterate [double_size] enough before [unsafe_shiftl]
+ in order to get a fully correct [shiftl]. *)
+
+ Definition shiftl_aux_body cont x n :=
+ match compare n (head0 x) with
+ Gt => cont (double_size x) n
+ | _ => unsafe_shiftl x n
end.
- Theorem spec_shiftl_aux_body: forall n p x cont,
+ Theorem spec_shiftl_aux_body: forall n x p cont,
2^ Zpos p <= [head0 x] ->
(forall x, 2 ^ (Zpos p + 1) <= [head0 x]->
- [cont n x] = [x] * 2 ^ [n]) ->
- [shiftl_aux_body cont n x] = [x] * 2 ^ [n].
+ [cont x n] = [x] * 2 ^ [n]) ->
+ [shiftl_aux_body cont x n] = [x] * 2 ^ [n].
Proof.
- intros n p x cont H1 H2; unfold shiftl_aux_body.
- generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ intros n x p cont H1 H2; unfold shiftl_aux_body.
+ rewrite spec_compare; case Zcompare_spec; intros H.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite H2.
@@ -435,22 +1531,22 @@ Module Make (Import W0:CyclicType) <: NType.
rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.
Qed.
- Fixpoint shiftl_aux p cont n x {struct p} :=
+ Fixpoint shiftl_aux p cont x n :=
shiftl_aux_body
- (fun n x => match p with
- | xH => cont n x
- | xO p => shiftl_aux p (shiftl_aux p cont) n x
- | xI p => shiftl_aux p (shiftl_aux p cont) n x
- end) n x.
+ (fun x n => match p with
+ | xH => cont x n
+ | xO p => shiftl_aux p (shiftl_aux p cont) x n
+ | xI p => shiftl_aux p (shiftl_aux p cont) x n
+ end) x n.
- Theorem spec_shiftl_aux: forall p q n x cont,
+ Theorem spec_shiftl_aux: forall p q x n cont,
2 ^ (Zpos q) <= [head0 x] ->
(forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->
- [cont n x] = [x] * 2 ^ [n]) ->
- [shiftl_aux p cont n x] = [x] * 2 ^ [n].
+ [cont x n] = [x] * 2 ^ [n]) ->
+ [shiftl_aux p cont x n] = [x] * 2 ^ [n].
Proof.
intros p; elim p; unfold shiftl_aux; fold shiftl_aux; clear p.
- intros p Hrec q n x cont H1 H2.
+ intros p Hrec q x n cont H1 H2.
apply spec_shiftl_aux_body with (q); auto.
intros x1 H3; apply Hrec with (q + 1)%positive; auto.
intros x2 H4; apply Hrec with (p + q + 1)%positive; auto.
@@ -465,7 +1561,7 @@ Module Make (Import W0:CyclicType) <: NType.
apply spec_shiftl_aux_body with (q); auto.
intros x1 H3; apply Hrec with (q); auto.
apply Zle_trans with (2 := H3); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
intros x2 H4; apply Hrec with (p + q)%positive; auto.
intros x3 H5; apply H2.
rewrite (Zpos_xO p).
@@ -477,20 +1573,20 @@ Module Make (Import W0:CyclicType) <: NType.
rewrite Zplus_comm; auto.
Qed.
- Definition shiftl n x :=
+ Definition shiftl x n :=
shiftl_aux_body
(shiftl_aux_body
- (shiftl_aux (digits n) unsafe_shiftl)) n x.
+ (shiftl_aux (digits n) unsafe_shiftl)) x n.
- Theorem spec_shiftl: forall n x,
- [shiftl n x] = [x] * 2 ^ [n].
+ Theorem spec_shiftl_pow2 : forall x n,
+ [shiftl x n] = [x] * 2 ^ [n].
Proof.
- intros n x; unfold shiftl, shiftl_aux_body.
- generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ intros x n; unfold shiftl, shiftl_aux_body.
+ rewrite spec_compare; case Zcompare_spec; intros H.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite <- (spec_double_size x).
- generalize (spec_compare_aux n (head0 (double_size x))); case compare; intros H1.
+ rewrite spec_compare; case Zcompare_spec; intros H1.
apply spec_unsafe_shiftl; auto with zarith.
apply spec_unsafe_shiftl; auto with zarith.
rewrite <- (spec_double_size (double_size x)).
@@ -504,21 +1600,67 @@ Module Make (Import W0:CyclicType) <: NType.
apply Zle_trans with (2 := H2).
apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.
case (spec_digits n); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
+ apply Zpower_le_monotone2; auto with zarith.
Qed.
+ Lemma spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p].
+ Proof.
+ intros.
+ now rewrite spec_shiftl_pow2, Z.shiftl_mul_pow2 by apply spec_pos.
+ Qed.
- (** * Zero and One *)
+ (** Other bitwise operations *)
- Theorem spec_0: [zero] = 0.
+ Definition testbit x n := odd (shiftr x n).
+
+ Lemma spec_testbit: forall x p, testbit x p = Z.testbit [x] [p].
Proof.
- exact (spec_0 w0_spec).
+ intros. unfold testbit. symmetry.
+ rewrite spec_odd, spec_shiftr. apply Z.testbit_odd.
Qed.
- Theorem spec_1: [one] = 1.
+ Definition div2 x := shiftr x one.
+
+ Lemma spec_div2: forall x, [div2 x] = Z.div2 [x].
Proof.
- exact (spec_1 w0_spec).
+ intros. unfold div2. symmetry.
+ rewrite spec_shiftr, spec_1. apply Z.div2_spec.
Qed.
+ (** TODO : provide efficient versions instead of just converting
+ from/to N (see with Laurent) *)
+
+ Definition lor x y := of_N (N.lor (to_N x) (to_N y)).
+ Definition land x y := of_N (N.land (to_N x) (to_N y)).
+ Definition ldiff x y := of_N (N.ldiff (to_N x) (to_N y)).
+ Definition lxor x y := of_N (N.lxor (to_N x) (to_N y)).
+
+ Lemma spec_land: forall x y, [land x y] = Z.land [x] [y].
+ Proof.
+ intros x y. unfold land. rewrite spec_of_N. unfold to_N.
+ generalize (spec_pos x), (spec_pos y).
+ destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ Qed.
+
+ Lemma spec_lor: forall x y, [lor x y] = Z.lor [x] [y].
+ Proof.
+ intros x y. unfold lor. rewrite spec_of_N. unfold to_N.
+ generalize (spec_pos x), (spec_pos y).
+ destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ Qed.
+
+ Lemma spec_ldiff: forall x y, [ldiff x y] = Z.ldiff [x] [y].
+ Proof.
+ intros x y. unfold ldiff. rewrite spec_of_N. unfold to_N.
+ generalize (spec_pos x), (spec_pos y).
+ destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ Qed.
+
+ Lemma spec_lxor: forall x y, [lxor x y] = Z.lxor [x] [y].
+ Proof.
+ intros x y. unfold lxor. rewrite spec_of_N. unfold to_N.
+ generalize (spec_pos x), (spec_pos y).
+ destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ Qed.
End Make.