summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NOrder.v')
-rw-r--r--theories/Numbers/Natural/Abstract/NOrder.v390
1 files changed, 48 insertions, 342 deletions
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v
index 15aed7ab..090c02ec 100644
--- a/theories/Numbers/Natural/Abstract/NOrder.v
+++ b/theories/Numbers/Natural/Abstract/NOrder.v
@@ -8,355 +8,62 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NOrder.v 11282 2008-07-28 11:51:53Z msozeau $ i*)
+(*i $Id$ i*)
-Require Export NMul.
+Require Export NAdd.
-Module NOrderPropFunct (Import NAxiomsMod : NAxiomsSig).
-Module Export NMulPropMod := NMulPropFunct NAxiomsMod.
-Open Local Scope NatScope.
+Module NOrderPropFunct (Import N : NAxiomsSig').
+Include NAddPropFunct N.
-(* The tactics le_less, le_equal and le_elim are inherited from NZOrder.v *)
-
-(* Axioms *)
-
-Theorem lt_wd :
- forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 < m1 <-> n2 < m2).
-Proof NZlt_wd.
-
-Theorem le_wd :
- forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 <= m1 <-> n2 <= m2).
-Proof NZle_wd.
-
-Theorem min_wd :
- forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> min n1 m1 == min n2 m2.
-Proof NZmin_wd.
-
-Theorem max_wd :
- forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> max n1 m1 == max n2 m2.
-Proof NZmax_wd.
-
-Theorem lt_eq_cases : forall n m : N, n <= m <-> n < m \/ n == m.
-Proof NZlt_eq_cases.
-
-Theorem lt_irrefl : forall n : N, ~ n < n.
-Proof NZlt_irrefl.
-
-Theorem lt_succ_r : forall n m : N, n < S m <-> n <= m.
-Proof NZlt_succ_r.
-
-Theorem min_l : forall n m : N, n <= m -> min n m == n.
-Proof NZmin_l.
-
-Theorem min_r : forall n m : N, m <= n -> min n m == m.
-Proof NZmin_r.
-
-Theorem max_l : forall n m : N, m <= n -> max n m == n.
-Proof NZmax_l.
-
-Theorem max_r : forall n m : N, n <= m -> max n m == m.
-Proof NZmax_r.
-
-(* Renaming theorems from NZOrder.v *)
-
-Theorem lt_le_incl : forall n m : N, n < m -> n <= m.
-Proof NZlt_le_incl.
-
-Theorem eq_le_incl : forall n m : N, n == m -> n <= m.
-Proof NZeq_le_incl.
-
-Theorem lt_neq : forall n m : N, n < m -> n ~= m.
-Proof NZlt_neq.
-
-Theorem le_neq : forall n m : N, n < m <-> n <= m /\ n ~= m.
-Proof NZle_neq.
-
-Theorem le_refl : forall n : N, n <= n.
-Proof NZle_refl.
-
-Theorem lt_succ_diag_r : forall n : N, n < S n.
-Proof NZlt_succ_diag_r.
-
-Theorem le_succ_diag_r : forall n : N, n <= S n.
-Proof NZle_succ_diag_r.
-
-Theorem lt_0_1 : 0 < 1.
-Proof NZlt_0_1.
-
-Theorem le_0_1 : 0 <= 1.
-Proof NZle_0_1.
-
-Theorem lt_lt_succ_r : forall n m : N, n < m -> n < S m.
-Proof NZlt_lt_succ_r.
-
-Theorem le_le_succ_r : forall n m : N, n <= m -> n <= S m.
-Proof NZle_le_succ_r.
-
-Theorem le_succ_r : forall n m : N, n <= S m <-> n <= m \/ n == S m.
-Proof NZle_succ_r.
-
-Theorem neq_succ_diag_l : forall n : N, S n ~= n.
-Proof NZneq_succ_diag_l.
-
-Theorem neq_succ_diag_r : forall n : N, n ~= S n.
-Proof NZneq_succ_diag_r.
-
-Theorem nlt_succ_diag_l : forall n : N, ~ S n < n.
-Proof NZnlt_succ_diag_l.
-
-Theorem nle_succ_diag_l : forall n : N, ~ S n <= n.
-Proof NZnle_succ_diag_l.
-
-Theorem le_succ_l : forall n m : N, S n <= m <-> n < m.
-Proof NZle_succ_l.
-
-Theorem lt_succ_l : forall n m : N, S n < m -> n < m.
-Proof NZlt_succ_l.
-
-Theorem succ_lt_mono : forall n m : N, n < m <-> S n < S m.
-Proof NZsucc_lt_mono.
-
-Theorem succ_le_mono : forall n m : N, n <= m <-> S n <= S m.
-Proof NZsucc_le_mono.
-
-Theorem lt_asymm : forall n m : N, n < m -> ~ m < n.
-Proof NZlt_asymm.
-
-Notation lt_ngt := lt_asymm (only parsing).
-
-Theorem lt_trans : forall n m p : N, n < m -> m < p -> n < p.
-Proof NZlt_trans.
-
-Theorem le_trans : forall n m p : N, n <= m -> m <= p -> n <= p.
-Proof NZle_trans.
-
-Theorem le_lt_trans : forall n m p : N, n <= m -> m < p -> n < p.
-Proof NZle_lt_trans.
-
-Theorem lt_le_trans : forall n m p : N, n < m -> m <= p -> n < p.
-Proof NZlt_le_trans.
-
-Theorem le_antisymm : forall n m : N, n <= m -> m <= n -> n == m.
-Proof NZle_antisymm.
-
-(** Trichotomy, decidability, and double negation elimination *)
-
-Theorem lt_trichotomy : forall n m : N, n < m \/ n == m \/ m < n.
-Proof NZlt_trichotomy.
-
-Notation lt_eq_gt_cases := lt_trichotomy (only parsing).
-
-Theorem lt_gt_cases : forall n m : N, n ~= m <-> n < m \/ n > m.
-Proof NZlt_gt_cases.
-
-Theorem le_gt_cases : forall n m : N, n <= m \/ n > m.
-Proof NZle_gt_cases.
-
-Theorem lt_ge_cases : forall n m : N, n < m \/ n >= m.
-Proof NZlt_ge_cases.
-
-Theorem le_ge_cases : forall n m : N, n <= m \/ n >= m.
-Proof NZle_ge_cases.
-
-Theorem le_ngt : forall n m : N, n <= m <-> ~ n > m.
-Proof NZle_ngt.
-
-Theorem nlt_ge : forall n m : N, ~ n < m <-> n >= m.
-Proof NZnlt_ge.
-
-Theorem lt_dec : forall n m : N, decidable (n < m).
-Proof NZlt_dec.
-
-Theorem lt_dne : forall n m : N, ~ ~ n < m <-> n < m.
-Proof NZlt_dne.
-
-Theorem nle_gt : forall n m : N, ~ n <= m <-> n > m.
-Proof NZnle_gt.
-
-Theorem lt_nge : forall n m : N, n < m <-> ~ n >= m.
-Proof NZlt_nge.
-
-Theorem le_dec : forall n m : N, decidable (n <= m).
-Proof NZle_dec.
-
-Theorem le_dne : forall n m : N, ~ ~ n <= m <-> n <= m.
-Proof NZle_dne.
-
-Theorem nlt_succ_r : forall n m : N, ~ m < S n <-> n < m.
-Proof NZnlt_succ_r.
-
-Theorem lt_exists_pred :
- forall z n : N, z < n -> exists k : N, n == S k /\ z <= k.
-Proof NZlt_exists_pred.
-
-Theorem lt_succ_iter_r :
- forall (n : nat) (m : N), m < NZsucc_iter (Datatypes.S n) m.
-Proof NZlt_succ_iter_r.
-
-Theorem neq_succ_iter_l :
- forall (n : nat) (m : N), NZsucc_iter (Datatypes.S n) m ~= m.
-Proof NZneq_succ_iter_l.
-
-(** Stronger variant of induction with assumptions n >= 0 (n < 0)
-in the induction step *)
-
-Theorem right_induction :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N, A z ->
- (forall n : N, z <= n -> A n -> A (S n)) ->
- forall n : N, z <= n -> A n.
-Proof NZright_induction.
-
-Theorem left_induction :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N, A z ->
- (forall n : N, n < z -> A (S n) -> A n) ->
- forall n : N, n <= z -> A n.
-Proof NZleft_induction.
-
-Theorem right_induction' :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, n <= z -> A n) ->
- (forall n : N, z <= n -> A n -> A (S n)) ->
- forall n : N, A n.
-Proof NZright_induction'.
-
-Theorem left_induction' :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, z <= n -> A n) ->
- (forall n : N, n < z -> A (S n) -> A n) ->
- forall n : N, A n.
-Proof NZleft_induction'.
-
-Theorem strong_right_induction :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) ->
- forall n : N, z <= n -> A n.
-Proof NZstrong_right_induction.
-
-Theorem strong_left_induction :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) ->
- forall n : N, n <= z -> A n.
-Proof NZstrong_left_induction.
-
-Theorem strong_right_induction' :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, n <= z -> A n) ->
- (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) ->
- forall n : N, A n.
-Proof NZstrong_right_induction'.
-
-Theorem strong_left_induction' :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N,
- (forall n : N, z <= n -> A n) ->
- (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) ->
- forall n : N, A n.
-Proof NZstrong_left_induction'.
-
-Theorem order_induction :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N, A z ->
- (forall n : N, z <= n -> A n -> A (S n)) ->
- (forall n : N, n < z -> A (S n) -> A n) ->
- forall n : N, A n.
-Proof NZorder_induction.
-
-Theorem order_induction' :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall z : N, A z ->
- (forall n : N, z <= n -> A n -> A (S n)) ->
- (forall n : N, n <= z -> A n -> A (P n)) ->
- forall n : N, A n.
-Proof NZorder_induction'.
-
-(* We don't need order_induction_0 and order_induction'_0 (see NZOrder and
-ZOrder) since they boil down to regular induction *)
-
-(** Elimintation principle for < *)
-
-Theorem lt_ind :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall n : N,
- A (S n) ->
- (forall m : N, n < m -> A m -> A (S m)) ->
- forall m : N, n < m -> A m.
-Proof NZlt_ind.
-
-(** Elimintation principle for <= *)
-
-Theorem le_ind :
- forall A : N -> Prop, predicate_wd Neq A ->
- forall n : N,
- A n ->
- (forall m : N, n <= m -> A m -> A (S m)) ->
- forall m : N, n <= m -> A m.
-Proof NZle_ind.
-
-(** Well-founded relations *)
-
-Theorem lt_wf : forall z : N, well_founded (fun n m : N => z <= n /\ n < m).
-Proof NZlt_wf.
-
-Theorem gt_wf : forall z : N, well_founded (fun n m : N => m < n /\ n <= z).
-Proof NZgt_wf.
+(* Theorems that are true for natural numbers but not for integers *)
Theorem lt_wf_0 : well_founded lt.
Proof.
-setoid_replace lt with (fun n m : N => 0 <= n /\ n < m)
- using relation (@relations_eq N N).
+setoid_replace lt with (fun n m => 0 <= n /\ n < m).
apply lt_wf.
intros x y; split.
intro H; split; [apply le_0_l | assumption]. now intros [_ H].
Defined.
-(* Theorems that are true for natural numbers but not for integers *)
-
(* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *)
-Theorem nlt_0_r : forall n : N, ~ n < 0.
+Theorem nlt_0_r : forall n, ~ n < 0.
Proof.
intro n; apply -> le_ngt. apply le_0_l.
Qed.
-Theorem nle_succ_0 : forall n : N, ~ (S n <= 0).
+Theorem nle_succ_0 : forall n, ~ (S n <= 0).
Proof.
intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r.
Qed.
-Theorem le_0_r : forall n : N, n <= 0 <-> n == 0.
+Theorem le_0_r : forall n, n <= 0 <-> n == 0.
Proof.
intros n; split; intro H.
le_elim H; [false_hyp H nlt_0_r | assumption].
now apply eq_le_incl.
Qed.
-Theorem lt_0_succ : forall n : N, 0 < S n.
+Theorem lt_0_succ : forall n, 0 < S n.
Proof.
induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r].
Qed.
-Theorem neq_0_lt_0 : forall n : N, n ~= 0 <-> 0 < n.
+Theorem neq_0_lt_0 : forall n, n ~= 0 <-> 0 < n.
Proof.
cases n.
split; intro H; [now elim H | intro; now apply lt_irrefl with 0].
intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0].
Qed.
-Theorem eq_0_gt_0_cases : forall n : N, n == 0 \/ 0 < n.
+Theorem eq_0_gt_0_cases : forall n, n == 0 \/ 0 < n.
Proof.
cases n.
now left.
intro; right; apply lt_0_succ.
Qed.
-Theorem zero_one : forall n : N, n == 0 \/ n == 1 \/ 1 < n.
+Theorem zero_one : forall n, n == 0 \/ n == 1 \/ 1 < n.
Proof.
induct n. now left.
cases n. intros; right; now left.
@@ -366,7 +73,7 @@ right; right. rewrite H. apply lt_succ_diag_r.
right; right. now apply lt_lt_succ_r.
Qed.
-Theorem lt_1_r : forall n : N, n < 1 <-> n == 0.
+Theorem lt_1_r : forall n, n < 1 <-> n == 0.
Proof.
cases n.
split; intro; [reflexivity | apply lt_succ_diag_r].
@@ -374,7 +81,7 @@ intros n. rewrite <- succ_lt_mono.
split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0].
Qed.
-Theorem le_1_r : forall n : N, n <= 1 <-> n == 0 \/ n == 1.
+Theorem le_1_r : forall n, n <= 1 <-> n == 0 \/ n == 1.
Proof.
cases n.
split; intro; [now left | apply le_succ_diag_r].
@@ -382,36 +89,30 @@ intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd.
split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]].
Qed.
-Theorem lt_lt_0 : forall n m : N, n < m -> 0 < m.
+Theorem lt_lt_0 : forall n m, n < m -> 0 < m.
Proof.
intros n m; induct n.
trivial.
intros n IH H. apply IH; now apply lt_succ_l.
Qed.
-Theorem lt_1_l : forall n m p : N, n < m -> m < p -> 1 < p.
+Theorem lt_1_l' : forall n m p, n < m -> m < p -> 1 < p.
Proof.
-intros n m p H1 H2.
-apply le_lt_trans with m. apply <- le_succ_l. apply le_lt_trans with n.
-apply le_0_l. assumption. assumption.
+intros. apply lt_1_l with m; auto.
+apply le_lt_trans with n; auto. now apply le_0_l.
Qed.
(** Elimination principlies for < and <= for relations *)
Section RelElim.
-(* FIXME: Variable R : relation N. -- does not work *)
-
-Variable R : N -> N -> Prop.
-Hypothesis R_wd : relation_wd Neq Neq R.
-
-Add Morphism R with signature Neq ==> Neq ==> iff as R_morph2.
-Proof. apply R_wd. Qed.
+Variable R : relation N.t.
+Hypothesis R_wd : Proper (N.eq==>N.eq==>iff) R.
Theorem le_ind_rel :
- (forall m : N, R 0 m) ->
- (forall n m : N, n <= m -> R n m -> R (S n) (S m)) ->
- forall n m : N, n <= m -> R n m.
+ (forall m, R 0 m) ->
+ (forall n m, n <= m -> R n m -> R (S n) (S m)) ->
+ forall n m, n <= m -> R n m.
Proof.
intros Base Step; induct n.
intros; apply Base.
@@ -422,9 +123,9 @@ intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto.
Qed.
Theorem lt_ind_rel :
- (forall m : N, R 0 (S m)) ->
- (forall n m : N, n < m -> R n m -> R (S n) (S m)) ->
- forall n m : N, n < m -> R n m.
+ (forall m, R 0 (S m)) ->
+ (forall n m, n < m -> R n m -> R (S n) (S m)) ->
+ forall n m, n < m -> R n m.
Proof.
intros Base Step; induct n.
intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]].
@@ -439,61 +140,64 @@ End RelElim.
(** Predecessor and order *)
-Theorem succ_pred_pos : forall n : N, 0 < n -> S (P n) == n.
+Theorem succ_pred_pos : forall n, 0 < n -> S (P n) == n.
Proof.
intros n H; apply succ_pred; intro H1; rewrite H1 in H.
false_hyp H lt_irrefl.
Qed.
-Theorem le_pred_l : forall n : N, P n <= n.
+Theorem le_pred_l : forall n, P n <= n.
Proof.
cases n.
rewrite pred_0; now apply eq_le_incl.
intros; rewrite pred_succ; apply le_succ_diag_r.
Qed.
-Theorem lt_pred_l : forall n : N, n ~= 0 -> P n < n.
+Theorem lt_pred_l : forall n, n ~= 0 -> P n < n.
Proof.
cases n.
-intro H; elimtype False; now apply H.
+intro H; exfalso; now apply H.
intros; rewrite pred_succ; apply lt_succ_diag_r.
Qed.
-Theorem le_le_pred : forall n m : N, n <= m -> P n <= m.
+Theorem le_le_pred : forall n m, n <= m -> P n <= m.
Proof.
intros n m H; apply le_trans with n. apply le_pred_l. assumption.
Qed.
-Theorem lt_lt_pred : forall n m : N, n < m -> P n < m.
+Theorem lt_lt_pred : forall n m, n < m -> P n < m.
Proof.
intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption.
Qed.
-Theorem lt_le_pred : forall n m : N, n < m -> n <= P m. (* Converse is false for n == m == 0 *)
+Theorem lt_le_pred : forall n m, n < m -> n <= P m.
+ (* Converse is false for n == m == 0 *)
Proof.
intro n; cases m.
intro H; false_hyp H nlt_0_r.
intros m IH. rewrite pred_succ; now apply -> lt_succ_r.
Qed.
-Theorem lt_pred_le : forall n m : N, P n < m -> n <= m. (* Converse is false for n == m == 0 *)
+Theorem lt_pred_le : forall n m, P n < m -> n <= m.
+ (* Converse is false for n == m == 0 *)
Proof.
intros n m; cases n.
rewrite pred_0; intro H; now apply lt_le_incl.
intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l.
Qed.
-Theorem lt_pred_lt : forall n m : N, n < P m -> n < m.
+Theorem lt_pred_lt : forall n m, n < P m -> n < m.
Proof.
intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l].
Qed.
-Theorem le_pred_le : forall n m : N, n <= P m -> n <= m.
+Theorem le_pred_le : forall n m, n <= P m -> n <= m.
Proof.
intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l].
Qed.
-Theorem pred_le_mono : forall n m : N, n <= m -> P n <= P m. (* Converse is false for n == 1, m == 0 *)
+Theorem pred_le_mono : forall n m, n <= m -> P n <= P m.
+ (* Converse is false for n == 1, m == 0 *)
Proof.
intros n m H; elim H using le_ind_rel.
solve_relation_wd.
@@ -501,7 +205,7 @@ intro; rewrite pred_0; apply le_0_l.
intros p q H1 _; now do 2 rewrite pred_succ.
Qed.
-Theorem pred_lt_mono : forall n m : N, n ~= 0 -> (n < m <-> P n < P m).
+Theorem pred_lt_mono : forall n m, n ~= 0 -> (n < m <-> P n < P m).
Proof.
intros n m H1; split; intro H2.
assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n.
@@ -512,22 +216,24 @@ apply lt_le_trans with (P m). assumption. apply le_pred_l.
apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
Qed.
-Theorem lt_succ_lt_pred : forall n m : N, S n < m <-> n < P m.
+Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m.
Proof.
intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ.
Qed.
-Theorem le_succ_le_pred : forall n m : N, S n <= m -> n <= P m. (* Converse is false for n == m == 0 *)
+Theorem le_succ_le_pred : forall n m, S n <= m -> n <= P m.
+ (* Converse is false for n == m == 0 *)
Proof.
intros n m H. apply lt_le_pred. now apply -> le_succ_l.
Qed.
-Theorem lt_pred_lt_succ : forall n m : N, P n < m -> n < S m. (* Converse is false for n == m == 0 *)
+Theorem lt_pred_lt_succ : forall n m, P n < m -> n < S m.
+ (* Converse is false for n == m == 0 *)
Proof.
intros n m H. apply <- lt_succ_r. now apply lt_pred_le.
Qed.
-Theorem le_pred_le_succ : forall n m : N, P n <= m <-> n <= S m.
+Theorem le_pred_le_succ : forall n m, P n <= m <-> n <= S m.
Proof.
intros n m; cases n.
rewrite pred_0. split; intro H; apply le_0_l.