summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZSqrt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZSqrt.v')
-rw-r--r--theories/Numbers/NatInt/NZSqrt.v734
1 files changed, 734 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZSqrt.v b/theories/Numbers/NatInt/NZSqrt.v
new file mode 100644
index 00000000..6e85c689
--- /dev/null
+++ b/theories/Numbers/NatInt/NZSqrt.v
@@ -0,0 +1,734 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Square Root Function *)
+
+Require Import NZAxioms NZMulOrder.
+
+(** Interface of a sqrt function, then its specification on naturals *)
+
+Module Type Sqrt (Import A : Typ).
+ Parameter Inline sqrt : t -> t.
+End Sqrt.
+
+Module Type SqrtNotation (A : Typ)(Import B : Sqrt A).
+ Notation "√ x" := (sqrt x) (at level 6).
+End SqrtNotation.
+
+Module Type Sqrt' (A : Typ) := Sqrt A <+ SqrtNotation A.
+
+Module Type NZSqrtSpec (Import A : NZOrdAxiomsSig')(Import B : Sqrt' A).
+ Axiom sqrt_spec : forall a, 0<=a -> √a * √a <= a < S (√a) * S (√a).
+ Axiom sqrt_neg : forall a, a<0 -> √a == 0.
+End NZSqrtSpec.
+
+Module Type NZSqrt (A : NZOrdAxiomsSig) := Sqrt A <+ NZSqrtSpec A.
+Module Type NZSqrt' (A : NZOrdAxiomsSig) := Sqrt' A <+ NZSqrtSpec A.
+
+(** Derived properties of power *)
+
+Module Type NZSqrtProp
+ (Import A : NZOrdAxiomsSig')
+ (Import B : NZSqrt' A)
+ (Import C : NZMulOrderProp A).
+
+Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²").
+
+(** First, sqrt is non-negative *)
+
+Lemma sqrt_spec_nonneg : forall b,
+ b² < (S b)² -> 0 <= b.
+Proof.
+ intros b LT.
+ destruct (le_gt_cases 0 b) as [Hb|Hb]; trivial. exfalso.
+ assert ((S b)² < b²).
+ rewrite mul_succ_l, <- (add_0_r b²).
+ apply add_lt_le_mono.
+ apply mul_lt_mono_neg_l; trivial. apply lt_succ_diag_r.
+ now apply le_succ_l.
+ order.
+Qed.
+
+Lemma sqrt_nonneg : forall a, 0<=√a.
+Proof.
+ intros. destruct (lt_ge_cases a 0) as [Ha|Ha].
+ now rewrite (sqrt_neg _ Ha).
+ apply sqrt_spec_nonneg. destruct (sqrt_spec a Ha). order.
+Qed.
+
+(** The spec of sqrt indeed determines it *)
+
+Lemma sqrt_unique : forall a b, b² <= a < (S b)² -> √a == b.
+Proof.
+ intros a b (LEb,LTb).
+ assert (Ha : 0<=a) by (transitivity b²; trivial using square_nonneg).
+ assert (Hb : 0<=b) by (apply sqrt_spec_nonneg; order).
+ assert (Ha': 0<=√a) by now apply sqrt_nonneg.
+ destruct (sqrt_spec a Ha) as (LEa,LTa).
+ assert (b <= √a).
+ apply lt_succ_r, square_lt_simpl_nonneg; [|order].
+ now apply lt_le_incl, lt_succ_r.
+ assert (√a <= b).
+ apply lt_succ_r, square_lt_simpl_nonneg; [|order].
+ now apply lt_le_incl, lt_succ_r.
+ order.
+Qed.
+
+(** Hence sqrt is a morphism *)
+
+Instance sqrt_wd : Proper (eq==>eq) sqrt.
+Proof.
+ intros x x' Hx.
+ destruct (lt_ge_cases x 0) as [H|H].
+ rewrite 2 sqrt_neg; trivial. reflexivity.
+ now rewrite <- Hx.
+ apply sqrt_unique. rewrite Hx in *. now apply sqrt_spec.
+Qed.
+
+(** An alternate specification *)
+
+Lemma sqrt_spec_alt : forall a, 0<=a -> exists r,
+ a == (√a)² + r /\ 0 <= r <= 2*√a.
+Proof.
+ intros a Ha.
+ destruct (sqrt_spec _ Ha) as (LE,LT).
+ destruct (le_exists_sub _ _ LE) as (r & Hr & Hr').
+ exists r.
+ split. now rewrite add_comm.
+ split. trivial.
+ apply (add_le_mono_r _ _ (√a)²).
+ rewrite <- Hr, add_comm.
+ generalize LT. nzsimpl'. now rewrite lt_succ_r, add_assoc.
+Qed.
+
+Lemma sqrt_unique' : forall a b c, 0<=c<=2*b ->
+ a == b² + c -> √a == b.
+Proof.
+ intros a b c (Hc,H) EQ.
+ apply sqrt_unique.
+ rewrite EQ.
+ split.
+ rewrite <- add_0_r at 1. now apply add_le_mono_l.
+ nzsimpl. apply lt_succ_r.
+ rewrite <- add_assoc. apply add_le_mono_l.
+ generalize H; now nzsimpl'.
+Qed.
+
+(** Sqrt is exact on squares *)
+
+Lemma sqrt_square : forall a, 0<=a -> √(a²) == a.
+Proof.
+ intros a Ha.
+ apply sqrt_unique' with 0.
+ split. order. apply mul_nonneg_nonneg; order'. now nzsimpl.
+Qed.
+
+(** Sqrt and predecessors of squares *)
+
+Lemma sqrt_pred_square : forall a, 0<a -> √(P a²) == P a.
+Proof.
+ intros a Ha.
+ apply sqrt_unique.
+ assert (EQ := lt_succ_pred 0 a Ha).
+ rewrite EQ. split.
+ apply lt_succ_r.
+ rewrite (lt_succ_pred 0).
+ assert (0 <= P a) by (now rewrite <- lt_succ_r, EQ).
+ assert (P a < a) by (now rewrite <- le_succ_l, EQ).
+ apply mul_lt_mono_nonneg; trivial.
+ now apply mul_pos_pos.
+ apply le_succ_l.
+ rewrite (lt_succ_pred 0). reflexivity. now apply mul_pos_pos.
+Qed.
+
+(** Sqrt is a monotone function (but not a strict one) *)
+
+Lemma sqrt_le_mono : forall a b, a <= b -> √a <= √b.
+Proof.
+ intros a b Hab.
+ destruct (lt_ge_cases a 0) as [Ha|Ha].
+ rewrite (sqrt_neg _ Ha). apply sqrt_nonneg.
+ assert (Hb : 0 <= b) by order.
+ destruct (sqrt_spec a Ha) as (LE,_).
+ destruct (sqrt_spec b Hb) as (_,LT).
+ apply lt_succ_r.
+ apply square_lt_simpl_nonneg; try order.
+ now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
+Qed.
+
+(** No reverse result for <=, consider for instance √2 <= √1 *)
+
+Lemma sqrt_lt_cancel : forall a b, √a < √b -> a < b.
+Proof.
+ intros a b H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite (sqrt_neg b Hb) in H; generalize (sqrt_nonneg a); order.
+ destruct (lt_ge_cases a 0) as [Ha|Ha]; [order|].
+ destruct (sqrt_spec a Ha) as (_,LT).
+ destruct (sqrt_spec b Hb) as (LE,_).
+ apply le_succ_l in H.
+ assert ((S (√a))² <= (√b)²).
+ apply mul_le_mono_nonneg; trivial.
+ now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
+ now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
+ order.
+Qed.
+
+(** When left side is a square, we have an equivalence for <= *)
+
+Lemma sqrt_le_square : forall a b, 0<=a -> 0<=b -> (b²<=a <-> b <= √a).
+Proof.
+ intros a b Ha Hb. split; intros H.
+ rewrite <- (sqrt_square b); trivial.
+ now apply sqrt_le_mono.
+ destruct (sqrt_spec a Ha) as (LE,LT).
+ transitivity (√a)²; trivial.
+ now apply mul_le_mono_nonneg.
+Qed.
+
+(** When right side is a square, we have an equivalence for < *)
+
+Lemma sqrt_lt_square : forall a b, 0<=a -> 0<=b -> (a<b² <-> √a < b).
+Proof.
+ intros a b Ha Hb. split; intros H.
+ destruct (sqrt_spec a Ha) as (LE,_).
+ apply square_lt_simpl_nonneg; try order.
+ rewrite <- (sqrt_square b Hb) in H.
+ now apply sqrt_lt_cancel.
+Qed.
+
+(** Sqrt and basic constants *)
+
+Lemma sqrt_0 : √0 == 0.
+Proof.
+ rewrite <- (mul_0_l 0) at 1. now apply sqrt_square.
+Qed.
+
+Lemma sqrt_1 : √1 == 1.
+Proof.
+ rewrite <- (mul_1_l 1) at 1. apply sqrt_square. order'.
+Qed.
+
+Lemma sqrt_2 : √2 == 1.
+Proof.
+ apply sqrt_unique' with 1. nzsimpl; split; order'. now nzsimpl'.
+Qed.
+
+Lemma sqrt_pos : forall a, 0 < √a <-> 0 < a.
+Proof.
+ intros a. split; intros Ha. apply sqrt_lt_cancel. now rewrite sqrt_0.
+ rewrite <- le_succ_l, <- one_succ, <- sqrt_1. apply sqrt_le_mono.
+ now rewrite one_succ, le_succ_l.
+Qed.
+
+Lemma sqrt_lt_lin : forall a, 1<a -> √a<a.
+Proof.
+ intros a Ha. rewrite <- sqrt_lt_square; try order'.
+ rewrite <- (mul_1_r a) at 1.
+ rewrite <- mul_lt_mono_pos_l; order'.
+Qed.
+
+Lemma sqrt_le_lin : forall a, 0<=a -> √a<=a.
+Proof.
+ intros a Ha.
+ destruct (le_gt_cases a 0) as [H|H].
+ setoid_replace a with 0 by order. now rewrite sqrt_0.
+ destruct (le_gt_cases a 1) as [H'|H'].
+ rewrite <- le_succ_l, <- one_succ in H.
+ setoid_replace a with 1 by order. now rewrite sqrt_1.
+ now apply lt_le_incl, sqrt_lt_lin.
+Qed.
+
+(** Sqrt and multiplication. *)
+
+(** Due to rounding error, we don't have the usual √(a*b) = √a*√b
+ but only lower and upper bounds. *)
+
+Lemma sqrt_mul_below : forall a b, √a * √b <= √(a*b).
+Proof.
+ intros a b.
+ destruct (lt_ge_cases a 0) as [Ha|Ha].
+ rewrite (sqrt_neg a Ha). nzsimpl. apply sqrt_nonneg.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite (sqrt_neg b Hb). nzsimpl. apply sqrt_nonneg.
+ assert (Ha':=sqrt_nonneg a).
+ assert (Hb':=sqrt_nonneg b).
+ apply sqrt_le_square; try now apply mul_nonneg_nonneg.
+ rewrite mul_shuffle1.
+ apply mul_le_mono_nonneg; try now apply mul_nonneg_nonneg.
+ now apply sqrt_spec.
+ now apply sqrt_spec.
+Qed.
+
+Lemma sqrt_mul_above : forall a b, 0<=a -> 0<=b -> √(a*b) < S (√a) * S (√b).
+Proof.
+ intros a b Ha Hb.
+ apply sqrt_lt_square.
+ now apply mul_nonneg_nonneg.
+ apply mul_nonneg_nonneg.
+ now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
+ now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
+ rewrite mul_shuffle1.
+ apply mul_lt_mono_nonneg; trivial; now apply sqrt_spec.
+Qed.
+
+(** And we can't find better approximations in general.
+ - The lower bound is exact for squares
+ - Concerning the upper bound, for any c>0, take a=b=c²-1,
+ then √(a*b) = c² -1 while S √a = S √b = c
+*)
+
+(** Sqrt and successor :
+ - the sqrt function climbs by at most 1 at a time
+ - otherwise it stays at the same value
+ - the +1 steps occur for squares
+*)
+
+Lemma sqrt_succ_le : forall a, 0<=a -> √(S a) <= S (√a).
+Proof.
+ intros a Ha.
+ apply lt_succ_r.
+ apply sqrt_lt_square.
+ now apply le_le_succ_r.
+ apply le_le_succ_r, le_le_succ_r, sqrt_nonneg.
+ rewrite <- (add_1_l (S (√a))).
+ apply lt_le_trans with (1²+(S (√a))²).
+ rewrite mul_1_l, add_1_l, <- succ_lt_mono.
+ now apply sqrt_spec.
+ apply add_square_le. order'. apply le_le_succ_r, sqrt_nonneg.
+Qed.
+
+Lemma sqrt_succ_or : forall a, 0<=a -> √(S a) == S (√a) \/ √(S a) == √a.
+Proof.
+ intros a Ha.
+ destruct (le_gt_cases (√(S a)) (√a)) as [H|H].
+ right. generalize (sqrt_le_mono _ _ (le_succ_diag_r a)); order.
+ left. apply le_succ_l in H. generalize (sqrt_succ_le a Ha); order.
+Qed.
+
+Lemma sqrt_eq_succ_iff_square : forall a, 0<=a ->
+ (√(S a) == S (√a) <-> exists b, 0<b /\ S a == b²).
+Proof.
+ intros a Ha. split.
+ intros EQ. exists (S (√a)).
+ split. apply lt_succ_r, sqrt_nonneg.
+ generalize (proj2 (sqrt_spec a Ha)). rewrite <- le_succ_l.
+ assert (Ha' : 0 <= S a) by now apply le_le_succ_r.
+ generalize (proj1 (sqrt_spec (S a) Ha')). rewrite EQ; order.
+ intros (b & Hb & H).
+ rewrite H. rewrite sqrt_square; try order.
+ symmetry.
+ rewrite <- (lt_succ_pred 0 b Hb). f_equiv.
+ rewrite <- (lt_succ_pred 0 b²) in H. apply succ_inj in H.
+ now rewrite H, sqrt_pred_square.
+ now apply mul_pos_pos.
+Qed.
+
+(** Sqrt and addition *)
+
+Lemma sqrt_add_le : forall a b, √(a+b) <= √a + √b.
+Proof.
+ assert (AUX : forall a b, a<0 -> √(a+b) <= √a + √b).
+ intros a b Ha. rewrite (sqrt_neg a Ha). nzsimpl.
+ apply sqrt_le_mono.
+ rewrite <- (add_0_l b) at 2.
+ apply add_le_mono_r; order.
+ intros a b.
+ destruct (lt_ge_cases a 0) as [Ha|Ha]. now apply AUX.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite (add_comm a), (add_comm (√a)); now apply AUX.
+ assert (Ha':=sqrt_nonneg a).
+ assert (Hb':=sqrt_nonneg b).
+ rewrite <- lt_succ_r.
+ apply sqrt_lt_square.
+ now apply add_nonneg_nonneg.
+ now apply lt_le_incl, lt_succ_r, add_nonneg_nonneg.
+ destruct (sqrt_spec a Ha) as (_,LTa).
+ destruct (sqrt_spec b Hb) as (_,LTb).
+ revert LTa LTb. nzsimpl. rewrite 3 lt_succ_r.
+ intros LTa LTb.
+ assert (H:=add_le_mono _ _ _ _ LTa LTb).
+ etransitivity; [eexact H|]. clear LTa LTb H.
+ rewrite <- (add_assoc _ (√a) (√a)).
+ rewrite <- (add_assoc _ (√b) (√b)).
+ rewrite add_shuffle1.
+ rewrite <- (add_assoc _ (√a + √b)).
+ rewrite (add_shuffle1 (√a) (√b)).
+ apply add_le_mono_r.
+ now apply add_square_le.
+Qed.
+
+(** convexity inequality for sqrt: sqrt of middle is above middle
+ of square roots. *)
+
+Lemma add_sqrt_le : forall a b, 0<=a -> 0<=b -> √a + √b <= √(2*(a+b)).
+Proof.
+ intros a b Ha Hb.
+ assert (Ha':=sqrt_nonneg a).
+ assert (Hb':=sqrt_nonneg b).
+ apply sqrt_le_square.
+ apply mul_nonneg_nonneg. order'. now apply add_nonneg_nonneg.
+ now apply add_nonneg_nonneg.
+ transitivity (2*((√a)² + (√b)²)).
+ now apply square_add_le.
+ apply mul_le_mono_nonneg_l. order'.
+ apply add_le_mono; now apply sqrt_spec.
+Qed.
+
+End NZSqrtProp.
+
+Module Type NZSqrtUpProp
+ (Import A : NZDecOrdAxiomsSig')
+ (Import B : NZSqrt' A)
+ (Import C : NZMulOrderProp A)
+ (Import D : NZSqrtProp A B C).
+
+(** * [sqrt_up] : a square root that rounds up instead of down *)
+
+Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²").
+
+(** For once, we define instead of axiomatizing, thanks to sqrt *)
+
+Definition sqrt_up a :=
+ match compare 0 a with
+ | Lt => S √(P a)
+ | _ => 0
+ end.
+
+Local Notation "√° a" := (sqrt_up a) (at level 6, no associativity).
+
+Lemma sqrt_up_eqn0 : forall a, a<=0 -> √°a == 0.
+Proof.
+ intros a Ha. unfold sqrt_up. case compare_spec; try order.
+Qed.
+
+Lemma sqrt_up_eqn : forall a, 0<a -> √°a == S √(P a).
+Proof.
+ intros a Ha. unfold sqrt_up. case compare_spec; try order.
+Qed.
+
+Lemma sqrt_up_spec : forall a, 0<a -> (P √°a)² < a <= (√°a)².
+Proof.
+ intros a Ha.
+ rewrite sqrt_up_eqn, pred_succ; trivial.
+ assert (Ha' := lt_succ_pred 0 a Ha).
+ rewrite <- Ha' at 3 4.
+ rewrite le_succ_l, lt_succ_r.
+ apply sqrt_spec.
+ now rewrite <- lt_succ_r, Ha'.
+Qed.
+
+(** First, [sqrt_up] is non-negative *)
+
+Lemma sqrt_up_nonneg : forall a, 0<=√°a.
+Proof.
+ intros. destruct (le_gt_cases a 0) as [Ha|Ha].
+ now rewrite sqrt_up_eqn0.
+ rewrite sqrt_up_eqn; trivial. apply le_le_succ_r, sqrt_nonneg.
+Qed.
+
+(** [sqrt_up] is a morphism *)
+
+Instance sqrt_up_wd : Proper (eq==>eq) sqrt_up.
+Proof.
+ assert (Proper (eq==>eq==>Logic.eq) compare).
+ intros x x' Hx y y' Hy. do 2 case compare_spec; trivial; order.
+ intros x x' Hx. unfold sqrt_up. rewrite Hx. case compare; now rewrite ?Hx.
+Qed.
+
+(** The spec of [sqrt_up] indeed determines it *)
+
+Lemma sqrt_up_unique : forall a b, 0<b -> (P b)² < a <= b² -> √°a == b.
+Proof.
+ intros a b Hb (LEb,LTb).
+ assert (Ha : 0<a)
+ by (apply le_lt_trans with (P b)²; trivial using square_nonneg).
+ rewrite sqrt_up_eqn; trivial.
+ assert (Hb' := lt_succ_pred 0 b Hb).
+ rewrite <- Hb'. f_equiv. apply sqrt_unique.
+ rewrite <- le_succ_l, <- lt_succ_r, Hb'.
+ rewrite (lt_succ_pred 0 a Ha). now split.
+Qed.
+
+(** [sqrt_up] is exact on squares *)
+
+Lemma sqrt_up_square : forall a, 0<=a -> √°(a²) == a.
+Proof.
+ intros a Ha.
+ le_elim Ha.
+ rewrite sqrt_up_eqn by (now apply mul_pos_pos).
+ rewrite sqrt_pred_square; trivial. apply (lt_succ_pred 0); trivial.
+ rewrite sqrt_up_eqn0; trivial. rewrite <- Ha. now nzsimpl.
+Qed.
+
+(** [sqrt_up] and successors of squares *)
+
+Lemma sqrt_up_succ_square : forall a, 0<=a -> √°(S a²) == S a.
+Proof.
+ intros a Ha.
+ rewrite sqrt_up_eqn by (now apply lt_succ_r, mul_nonneg_nonneg).
+ now rewrite pred_succ, sqrt_square.
+Qed.
+
+(** Basic constants *)
+
+Lemma sqrt_up_0 : √°0 == 0.
+Proof.
+ rewrite <- (mul_0_l 0) at 1. now apply sqrt_up_square.
+Qed.
+
+Lemma sqrt_up_1 : √°1 == 1.
+Proof.
+ rewrite <- (mul_1_l 1) at 1. apply sqrt_up_square. order'.
+Qed.
+
+Lemma sqrt_up_2 : √°2 == 2.
+Proof.
+ rewrite sqrt_up_eqn by order'.
+ now rewrite two_succ, pred_succ, sqrt_1.
+Qed.
+
+(** Links between sqrt and [sqrt_up] *)
+
+Lemma le_sqrt_sqrt_up : forall a, √a <= √°a.
+Proof.
+ intros a. unfold sqrt_up. case compare_spec; intros H.
+ rewrite <- H, sqrt_0. order.
+ rewrite <- (lt_succ_pred 0 a H) at 1. apply sqrt_succ_le.
+ apply lt_succ_r. now rewrite (lt_succ_pred 0 a H).
+ now rewrite sqrt_neg.
+Qed.
+
+Lemma le_sqrt_up_succ_sqrt : forall a, √°a <= S (√a).
+Proof.
+ intros a. unfold sqrt_up.
+ case compare_spec; intros H; try apply le_le_succ_r, sqrt_nonneg.
+ rewrite <- succ_le_mono. apply sqrt_le_mono.
+ rewrite <- (lt_succ_pred 0 a H) at 2. apply le_succ_diag_r.
+Qed.
+
+Lemma sqrt_sqrt_up_spec : forall a, 0<=a -> (√a)² <= a <= (√°a)².
+Proof.
+ intros a H. split.
+ now apply sqrt_spec.
+ le_elim H.
+ now apply sqrt_up_spec.
+ now rewrite <-H, sqrt_up_0, mul_0_l.
+Qed.
+
+Lemma sqrt_sqrt_up_exact :
+ forall a, 0<=a -> (√a == √°a <-> exists b, 0<=b /\ a == b²).
+Proof.
+ intros a Ha.
+ split. intros. exists √a.
+ split. apply sqrt_nonneg.
+ generalize (sqrt_sqrt_up_spec a Ha). rewrite <-H. destruct 1; order.
+ intros (b & Hb & Hb'). rewrite Hb'.
+ now rewrite sqrt_square, sqrt_up_square.
+Qed.
+
+(** [sqrt_up] is a monotone function (but not a strict one) *)
+
+Lemma sqrt_up_le_mono : forall a b, a <= b -> √°a <= √°b.
+Proof.
+ intros a b H.
+ destruct (le_gt_cases a 0) as [Ha|Ha].
+ rewrite (sqrt_up_eqn0 _ Ha). apply sqrt_up_nonneg.
+ rewrite 2 sqrt_up_eqn by order. rewrite <- succ_le_mono.
+ apply sqrt_le_mono, succ_le_mono. rewrite 2 (lt_succ_pred 0); order.
+Qed.
+
+(** No reverse result for <=, consider for instance √°3 <= √°2 *)
+
+Lemma sqrt_up_lt_cancel : forall a b, √°a < √°b -> a < b.
+Proof.
+ intros a b H.
+ destruct (le_gt_cases b 0) as [Hb|Hb].
+ rewrite (sqrt_up_eqn0 _ Hb) in H; generalize (sqrt_up_nonneg a); order.
+ destruct (le_gt_cases a 0) as [Ha|Ha]; [order|].
+ rewrite <- (lt_succ_pred 0 a Ha), <- (lt_succ_pred 0 b Hb), <- succ_lt_mono.
+ apply sqrt_lt_cancel, succ_lt_mono. now rewrite <- 2 sqrt_up_eqn.
+Qed.
+
+(** When left side is a square, we have an equivalence for < *)
+
+Lemma sqrt_up_lt_square : forall a b, 0<=a -> 0<=b -> (b² < a <-> b < √°a).
+Proof.
+ intros a b Ha Hb. split; intros H.
+ destruct (sqrt_up_spec a) as (LE,LT).
+ apply le_lt_trans with b²; trivial using square_nonneg.
+ apply square_lt_simpl_nonneg; try order. apply sqrt_up_nonneg.
+ apply sqrt_up_lt_cancel. now rewrite sqrt_up_square.
+Qed.
+
+(** When right side is a square, we have an equivalence for <= *)
+
+Lemma sqrt_up_le_square : forall a b, 0<=a -> 0<=b -> (a <= b² <-> √°a <= b).
+Proof.
+ intros a b Ha Hb. split; intros H.
+ rewrite <- (sqrt_up_square b Hb).
+ now apply sqrt_up_le_mono.
+ apply square_le_mono_nonneg in H; [|now apply sqrt_up_nonneg].
+ transitivity (√°a)²; trivial. now apply sqrt_sqrt_up_spec.
+Qed.
+
+Lemma sqrt_up_pos : forall a, 0 < √°a <-> 0 < a.
+Proof.
+ intros a. split; intros Ha. apply sqrt_up_lt_cancel. now rewrite sqrt_up_0.
+ rewrite <- le_succ_l, <- one_succ, <- sqrt_up_1. apply sqrt_up_le_mono.
+ now rewrite one_succ, le_succ_l.
+Qed.
+
+Lemma sqrt_up_lt_lin : forall a, 2<a -> √°a < a.
+Proof.
+ intros a Ha.
+ rewrite sqrt_up_eqn by order'.
+ assert (Ha' := lt_succ_pred 2 a Ha).
+ rewrite <- Ha' at 2. rewrite <- succ_lt_mono.
+ apply sqrt_lt_lin. rewrite succ_lt_mono. now rewrite Ha', <- two_succ.
+Qed.
+
+Lemma sqrt_up_le_lin : forall a, 0<=a -> √°a<=a.
+Proof.
+ intros a Ha.
+ le_elim Ha.
+ rewrite sqrt_up_eqn; trivial. apply le_succ_l.
+ apply le_lt_trans with (P a). apply sqrt_le_lin.
+ now rewrite <- lt_succ_r, (lt_succ_pred 0).
+ rewrite <- (lt_succ_pred 0 a) at 2; trivial. apply lt_succ_diag_r.
+ now rewrite <- Ha, sqrt_up_0.
+Qed.
+
+(** [sqrt_up] and multiplication. *)
+
+(** Due to rounding error, we don't have the usual [√(a*b) = √a*√b]
+ but only lower and upper bounds. *)
+
+Lemma sqrt_up_mul_above : forall a b, 0<=a -> 0<=b -> √°(a*b) <= √°a * √°b.
+Proof.
+ intros a b Ha Hb.
+ apply sqrt_up_le_square.
+ now apply mul_nonneg_nonneg.
+ apply mul_nonneg_nonneg; apply sqrt_up_nonneg.
+ rewrite mul_shuffle1.
+ apply mul_le_mono_nonneg; trivial; now apply sqrt_sqrt_up_spec.
+Qed.
+
+Lemma sqrt_up_mul_below : forall a b, 0<a -> 0<b -> (P √°a)*(P √°b) < √°(a*b).
+Proof.
+ intros a b Ha Hb.
+ apply sqrt_up_lt_square.
+ apply mul_nonneg_nonneg; order.
+ apply mul_nonneg_nonneg; apply lt_succ_r.
+ rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos.
+ rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos.
+ rewrite mul_shuffle1.
+ apply mul_lt_mono_nonneg; trivial using square_nonneg;
+ now apply sqrt_up_spec.
+Qed.
+
+(** And we can't find better approximations in general.
+ - The upper bound is exact for squares
+ - Concerning the lower bound, for any c>0, take [a=b=c²+1],
+ then [√°(a*b) = c²+1] while [P √°a = P √°b = c]
+*)
+
+(** [sqrt_up] and successor :
+ - the [sqrt_up] function climbs by at most 1 at a time
+ - otherwise it stays at the same value
+ - the +1 steps occur after squares
+*)
+
+Lemma sqrt_up_succ_le : forall a, 0<=a -> √°(S a) <= S (√°a).
+Proof.
+ intros a Ha.
+ apply sqrt_up_le_square.
+ now apply le_le_succ_r.
+ apply le_le_succ_r, sqrt_up_nonneg.
+ rewrite <- (add_1_l (√°a)).
+ apply le_trans with (1²+(√°a)²).
+ rewrite mul_1_l, add_1_l, <- succ_le_mono.
+ now apply sqrt_sqrt_up_spec.
+ apply add_square_le. order'. apply sqrt_up_nonneg.
+Qed.
+
+Lemma sqrt_up_succ_or : forall a, 0<=a -> √°(S a) == S (√°a) \/ √°(S a) == √°a.
+Proof.
+ intros a Ha.
+ destruct (le_gt_cases (√°(S a)) (√°a)) as [H|H].
+ right. generalize (sqrt_up_le_mono _ _ (le_succ_diag_r a)); order.
+ left. apply le_succ_l in H. generalize (sqrt_up_succ_le a Ha); order.
+Qed.
+
+Lemma sqrt_up_eq_succ_iff_square : forall a, 0<=a ->
+ (√°(S a) == S (√°a) <-> exists b, 0<=b /\ a == b²).
+Proof.
+ intros a Ha. split.
+ intros EQ.
+ le_elim Ha.
+ exists (√°a). split. apply sqrt_up_nonneg.
+ generalize (proj2 (sqrt_up_spec a Ha)).
+ assert (Ha' : 0 < S a) by (apply lt_succ_r; order').
+ generalize (proj1 (sqrt_up_spec (S a) Ha')).
+ rewrite EQ, pred_succ, lt_succ_r. order.
+ exists 0. nzsimpl. now split.
+ intros (b & Hb & H).
+ now rewrite H, sqrt_up_succ_square, sqrt_up_square.
+Qed.
+
+(** [sqrt_up] and addition *)
+
+Lemma sqrt_up_add_le : forall a b, √°(a+b) <= √°a + √°b.
+Proof.
+ assert (AUX : forall a b, a<=0 -> √°(a+b) <= √°a + √°b).
+ intros a b Ha. rewrite (sqrt_up_eqn0 a Ha). nzsimpl.
+ apply sqrt_up_le_mono.
+ rewrite <- (add_0_l b) at 2.
+ apply add_le_mono_r; order.
+ intros a b.
+ destruct (le_gt_cases a 0) as [Ha|Ha]. now apply AUX.
+ destruct (le_gt_cases b 0) as [Hb|Hb].
+ rewrite (add_comm a), (add_comm (√°a)); now apply AUX.
+ rewrite 2 sqrt_up_eqn; trivial.
+ nzsimpl. rewrite <- succ_le_mono.
+ transitivity (√(P a) + √b).
+ rewrite <- (lt_succ_pred 0 a Ha) at 1. nzsimpl. apply sqrt_add_le.
+ apply add_le_mono_l.
+ apply le_sqrt_sqrt_up.
+ now apply add_pos_pos.
+Qed.
+
+(** Convexity-like inequality for [sqrt_up]: [sqrt_up] of middle is above middle
+ of square roots. We cannot say more, for instance take a=b=2, then
+ 2+2 <= S 3 *)
+
+Lemma add_sqrt_up_le : forall a b, 0<=a -> 0<=b -> √°a + √°b <= S √°(2*(a+b)).
+Proof.
+ intros a b Ha Hb.
+ le_elim Ha.
+ le_elim Hb.
+ rewrite 3 sqrt_up_eqn; trivial.
+ nzsimpl. rewrite <- 2 succ_le_mono.
+ etransitivity; [eapply add_sqrt_le|].
+ apply lt_succ_r. now rewrite (lt_succ_pred 0 a Ha).
+ apply lt_succ_r. now rewrite (lt_succ_pred 0 b Hb).
+ apply sqrt_le_mono.
+ apply lt_succ_r. rewrite (lt_succ_pred 0).
+ apply mul_lt_mono_pos_l. order'.
+ apply add_lt_mono.
+ apply le_succ_l. now rewrite (lt_succ_pred 0).
+ apply le_succ_l. now rewrite (lt_succ_pred 0).
+ apply mul_pos_pos. order'. now apply add_pos_pos.
+ apply mul_pos_pos. order'. now apply add_pos_pos.
+ rewrite <- Hb, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono.
+ rewrite <- (mul_1_l a) at 1. apply mul_le_mono_nonneg_r; order'.
+ rewrite <- Ha, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono.
+ rewrite <- (mul_1_l b) at 1. apply mul_le_mono_nonneg_r; order'.
+Qed.
+
+End NZSqrtUpProp.