summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/BigN/NMake.v')
-rw-r--r--theories/Numbers/Natural/BigN/NMake.v524
1 files changed, 524 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v
new file mode 100644
index 00000000..925b0535
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/NMake.v
@@ -0,0 +1,524 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(** * NMake *)
+
+(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)
+
+(** NB: This file contain the part which is independent from the underlying
+ representation. The representation-dependent (and macro-generated) part
+ is now in [NMake_gen]. *)
+
+Require Import BigNumPrelude ZArith CyclicAxioms.
+Require Import Nbasic Wf_nat StreamMemo NSig NMake_gen.
+
+Module Make (Import W0:CyclicType) <: NType.
+
+ (** Macro-generated part *)
+
+ Include NMake_gen.Make W0.
+
+
+ (** * Predecessor *)
+
+ Lemma spec_pred : forall x, [pred x] = Zmax 0 ([x]-1).
+ Proof.
+ intros. destruct (Zle_lt_or_eq _ _ (spec_pos x)).
+ rewrite Zmax_r; auto with zarith.
+ apply spec_pred_pos; auto.
+ rewrite <- H; apply spec_pred0; auto.
+ Qed.
+
+
+ (** * Subtraction *)
+
+ Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]).
+ Proof.
+ intros. destruct (Zle_or_lt [y] [x]).
+ rewrite Zmax_r; auto with zarith. apply spec_sub_pos; auto.
+ rewrite Zmax_l; auto with zarith. apply spec_sub0; auto.
+ Qed.
+
+ (** * Comparison *)
+
+ Theorem spec_compare : forall x y, compare x y = Zcompare [x] [y].
+ Proof.
+ intros x y. generalize (spec_compare_aux x y); destruct compare;
+ intros; symmetry; try rewrite Zcompare_Eq_iff_eq; assumption.
+ Qed.
+
+ Definition eq_bool x y :=
+ match compare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+ Theorem spec_eq_bool : forall x y, eq_bool x y = Zeq_bool [x] [y].
+ Proof.
+ intros. unfold eq_bool, Zeq_bool. rewrite spec_compare; reflexivity.
+ Qed.
+
+ Theorem spec_eq_bool_aux: forall x y,
+ if eq_bool x y then [x] = [y] else [x] <> [y].
+ Proof.
+ intros x y; unfold eq_bool.
+ generalize (spec_compare_aux x y); case compare; auto with zarith.
+ Qed.
+
+ Definition lt n m := [n] < [m].
+ Definition le n m := [n] <= [m].
+
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Theorem spec_max : forall n m, [max n m] = Zmax [n] [m].
+ Proof.
+ intros. unfold max, Zmax. rewrite spec_compare; destruct Zcompare; reflexivity.
+ Qed.
+
+ Theorem spec_min : forall n m, [min n m] = Zmin [n] [m].
+ Proof.
+ intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity.
+ Qed.
+
+
+ (** * Power *)
+
+ Fixpoint power_pos (x:t) (p:positive) {struct p} : t :=
+ match p with
+ | xH => x
+ | xO p => square (power_pos x p)
+ | xI p => mul (square (power_pos x p)) x
+ end.
+
+ Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
+ Proof.
+ intros x n; generalize x; elim n; clear n x; simpl power_pos.
+ intros; rewrite spec_mul; rewrite spec_square; rewrite H.
+ rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; rewrite Zpower_1_r; auto.
+ intros; rewrite spec_square; rewrite H.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.
+ rewrite Zpower_2; auto.
+ intros; rewrite Zpower_1_r; auto.
+ Qed.
+
+ Definition power x (n:N) := match n with
+ | BinNat.N0 => one
+ | BinNat.Npos p => power_pos x p
+ end.
+
+ Theorem spec_power: forall x n, [power x n] = [x] ^ Z_of_N n.
+ Proof.
+ destruct n; simpl. apply (spec_1 w0_spec).
+ apply spec_power_pos.
+ Qed.
+
+
+ (** * Div *)
+
+ Definition div_eucl x y :=
+ if eq_bool y zero then (zero,zero) else
+ match compare x y with
+ | Eq => (one, zero)
+ | Lt => (zero, x)
+ | Gt => div_gt x y
+ end.
+
+ Theorem spec_div_eucl: forall x y,
+ let (q,r) := div_eucl x y in
+ ([q], [r]) = Zdiv_eucl [x] [y].
+ Proof.
+ assert (F0: [zero] = 0).
+ exact (spec_0 w0_spec).
+ assert (F1: [one] = 1).
+ exact (spec_1 w0_spec).
+ intros x y. unfold div_eucl.
+ generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
+ intro H. rewrite H. destruct [x]; auto.
+ intro H'.
+ assert (0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ clear H'.
+ generalize (spec_compare_aux x y); case compare; try rewrite F0;
+ try rewrite F1; intros; auto with zarith.
+ rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))
+ (Z_mod_same [y] (Zlt_gt _ _ H));
+ unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
+ assert (F2: 0 <= [x] < [y]).
+ generalize (spec_pos x); auto.
+ generalize (Zdiv_small _ _ F2)
+ (Zmod_small _ _ F2);
+ unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.
+ generalize (spec_div_gt _ _ H0 H); auto.
+ unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.
+ intros a b c d (H1, H2); subst; auto.
+ Qed.
+
+ Definition div x y := fst (div_eucl x y).
+
+ Theorem spec_div:
+ forall x y, [div x y] = [x] / [y].
+ Proof.
+ intros x y; unfold div; generalize (spec_div_eucl x y);
+ case div_eucl; simpl fst.
+ intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H;
+ injection H; auto.
+ Qed.
+
+
+ (** * Modulo *)
+
+ Definition modulo x y :=
+ if eq_bool y zero then zero else
+ match compare x y with
+ | Eq => zero
+ | Lt => x
+ | Gt => mod_gt x y
+ end.
+
+ Theorem spec_modulo:
+ forall x y, [modulo x y] = [x] mod [y].
+ Proof.
+ assert (F0: [zero] = 0).
+ exact (spec_0 w0_spec).
+ assert (F1: [one] = 1).
+ exact (spec_1 w0_spec).
+ intros x y. unfold modulo.
+ generalize (spec_eq_bool_aux y zero). destruct eq_bool; rewrite F0.
+ intro H; rewrite H. destruct [x]; auto.
+ intro H'.
+ assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
+ clear H'.
+ generalize (spec_compare_aux x y); case compare; try rewrite F0;
+ try rewrite F1; intros; try split; auto with zarith.
+ rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.
+ apply sym_equal; apply Zmod_small; auto with zarith.
+ generalize (spec_pos x); auto with zarith.
+ apply spec_mod_gt; auto.
+ Qed.
+
+
+ (** * Gcd *)
+
+ Definition gcd_gt_body a b cont :=
+ match compare b zero with
+ | Gt =>
+ let r := mod_gt a b in
+ match compare r zero with
+ | Gt => cont r (mod_gt b r)
+ | _ => b
+ end
+ | _ => a
+ end.
+
+ Theorem Zspec_gcd_gt_body: forall a b cont p,
+ [a] > [b] -> [a] < 2 ^ p ->
+ (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->
+ Zis_gcd [a1] [b1] [cont a1 b1]) ->
+ Zis_gcd [a] [b] [gcd_gt_body a b cont].
+ Proof.
+ assert (F1: [zero] = 0).
+ unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ intros a b cont p H2 H3 H4; unfold gcd_gt_body.
+ generalize (spec_compare_aux b zero); case compare; try rewrite F1.
+ intros HH; rewrite HH; apply Zis_gcd_0.
+ intros HH; absurd (0 <= [b]); auto with zarith.
+ case (spec_digits b); auto with zarith.
+ intros H5; generalize (spec_compare_aux (mod_gt a b) zero);
+ case compare; try rewrite F1.
+ intros H6; rewrite <- (Zmult_1_r [b]).
+ rewrite (Z_div_mod_eq [a] [b]); auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ rewrite H6; rewrite Zplus_0_r.
+ apply Zis_gcd_mult; apply Zis_gcd_1.
+ intros; apply False_ind.
+ case (spec_digits (mod_gt a b)); auto with zarith.
+ intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.
+ apply DoubleDiv.Zis_gcd_mod; auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ assert (F2: [b] > [mod_gt a b]).
+ case (Z_mod_lt [a] [b]); auto with zarith.
+ repeat rewrite <- spec_mod_gt; auto with zarith.
+ assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]).
+ case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.
+ rewrite <- spec_mod_gt; auto with zarith.
+ repeat rewrite <- spec_mod_gt; auto with zarith.
+ apply H4; auto with zarith.
+ apply Zmult_lt_reg_r with 2; auto with zarith.
+ apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith.
+ apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.
+ apply Zplus_le_compat_r.
+ pattern [b] at 1; rewrite <- (Zmult_1_l [b]).
+ apply Zmult_le_compat_r; auto with zarith.
+ case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith.
+ intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;
+ try rewrite <- HH in H2; auto with zarith.
+ case (Z_mod_lt [a] [b]); auto with zarith.
+ rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith.
+ rewrite <- Z_div_mod_eq; auto with zarith.
+ pattern 2 at 2; rewrite <- (Zpower_1_r 2).
+ rewrite <- Zpower_exp; auto with zarith.
+ ring_simplify (p - 1 + 1); auto.
+ case (Zle_lt_or_eq 0 p); auto with zarith.
+ generalize H3; case p; simpl Zpower; auto with zarith.
+ intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.
+ Qed.
+
+ Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=
+ gcd_gt_body a b
+ (fun a b =>
+ match p with
+ | xH => cont a b
+ | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b
+ | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b
+ end).
+
+ Theorem Zspec_gcd_gt_aux: forall p n a b cont,
+ [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->
+ (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->
+ Zis_gcd [a1] [b1] [cont a1 b1]) ->
+ Zis_gcd [a] [b] [gcd_gt_aux p cont a b].
+ intros p; elim p; clear p.
+ intros p Hrec n a b cont H2 H3 H4.
+ unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.
+ intros a1 b1 H6 H7.
+ apply Hrec with (Zpos p + n); auto.
+ replace (Zpos p + (Zpos p + n)) with
+ (Zpos (xI p) + n - 1); auto.
+ rewrite Zpos_xI; ring.
+ intros a2 b2 H9 H10.
+ apply Hrec with n; auto.
+ intros p Hrec n a b cont H2 H3 H4.
+ unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.
+ intros a1 b1 H6 H7.
+ apply Hrec with (Zpos p + n - 1); auto.
+ replace (Zpos p + (Zpos p + n - 1)) with
+ (Zpos (xO p) + n - 1); auto.
+ rewrite Zpos_xO; ring.
+ intros a2 b2 H9 H10.
+ apply Hrec with (n - 1); auto.
+ replace (Zpos p + (n - 1)) with
+ (Zpos p + n - 1); auto with zarith.
+ intros a3 b3 H12 H13; apply H4; auto with zarith.
+ apply Zlt_le_trans with (1 := H12).
+ case (Zle_or_lt 1 n); intros HH.
+ apply Zpower_le_monotone; auto with zarith.
+ apply Zle_trans with 0; auto with zarith.
+ assert (HH1: n - 1 < 0); auto with zarith.
+ generalize HH1; case (n - 1); auto with zarith.
+ intros p1 HH2; discriminate.
+ intros n a b cont H H2 H3.
+ simpl gcd_gt_aux.
+ apply Zspec_gcd_gt_body with (n + 1); auto with zarith.
+ rewrite Zplus_comm; auto.
+ intros a1 b1 H5 H6; apply H3; auto.
+ replace n with (n + 1 - 1); auto; try ring.
+ Qed.
+
+ Definition gcd_cont a b :=
+ match compare one b with
+ | Eq => one
+ | _ => a
+ end.
+
+ Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.
+
+ Theorem spec_gcd_gt: forall a b,
+ [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b].
+ Proof.
+ intros a b H2.
+ case (spec_digits (gcd_gt a b)); intros H3 H4.
+ case (spec_digits a); intros H5 H6.
+ apply sym_equal; apply Zis_gcd_gcd; auto with zarith.
+ unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.
+ intros a1 a2; rewrite Zpower_0_r.
+ case (spec_digits a2); intros H7 H8;
+ intros; apply False_ind; auto with zarith.
+ Qed.
+
+ Definition gcd a b :=
+ match compare a b with
+ | Eq => a
+ | Lt => gcd_gt b a
+ | Gt => gcd_gt a b
+ end.
+
+ Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b].
+ Proof.
+ intros a b.
+ case (spec_digits a); intros H1 H2.
+ case (spec_digits b); intros H3 H4.
+ unfold gcd; generalize (spec_compare_aux a b); case compare.
+ intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.
+ apply Zis_gcd_refl.
+ intros; apply trans_equal with (Zgcd [b] [a]).
+ apply spec_gcd_gt; auto with zarith.
+ apply Zis_gcd_gcd; auto with zarith.
+ apply Zgcd_is_pos.
+ apply Zis_gcd_sym; apply Zgcd_is_gcd.
+ intros; apply spec_gcd_gt; auto.
+ Qed.
+
+
+ (** * Conversion *)
+
+ Definition of_N x :=
+ match x with
+ | BinNat.N0 => zero
+ | Npos p => of_pos p
+ end.
+
+ Theorem spec_of_N: forall x,
+ [of_N x] = Z_of_N x.
+ Proof.
+ intros x; case x.
+ simpl of_N.
+ unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.
+ intros p; exact (spec_of_pos p).
+ Qed.
+
+
+ (** * Shift *)
+
+ Definition shiftr n x :=
+ match compare n (Ndigits x) with
+ | Lt => unsafe_shiftr n x
+ | _ => N0 w_0
+ end.
+
+ Theorem spec_shiftr: forall n x,
+ [shiftr n x] = [x] / 2 ^ [n].
+ Proof.
+ intros n x; unfold shiftr;
+ generalize (spec_compare_aux n (Ndigits x)); case compare; intros H.
+ apply trans_equal with (1 := spec_0 w0_spec).
+ apply sym_equal; apply Zdiv_small; rewrite H.
+ rewrite spec_Ndigits; exact (spec_digits x).
+ rewrite <- spec_unsafe_shiftr; auto with zarith.
+ apply trans_equal with (1 := spec_0 w0_spec).
+ apply sym_equal; apply Zdiv_small.
+ rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.
+ split; auto.
+ apply Zlt_le_trans with (1 := H2).
+ apply Zpower_le_monotone; auto with zarith.
+ Qed.
+
+ Definition shiftl_aux_body cont n x :=
+ match compare n (head0 x) with
+ Gt => cont n (double_size x)
+ | _ => unsafe_shiftl n x
+ end.
+
+ Theorem spec_shiftl_aux_body: forall n p x cont,
+ 2^ Zpos p <= [head0 x] ->
+ (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->
+ [cont n x] = [x] * 2 ^ [n]) ->
+ [shiftl_aux_body cont n x] = [x] * 2 ^ [n].
+ Proof.
+ intros n p x cont H1 H2; unfold shiftl_aux_body.
+ generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ apply spec_unsafe_shiftl; auto with zarith.
+ apply spec_unsafe_shiftl; auto with zarith.
+ rewrite H2.
+ rewrite spec_double_size; auto.
+ rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.
+ apply Zle_trans with (2 := spec_double_size_head0 x).
+ rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.
+ Qed.
+
+ Fixpoint shiftl_aux p cont n x {struct p} :=
+ shiftl_aux_body
+ (fun n x => match p with
+ | xH => cont n x
+ | xO p => shiftl_aux p (shiftl_aux p cont) n x
+ | xI p => shiftl_aux p (shiftl_aux p cont) n x
+ end) n x.
+
+ Theorem spec_shiftl_aux: forall p q n x cont,
+ 2 ^ (Zpos q) <= [head0 x] ->
+ (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->
+ [cont n x] = [x] * 2 ^ [n]) ->
+ [shiftl_aux p cont n x] = [x] * 2 ^ [n].
+ Proof.
+ intros p; elim p; unfold shiftl_aux; fold shiftl_aux; clear p.
+ intros p Hrec q n x cont H1 H2.
+ apply spec_shiftl_aux_body with (q); auto.
+ intros x1 H3; apply Hrec with (q + 1)%positive; auto.
+ intros x2 H4; apply Hrec with (p + q + 1)%positive; auto.
+ rewrite <- Pplus_assoc.
+ rewrite Zpos_plus_distr; auto.
+ intros x3 H5; apply H2.
+ rewrite Zpos_xI.
+ replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));
+ auto.
+ repeat rewrite Zpos_plus_distr; ring.
+ intros p Hrec q n x cont H1 H2.
+ apply spec_shiftl_aux_body with (q); auto.
+ intros x1 H3; apply Hrec with (q); auto.
+ apply Zle_trans with (2 := H3); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ intros x2 H4; apply Hrec with (p + q)%positive; auto.
+ intros x3 H5; apply H2.
+ rewrite (Zpos_xO p).
+ replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));
+ auto.
+ repeat rewrite Zpos_plus_distr; ring.
+ intros q n x cont H1 H2.
+ apply spec_shiftl_aux_body with (q); auto.
+ rewrite Zplus_comm; auto.
+ Qed.
+
+ Definition shiftl n x :=
+ shiftl_aux_body
+ (shiftl_aux_body
+ (shiftl_aux (digits n) unsafe_shiftl)) n x.
+
+ Theorem spec_shiftl: forall n x,
+ [shiftl n x] = [x] * 2 ^ [n].
+ Proof.
+ intros n x; unfold shiftl, shiftl_aux_body.
+ generalize (spec_compare_aux n (head0 x)); case compare; intros H.
+ apply spec_unsafe_shiftl; auto with zarith.
+ apply spec_unsafe_shiftl; auto with zarith.
+ rewrite <- (spec_double_size x).
+ generalize (spec_compare_aux n (head0 (double_size x))); case compare; intros H1.
+ apply spec_unsafe_shiftl; auto with zarith.
+ apply spec_unsafe_shiftl; auto with zarith.
+ rewrite <- (spec_double_size (double_size x)).
+ apply spec_shiftl_aux with 1%positive.
+ apply Zle_trans with (2 := spec_double_size_head0 (double_size x)).
+ replace (2 ^ 1) with (2 * 1).
+ apply Zmult_le_compat_l; auto with zarith.
+ generalize (spec_double_size_head0_pos x); auto with zarith.
+ rewrite Zpower_1_r; ring.
+ intros x1 H2; apply spec_unsafe_shiftl.
+ apply Zle_trans with (2 := H2).
+ apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.
+ case (spec_digits n); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ Qed.
+
+
+ (** * Zero and One *)
+
+ Theorem spec_0: [zero] = 0.
+ Proof.
+ exact (spec_0 w0_spec).
+ Qed.
+
+ Theorem spec_1: [one] = 1.
+ Proof.
+ exact (spec_1 w0_spec).
+ Qed.
+
+
+End Make.