summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NSub.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NSub.v')
-rw-r--r--theories/Numbers/Natural/Abstract/NSub.v196
1 files changed, 159 insertions, 37 deletions
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v
index f67689dd..35d3b8aa 100644
--- a/theories/Numbers/Natural/Abstract/NSub.v
+++ b/theories/Numbers/Natural/Abstract/NSub.v
@@ -8,49 +8,33 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NSub.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id$ i*)
Require Export NMulOrder.
-Module NSubPropFunct (Import NAxiomsMod : NAxiomsSig).
-Module Export NMulOrderPropMod := NMulOrderPropFunct NAxiomsMod.
-Open Local Scope NatScope.
+Module Type NSubPropFunct (Import N : NAxiomsSig').
+Include NMulOrderPropFunct N.
-Theorem sub_wd :
- forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> n1 - m1 == n2 - m2.
-Proof NZsub_wd.
-
-Theorem sub_0_r : forall n : N, n - 0 == n.
-Proof NZsub_0_r.
-
-Theorem sub_succ_r : forall n m : N, n - (S m) == P (n - m).
-Proof NZsub_succ_r.
-
-Theorem sub_1_r : forall n : N, n - 1 == P n.
-Proof.
-intro n; rewrite sub_succ_r; now rewrite sub_0_r.
-Qed.
-
-Theorem sub_0_l : forall n : N, 0 - n == 0.
+Theorem sub_0_l : forall n, 0 - n == 0.
Proof.
induct n.
apply sub_0_r.
intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0.
Qed.
-Theorem sub_succ : forall n m : N, S n - S m == n - m.
+Theorem sub_succ : forall n m, S n - S m == n - m.
Proof.
intro n; induct m.
rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ.
intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r.
Qed.
-Theorem sub_diag : forall n : N, n - n == 0.
+Theorem sub_diag : forall n, n - n == 0.
Proof.
induct n. apply sub_0_r. intros n IH; rewrite sub_succ; now rewrite IH.
Qed.
-Theorem sub_gt : forall n m : N, n > m -> n - m ~= 0.
+Theorem sub_gt : forall n m, n > m -> n - m ~= 0.
Proof.
intros n m H; elim H using lt_ind_rel; clear n m H.
solve_relation_wd.
@@ -58,7 +42,7 @@ intro; rewrite sub_0_r; apply neq_succ_0.
intros; now rewrite sub_succ.
Qed.
-Theorem add_sub_assoc : forall n m p : N, p <= m -> n + (m - p) == (n + m) - p.
+Theorem add_sub_assoc : forall n m p, p <= m -> n + (m - p) == (n + m) - p.
Proof.
intros n m p; induct p.
intro; now do 2 rewrite sub_0_r.
@@ -68,32 +52,32 @@ rewrite add_pred_r by (apply sub_gt; now apply -> le_succ_l).
reflexivity.
Qed.
-Theorem sub_succ_l : forall n m : N, n <= m -> S m - n == S (m - n).
+Theorem sub_succ_l : forall n m, n <= m -> S m - n == S (m - n).
Proof.
intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)).
symmetry; now apply add_sub_assoc.
Qed.
-Theorem add_sub : forall n m : N, (n + m) - m == n.
+Theorem add_sub : forall n m, (n + m) - m == n.
Proof.
intros n m. rewrite <- add_sub_assoc by (apply le_refl).
rewrite sub_diag; now rewrite add_0_r.
Qed.
-Theorem sub_add : forall n m : N, n <= m -> (m - n) + n == m.
+Theorem sub_add : forall n m, n <= m -> (m - n) + n == m.
Proof.
intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption.
rewrite add_comm. apply add_sub.
Qed.
-Theorem add_sub_eq_l : forall n m p : N, m + p == n -> n - m == p.
+Theorem add_sub_eq_l : forall n m p, m + p == n -> n - m == p.
Proof.
intros n m p H. symmetry.
assert (H1 : m + p - m == n - m) by now rewrite H.
rewrite add_comm in H1. now rewrite add_sub in H1.
Qed.
-Theorem add_sub_eq_r : forall n m p : N, m + p == n -> n - p == m.
+Theorem add_sub_eq_r : forall n m p, m + p == n -> n - p == m.
Proof.
intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l.
Qed.
@@ -101,7 +85,7 @@ Qed.
(* This could be proved by adding m to both sides. Then the proof would
use add_sub_assoc and sub_0_le, which is proven below. *)
-Theorem add_sub_eq_nz : forall n m p : N, p ~= 0 -> n - m == p -> m + p == n.
+Theorem add_sub_eq_nz : forall n m p, p ~= 0 -> n - m == p -> m + p == n.
Proof.
intros n m p H; double_induct n m.
intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H.
@@ -110,14 +94,14 @@ intros n m IH H1. rewrite sub_succ in H1. apply IH in H1.
rewrite add_succ_l; now rewrite H1.
Qed.
-Theorem sub_add_distr : forall n m p : N, n - (m + p) == (n - m) - p.
+Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p.
Proof.
intros n m; induct p.
rewrite add_0_r; now rewrite sub_0_r.
intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH.
Qed.
-Theorem add_sub_swap : forall n m p : N, p <= n -> n + m - p == n - p + m.
+Theorem add_sub_swap : forall n m p, p <= n -> n + m - p == n - p + m.
Proof.
intros n m p H.
rewrite (add_comm n m).
@@ -127,7 +111,7 @@ Qed.
(** Sub and order *)
-Theorem le_sub_l : forall n m : N, n - m <= n.
+Theorem le_sub_l : forall n m, n - m <= n.
Proof.
intro n; induct m.
rewrite sub_0_r; now apply eq_le_incl.
@@ -135,7 +119,7 @@ intros m IH. rewrite sub_succ_r.
apply le_trans with (n - m); [apply le_pred_l | assumption].
Qed.
-Theorem sub_0_le : forall n m : N, n - m == 0 <-> n <= m.
+Theorem sub_0_le : forall n m, n - m == 0 <-> n <= m.
Proof.
double_induct n m.
intro m; split; intro; [apply le_0_l | apply sub_0_l].
@@ -144,9 +128,86 @@ intro m; rewrite sub_0_r; split; intro H;
intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ.
Qed.
+Theorem sub_add_le : forall n m, n <= n - m + m.
+Proof.
+intros.
+destruct (le_ge_cases n m) as [LE|GE].
+rewrite <- sub_0_le in LE. rewrite LE; nzsimpl.
+now rewrite <- sub_0_le.
+rewrite sub_add by assumption. apply le_refl.
+Qed.
+
+Theorem le_sub_le_add_r : forall n m p,
+ n - p <= m <-> n <= m + p.
+Proof.
+intros n m p.
+split; intros LE.
+rewrite (add_le_mono_r _ _ p) in LE.
+apply le_trans with (n-p+p); auto using sub_add_le.
+destruct (le_ge_cases n p) as [LE'|GE].
+rewrite <- sub_0_le in LE'. rewrite LE'. apply le_0_l.
+rewrite (add_le_mono_r _ _ p). now rewrite sub_add.
+Qed.
+
+Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p.
+Proof.
+intros n m p. rewrite add_comm; apply le_sub_le_add_r.
+Qed.
+
+Theorem lt_sub_lt_add_r : forall n m p,
+ n - p < m -> n < m + p.
+Proof.
+intros n m p LT.
+rewrite (add_lt_mono_r _ _ p) in LT.
+apply le_lt_trans with (n-p+p); auto using sub_add_le.
+Qed.
+
+(** Unfortunately, we do not have [n < m + p -> n - p < m].
+ For instance [1<0+2] but not [1-2<0]. *)
+
+Theorem lt_sub_lt_add_l : forall n m p, n - m < p -> n < m + p.
+Proof.
+intros n m p. rewrite add_comm; apply lt_sub_lt_add_r.
+Qed.
+
+Theorem le_add_le_sub_r : forall n m p, n + p <= m -> n <= m - p.
+Proof.
+intros n m p LE.
+apply (add_le_mono_r _ _ p).
+rewrite sub_add. assumption.
+apply le_trans with (n+p); trivial.
+rewrite <- (add_0_l p) at 1. rewrite <- add_le_mono_r. apply le_0_l.
+Qed.
+
+(** Unfortunately, we do not have [n <= m - p -> n + p <= m].
+ For instance [0<=1-2] but not [2+0<=1]. *)
+
+Theorem le_add_le_sub_l : forall n m p, n + p <= m -> p <= m - n.
+Proof.
+intros n m p. rewrite add_comm; apply le_add_le_sub_r.
+Qed.
+
+Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p.
+Proof.
+intros n m p.
+destruct (le_ge_cases p m) as [LE|GE].
+rewrite <- (sub_add p m) at 1 by assumption.
+now rewrite <- add_lt_mono_r.
+assert (GE' := GE). rewrite <- sub_0_le in GE'; rewrite GE'.
+split; intros LT.
+elim (lt_irrefl m). apply le_lt_trans with (n+p); trivial.
+ rewrite <- (add_0_l m). apply add_le_mono. apply le_0_l. assumption.
+now elim (nlt_0_r n).
+Qed.
+
+Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n.
+Proof.
+intros n m p. rewrite add_comm; apply lt_add_lt_sub_r.
+Qed.
+
(** Sub and mul *)
-Theorem mul_pred_r : forall n m : N, n * (P m) == n * m - n.
+Theorem mul_pred_r : forall n m, n * (P m) == n * m - n.
Proof.
intros n m; cases m.
now rewrite pred_0, mul_0_r, sub_0_l.
@@ -155,7 +216,7 @@ now rewrite sub_diag, add_0_r.
now apply eq_le_incl.
Qed.
-Theorem mul_sub_distr_r : forall n m p : N, (n - m) * p == n * p - m * p.
+Theorem mul_sub_distr_r : forall n m p, (n - m) * p == n * p - m * p.
Proof.
intros n m p; induct n.
now rewrite sub_0_l, mul_0_l, sub_0_l.
@@ -170,11 +231,72 @@ setoid_replace ((S n * p) - m * p) with 0 by (apply <- sub_0_le; now apply mul_l
apply mul_0_l.
Qed.
-Theorem mul_sub_distr_l : forall n m p : N, p * (n - m) == p * n - p * m.
+Theorem mul_sub_distr_l : forall n m p, p * (n - m) == p * n - p * m.
Proof.
intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m).
apply mul_sub_distr_r.
Qed.
+(** Alternative definitions of [<=] and [<] based on [+] *)
+
+Definition le_alt n m := exists p, p + n == m.
+Definition lt_alt n m := exists p, S p + n == m.
+
+Lemma le_equiv : forall n m, le_alt n m <-> n <= m.
+Proof.
+split.
+intros (p,H). rewrite <- H, add_comm. apply le_add_r.
+intro H. exists (m-n). now apply sub_add.
+Qed.
+
+Lemma lt_equiv : forall n m, lt_alt n m <-> n < m.
+Proof.
+split.
+intros (p,H). rewrite <- H, add_succ_l, lt_succ_r, add_comm. apply le_add_r.
+intro H. exists (m-S n). rewrite add_succ_l, <- add_succ_r.
+apply sub_add. now rewrite le_succ_l.
+Qed.
+
+Instance le_alt_wd : Proper (eq==>eq==>iff) le_alt.
+Proof.
+ intros x x' Hx y y' Hy; unfold le_alt.
+ setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
+Qed.
+
+Instance lt_alt_wd : Proper (eq==>eq==>iff) lt_alt.
+Proof.
+ intros x x' Hx y y' Hy; unfold lt_alt.
+ setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
+Qed.
+
+(** With these alternative definition, the dichotomy:
+
+[forall n m, n <= m \/ m <= n]
+
+becomes:
+
+[forall n m, (exists p, p + n == m) \/ (exists p, p + m == n)]
+
+We will need this in the proof of induction principle for integers
+constructed as pairs of natural numbers. This formula can be proved
+from know properties of [<=]. However, it can also be done directly. *)
+
+Theorem le_alt_dichotomy : forall n m, le_alt n m \/ le_alt m n.
+Proof.
+intros n m; induct n.
+left; exists m; apply add_0_r.
+intros n IH.
+destruct IH as [[p H] | [p H]].
+destruct (zero_or_succ p) as [H1 | [p' H1]]; rewrite H1 in H.
+rewrite add_0_l in H. right; exists (S 0); rewrite H, add_succ_l;
+ now rewrite add_0_l.
+left; exists p'; rewrite add_succ_r; now rewrite add_succ_l in H.
+right; exists (S p). rewrite add_succ_l; now rewrite H.
+Qed.
+
+Theorem add_dichotomy :
+ forall n m, (exists p, p + n == m) \/ (exists p, p + m == n).
+Proof. exact le_alt_dichotomy. Qed.
+
End NSubPropFunct.