summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZPow.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZPow.v')
-rw-r--r--theories/Numbers/NatInt/NZPow.v411
1 files changed, 411 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZPow.v b/theories/Numbers/NatInt/NZPow.v
new file mode 100644
index 00000000..58704735
--- /dev/null
+++ b/theories/Numbers/NatInt/NZPow.v
@@ -0,0 +1,411 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Power Function *)
+
+Require Import NZAxioms NZMulOrder.
+
+(** Interface of a power function, then its specification on naturals *)
+
+Module Type Pow (Import A : Typ).
+ Parameters Inline pow : t -> t -> t.
+End Pow.
+
+Module Type PowNotation (A : Typ)(Import B : Pow A).
+ Infix "^" := pow.
+End PowNotation.
+
+Module Type Pow' (A : Typ) := Pow A <+ PowNotation A.
+
+Module Type NZPowSpec (Import A : NZOrdAxiomsSig')(Import B : Pow' A).
+ Declare Instance pow_wd : Proper (eq==>eq==>eq) pow.
+ Axiom pow_0_r : forall a, a^0 == 1.
+ Axiom pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
+ Axiom pow_neg_r : forall a b, b<0 -> a^b == 0.
+End NZPowSpec.
+
+(** The above [pow_neg_r] specification is useless (and trivially
+ provable) for N. Having it here allows to already derive
+ some slightly more general statements. *)
+
+Module Type NZPow (A : NZOrdAxiomsSig) := Pow A <+ NZPowSpec A.
+Module Type NZPow' (A : NZOrdAxiomsSig) := Pow' A <+ NZPowSpec A.
+
+(** Derived properties of power *)
+
+Module Type NZPowProp
+ (Import A : NZOrdAxiomsSig')
+ (Import B : NZPow' A)
+ (Import C : NZMulOrderProp A).
+
+Hint Rewrite pow_0_r pow_succ_r : nz.
+
+(** Power and basic constants *)
+
+Lemma pow_0_l : forall a, 0<a -> 0^a == 0.
+Proof.
+ intros a Ha.
+ destruct (lt_exists_pred _ _ Ha) as (a' & EQ & Ha').
+ rewrite EQ. now nzsimpl.
+Qed.
+
+Lemma pow_0_l' : forall a, a~=0 -> 0^a == 0.
+Proof.
+ intros a Ha.
+ destruct (lt_trichotomy a 0) as [LT|[EQ|GT]]; try order.
+ now rewrite pow_neg_r.
+ now apply pow_0_l.
+Qed.
+
+Lemma pow_1_r : forall a, a^1 == a.
+Proof.
+ intros. now nzsimpl'.
+Qed.
+
+Lemma pow_1_l : forall a, 0<=a -> 1^a == 1.
+Proof.
+ apply le_ind; intros. solve_proper.
+ now nzsimpl.
+ now nzsimpl.
+Qed.
+
+Hint Rewrite pow_1_r pow_1_l : nz.
+
+Lemma pow_2_r : forall a, a^2 == a*a.
+Proof.
+ intros. rewrite two_succ. nzsimpl; order'.
+Qed.
+
+Hint Rewrite pow_2_r : nz.
+
+(** Power and nullity *)
+
+Lemma pow_eq_0 : forall a b, 0<=b -> a^b == 0 -> a == 0.
+Proof.
+ intros a b Hb. apply le_ind with (4:=Hb).
+ solve_proper.
+ rewrite pow_0_r. order'.
+ clear b Hb. intros b Hb IH.
+ rewrite pow_succ_r by trivial.
+ intros H. apply eq_mul_0 in H. destruct H; trivial.
+ now apply IH.
+Qed.
+
+Lemma pow_nonzero : forall a b, a~=0 -> 0<=b -> a^b ~= 0.
+Proof.
+ intros a b Ha Hb. contradict Ha. now apply pow_eq_0 with b.
+Qed.
+
+Lemma pow_eq_0_iff : forall a b, a^b == 0 <-> b<0 \/ (0<b /\ a==0).
+Proof.
+ intros a b. split.
+ intros H.
+ destruct (lt_trichotomy b 0) as [Hb|[Hb|Hb]].
+ now left.
+ rewrite Hb, pow_0_r in H; order'.
+ right. split; trivial. apply pow_eq_0 with b; order.
+ intros [Hb|[Hb Ha]]. now rewrite pow_neg_r.
+ rewrite Ha. apply pow_0_l'. order.
+Qed.
+
+(** Power and addition, multiplication *)
+
+Lemma pow_add_r : forall a b c, 0<=b -> 0<=c ->
+ a^(b+c) == a^b * a^c.
+Proof.
+ intros a b c Hb. apply le_ind with (4:=Hb). solve_proper.
+ now nzsimpl.
+ clear b Hb. intros b Hb IH Hc.
+ nzsimpl; trivial.
+ rewrite IH; trivial. apply mul_assoc.
+ now apply add_nonneg_nonneg.
+Qed.
+
+Lemma pow_mul_l : forall a b c,
+ (a*b)^c == a^c * b^c.
+Proof.
+ intros a b c.
+ destruct (lt_ge_cases c 0) as [Hc|Hc].
+ rewrite !(pow_neg_r _ _ Hc). now nzsimpl.
+ apply le_ind with (4:=Hc). solve_proper.
+ now nzsimpl.
+ clear c Hc. intros c Hc IH.
+ nzsimpl; trivial.
+ rewrite IH; trivial. apply mul_shuffle1.
+Qed.
+
+Lemma pow_mul_r : forall a b c, 0<=b -> 0<=c ->
+ a^(b*c) == (a^b)^c.
+Proof.
+ intros a b c Hb. apply le_ind with (4:=Hb). solve_proper.
+ intros. now nzsimpl.
+ clear b Hb. intros b Hb IH Hc.
+ nzsimpl; trivial.
+ rewrite pow_add_r, IH, pow_mul_l; trivial. apply mul_comm.
+ now apply mul_nonneg_nonneg.
+Qed.
+
+(** Positivity *)
+
+Lemma pow_nonneg : forall a b, 0<=a -> 0<=a^b.
+Proof.
+ intros a b Ha.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ now rewrite !(pow_neg_r _ _ Hb).
+ apply le_ind with (4:=Hb). solve_proper.
+ nzsimpl; order'.
+ clear b Hb. intros b Hb IH.
+ nzsimpl; trivial. now apply mul_nonneg_nonneg.
+Qed.
+
+Lemma pow_pos_nonneg : forall a b, 0<a -> 0<=b -> 0<a^b.
+Proof.
+ intros a b Ha Hb. apply le_ind with (4:=Hb). solve_proper.
+ nzsimpl; order'.
+ clear b Hb. intros b Hb IH.
+ nzsimpl; trivial. now apply mul_pos_pos.
+Qed.
+
+(** Monotonicity *)
+
+Lemma pow_lt_mono_l : forall a b c, 0<c -> 0<=a<b -> a^c < b^c.
+Proof.
+ intros a b c Hc. apply lt_ind with (4:=Hc). solve_proper.
+ intros (Ha,H). nzsimpl; trivial; order.
+ clear c Hc. intros c Hc IH (Ha,H).
+ nzsimpl; try order.
+ apply mul_lt_mono_nonneg; trivial.
+ apply pow_nonneg; try order.
+ apply IH. now split.
+Qed.
+
+Lemma pow_le_mono_l : forall a b c, 0<=a<=b -> a^c <= b^c.
+Proof.
+ intros a b c (Ha,H).
+ destruct (lt_trichotomy c 0) as [Hc|[Hc|Hc]].
+ rewrite !(pow_neg_r _ _ Hc); now nzsimpl.
+ rewrite Hc; now nzsimpl.
+ apply lt_eq_cases in H. destruct H as [H|H]; [|now rewrite <- H].
+ apply lt_le_incl, pow_lt_mono_l; now try split.
+Qed.
+
+Lemma pow_gt_1 : forall a b, 1<a -> (0<b <-> 1<a^b).
+Proof.
+ intros a b Ha. split; intros Hb.
+ rewrite <- (pow_1_l b) by order.
+ apply pow_lt_mono_l; try split; order'.
+ destruct (lt_trichotomy b 0) as [H|[H|H]]; trivial.
+ rewrite pow_neg_r in Hb; order'.
+ rewrite H, pow_0_r in Hb. order.
+Qed.
+
+Lemma pow_lt_mono_r : forall a b c, 1<a -> 0<=c -> b<c -> a^b < a^c.
+Proof.
+ intros a b c Ha Hc H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite pow_neg_r by trivial. apply pow_pos_nonneg; order'.
+ assert (H' : b<=c) by order.
+ destruct (le_exists_sub _ _ H') as (d & EQ & Hd).
+ rewrite EQ, pow_add_r; trivial. rewrite <- (mul_1_l (a^b)) at 1.
+ apply mul_lt_mono_pos_r.
+ apply pow_pos_nonneg; order'.
+ apply pow_gt_1; trivial.
+ apply lt_eq_cases in Hd; destruct Hd as [LT|EQ']; trivial.
+ rewrite <- EQ' in *. rewrite add_0_l in EQ. order.
+Qed.
+
+(** NB: since 0^0 > 0^1, the following result isn't valid with a=0 *)
+
+Lemma pow_le_mono_r : forall a b c, 0<a -> b<=c -> a^b <= a^c.
+Proof.
+ intros a b c Ha H.
+ destruct (lt_ge_cases b 0) as [Hb|Hb].
+ rewrite (pow_neg_r _ _ Hb). apply pow_nonneg; order.
+ apply le_succ_l in Ha; rewrite <- one_succ in Ha.
+ apply lt_eq_cases in Ha; destruct Ha as [Ha|Ha]; [|rewrite <- Ha].
+ apply lt_eq_cases in H; destruct H as [H|H]; [|now rewrite <- H].
+ apply lt_le_incl, pow_lt_mono_r; order.
+ nzsimpl; order.
+Qed.
+
+Lemma pow_le_mono : forall a b c d, 0<a<=c -> b<=d ->
+ a^b <= c^d.
+Proof.
+ intros. transitivity (a^d).
+ apply pow_le_mono_r; intuition order.
+ apply pow_le_mono_l; intuition order.
+Qed.
+
+Lemma pow_lt_mono : forall a b c d, 0<a<c -> 0<b<d ->
+ a^b < c^d.
+Proof.
+ intros a b c d (Ha,Hac) (Hb,Hbd).
+ apply le_succ_l in Ha; rewrite <- one_succ in Ha.
+ apply lt_eq_cases in Ha; destruct Ha as [Ha|Ha]; [|rewrite <- Ha].
+ transitivity (a^d).
+ apply pow_lt_mono_r; intuition order.
+ apply pow_lt_mono_l; try split; order'.
+ nzsimpl; try order. apply pow_gt_1; order.
+Qed.
+
+(** Injectivity *)
+
+Lemma pow_inj_l : forall a b c, 0<=a -> 0<=b -> 0<c ->
+ a^c == b^c -> a == b.
+Proof.
+ intros a b c Ha Hb Hc EQ.
+ destruct (lt_trichotomy a b) as [LT|[EQ'|GT]]; trivial.
+ assert (a^c < b^c) by (apply pow_lt_mono_l; try split; trivial).
+ order.
+ assert (b^c < a^c) by (apply pow_lt_mono_l; try split; trivial).
+ order.
+Qed.
+
+Lemma pow_inj_r : forall a b c, 1<a -> 0<=b -> 0<=c ->
+ a^b == a^c -> b == c.
+Proof.
+ intros a b c Ha Hb Hc EQ.
+ destruct (lt_trichotomy b c) as [LT|[EQ'|GT]]; trivial.
+ assert (a^b < a^c) by (apply pow_lt_mono_r; try split; trivial).
+ order.
+ assert (a^c < a^b) by (apply pow_lt_mono_r; try split; trivial).
+ order.
+Qed.
+
+(** Monotonicity results, both ways *)
+
+Lemma pow_lt_mono_l_iff : forall a b c, 0<=a -> 0<=b -> 0<c ->
+ (a<b <-> a^c < b^c).
+Proof.
+ intros a b c Ha Hb Hc.
+ split; intro LT.
+ apply pow_lt_mono_l; try split; trivial.
+ destruct (le_gt_cases b a) as [LE|GT]; trivial.
+ assert (b^c <= a^c) by (apply pow_le_mono_l; try split; order).
+ order.
+Qed.
+
+Lemma pow_le_mono_l_iff : forall a b c, 0<=a -> 0<=b -> 0<c ->
+ (a<=b <-> a^c <= b^c).
+Proof.
+ intros a b c Ha Hb Hc.
+ split; intro LE.
+ apply pow_le_mono_l; try split; trivial.
+ destruct (le_gt_cases a b) as [LE'|GT]; trivial.
+ assert (b^c < a^c) by (apply pow_lt_mono_l; try split; trivial).
+ order.
+Qed.
+
+Lemma pow_lt_mono_r_iff : forall a b c, 1<a -> 0<=c ->
+ (b<c <-> a^b < a^c).
+Proof.
+ intros a b c Ha Hc.
+ split; intro LT.
+ now apply pow_lt_mono_r.
+ destruct (le_gt_cases c b) as [LE|GT]; trivial.
+ assert (a^c <= a^b) by (apply pow_le_mono_r; order').
+ order.
+Qed.
+
+Lemma pow_le_mono_r_iff : forall a b c, 1<a -> 0<=c ->
+ (b<=c <-> a^b <= a^c).
+Proof.
+ intros a b c Ha Hc.
+ split; intro LE.
+ apply pow_le_mono_r; order'.
+ destruct (le_gt_cases b c) as [LE'|GT]; trivial.
+ assert (a^c < a^b) by (apply pow_lt_mono_r; order').
+ order.
+Qed.
+
+(** For any a>1, the a^x function is above the identity function *)
+
+Lemma pow_gt_lin_r : forall a b, 1<a -> 0<=b -> b < a^b.
+Proof.
+ intros a b Ha Hb. apply le_ind with (4:=Hb). solve_proper.
+ nzsimpl. order'.
+ clear b Hb. intros b Hb IH. nzsimpl; trivial.
+ rewrite <- !le_succ_l in *. rewrite <- two_succ in Ha.
+ transitivity (2*(S b)).
+ nzsimpl'. rewrite <- 2 succ_le_mono.
+ rewrite <- (add_0_l b) at 1. apply add_le_mono; order.
+ apply mul_le_mono_nonneg; trivial.
+ order'.
+ now apply lt_le_incl, lt_succ_r.
+Qed.
+
+(** Someday, we should say something about the full Newton formula.
+ In the meantime, we can at least provide some inequalities about
+ (a+b)^c.
+*)
+
+Lemma pow_add_lower : forall a b c, 0<=a -> 0<=b -> 0<c ->
+ a^c + b^c <= (a+b)^c.
+Proof.
+ intros a b c Ha Hb Hc. apply lt_ind with (4:=Hc). solve_proper.
+ nzsimpl; order.
+ clear c Hc. intros c Hc IH.
+ assert (0<=c) by order'.
+ nzsimpl; trivial.
+ transitivity ((a+b)*(a^c + b^c)).
+ rewrite mul_add_distr_r, !mul_add_distr_l.
+ apply add_le_mono.
+ rewrite <- add_0_r at 1. apply add_le_mono_l.
+ apply mul_nonneg_nonneg; trivial.
+ apply pow_nonneg; trivial.
+ rewrite <- add_0_l at 1. apply add_le_mono_r.
+ apply mul_nonneg_nonneg; trivial.
+ apply pow_nonneg; trivial.
+ apply mul_le_mono_nonneg_l; trivial.
+ now apply add_nonneg_nonneg.
+Qed.
+
+(** This upper bound can also be seen as a convexity proof for x^c :
+ image of (a+b)/2 is below the middle of the images of a and b
+*)
+
+Lemma pow_add_upper : forall a b c, 0<=a -> 0<=b -> 0<c ->
+ (a+b)^c <= 2^(pred c) * (a^c + b^c).
+Proof.
+ assert (aux : forall a b c, 0<=a<=b -> 0<c ->
+ (a + b) * (a ^ c + b ^ c) <= 2 * (a * a ^ c + b * b ^ c)).
+ (* begin *)
+ intros a b c (Ha,H) Hc.
+ rewrite !mul_add_distr_l, !mul_add_distr_r. nzsimpl'.
+ rewrite <- !add_assoc. apply add_le_mono_l.
+ rewrite !add_assoc. apply add_le_mono_r.
+ destruct (le_exists_sub _ _ H) as (d & EQ & Hd).
+ rewrite EQ.
+ rewrite 2 mul_add_distr_r.
+ rewrite !add_assoc. apply add_le_mono_r.
+ rewrite add_comm. apply add_le_mono_l.
+ apply mul_le_mono_nonneg_l; trivial.
+ apply pow_le_mono_l; try split; order.
+ (* end *)
+ intros a b c Ha Hb Hc. apply lt_ind with (4:=Hc). solve_proper.
+ nzsimpl; order.
+ clear c Hc. intros c Hc IH.
+ assert (0<=c) by order.
+ nzsimpl; trivial.
+ transitivity ((a+b)*(2^(pred c) * (a^c + b^c))).
+ apply mul_le_mono_nonneg_l; trivial.
+ now apply add_nonneg_nonneg.
+ rewrite mul_assoc. rewrite (mul_comm (a+b)).
+ assert (EQ : S (P c) == c) by (apply lt_succ_pred with 0; order').
+ assert (LE : 0 <= P c) by (now rewrite succ_le_mono, EQ, le_succ_l).
+ assert (EQ' : 2^c == 2^(P c) * 2) by (rewrite <- EQ at 1; nzsimpl'; order).
+ rewrite EQ', <- !mul_assoc.
+ apply mul_le_mono_nonneg_l.
+ apply pow_nonneg; order'.
+ destruct (le_gt_cases a b).
+ apply aux; try split; order'.
+ rewrite (add_comm a), (add_comm (a^c)), (add_comm (a*a^c)).
+ apply aux; try split; order'.
+Qed.
+
+End NZPowProp.