summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZMulOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZMulOrder.v')
-rw-r--r--theories/Numbers/NatInt/NZMulOrder.v325
1 files changed, 161 insertions, 164 deletions
diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v
index c707bf73..7b64a698 100644
--- a/theories/Numbers/NatInt/NZMulOrder.v
+++ b/theories/Numbers/NatInt/NZMulOrder.v
@@ -8,303 +8,300 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id$ i*)
Require Import NZAxioms.
Require Import NZAddOrder.
-Module NZMulOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
-Module Export NZAddOrderPropMod := NZAddOrderPropFunct NZOrdAxiomsMod.
-Open Local Scope NatIntScope.
+Module Type NZMulOrderPropSig (Import NZ : NZOrdAxiomsSig').
+Include NZAddOrderPropSig NZ.
-Theorem NZmul_lt_pred :
- forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
+Theorem mul_lt_pred :
+ forall p q n m, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
Proof.
-intros p q n m H. rewrite <- H. do 2 rewrite NZmul_succ_l.
-rewrite <- (NZadd_assoc (p * n) n m).
-rewrite <- (NZadd_assoc (p * m) m n).
-rewrite (NZadd_comm n m). now rewrite <- NZadd_lt_mono_r.
+intros p q n m H. rewrite <- H. nzsimpl.
+rewrite <- ! add_assoc, (add_comm n m).
+now rewrite <- add_lt_mono_r.
Qed.
-Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
+Theorem mul_lt_mono_pos_l : forall p n m, 0 < p -> (n < m <-> p * n < p * m).
Proof.
-NZord_induct p.
-intros n m H; false_hyp H NZlt_irrefl.
-intros p H IH n m H1. do 2 rewrite NZmul_succ_l.
-le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
-intros n1 m1 H2. apply NZadd_lt_mono; [now apply -> IH | assumption].
-split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
-apply <- NZle_ngt in H3. le_elim H3.
-apply NZlt_asymm in H2. apply H2. now apply LR.
-rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
-rewrite <- H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
-intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
+nzord_induct p.
+intros n m H; false_hyp H lt_irrefl.
+intros p H IH n m H1. nzsimpl.
+le_elim H. assert (LR : forall n m, n < m -> p * n + n < p * m + m).
+intros n1 m1 H2. apply add_lt_mono; [now apply -> IH | assumption].
+split; [apply LR |]. intro H2. apply -> lt_dne; intro H3.
+apply <- le_ngt in H3. le_elim H3.
+apply lt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 lt_irrefl.
+rewrite <- H; now nzsimpl.
+intros p H1 _ n m H2. destruct (lt_asymm _ _ H1 H2).
Qed.
-Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
+Theorem mul_lt_mono_pos_r : forall p n m, 0 < p -> (n < m <-> n * p < m * p).
Proof.
intros p n m.
-rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_pos_l.
+rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_pos_l.
Qed.
-Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
+Theorem mul_lt_mono_neg_l : forall p n m, p < 0 -> (n < m <-> p * m < p * n).
Proof.
-NZord_induct p.
-intros n m H; false_hyp H NZlt_irrefl.
-intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
-intros p H IH n m H1. apply <- NZle_succ_l in H.
-le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
-intros n1 m1 H2. apply (NZle_lt_add_lt n1 m1).
-now apply NZlt_le_incl. do 2 rewrite <- NZmul_succ_l. now apply -> IH.
-split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
-apply <- NZle_ngt in H3. le_elim H3.
-apply NZlt_asymm in H2. apply H2. now apply LR.
-rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
-rewrite (NZmul_lt_pred p (S p)) by reflexivity.
-rewrite H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
+nzord_induct p.
+intros n m H; false_hyp H lt_irrefl.
+intros p H1 _ n m H2. apply lt_succ_l in H2. apply <- nle_gt in H2.
+false_hyp H1 H2.
+intros p H IH n m H1. apply <- le_succ_l in H.
+le_elim H. assert (LR : forall n m, n < m -> p * m < p * n).
+intros n1 m1 H2. apply (le_lt_add_lt n1 m1).
+now apply lt_le_incl. rewrite <- 2 mul_succ_l. now apply -> IH.
+split; [apply LR |]. intro H2. apply -> lt_dne; intro H3.
+apply <- le_ngt in H3. le_elim H3.
+apply lt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 lt_irrefl.
+rewrite (mul_lt_pred p (S p)) by reflexivity.
+rewrite H; do 2 rewrite mul_0_l; now do 2 rewrite add_0_l.
Qed.
-Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
+Theorem mul_lt_mono_neg_r : forall p n m, p < 0 -> (n < m <-> m * p < n * p).
Proof.
intros p n m.
-rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_neg_l.
+rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_neg_l.
Qed.
-Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
+Theorem mul_le_mono_nonneg_l : forall n m p, 0 <= p -> n <= m -> p * n <= p * m.
Proof.
intros n m p H1 H2. le_elim H1.
-le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_pos_l.
-apply NZeq_le_incl; now rewrite H2.
-apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZmul_0_l.
+le_elim H2. apply lt_le_incl. now apply -> mul_lt_mono_pos_l.
+apply eq_le_incl; now rewrite H2.
+apply eq_le_incl; rewrite <- H1; now do 2 rewrite mul_0_l.
Qed.
-Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
+Theorem mul_le_mono_nonpos_l : forall n m p, p <= 0 -> n <= m -> p * m <= p * n.
Proof.
intros n m p H1 H2. le_elim H1.
-le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_neg_l.
-apply NZeq_le_incl; now rewrite H2.
-apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZmul_0_l.
+le_elim H2. apply lt_le_incl. now apply -> mul_lt_mono_neg_l.
+apply eq_le_incl; now rewrite H2.
+apply eq_le_incl; rewrite H1; now do 2 rewrite mul_0_l.
Qed.
-Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
+Theorem mul_le_mono_nonneg_r : forall n m p, 0 <= p -> n <= m -> n * p <= m * p.
Proof.
-intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
-now apply NZmul_le_mono_nonneg_l.
+intros n m p H1 H2;
+rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonneg_l.
Qed.
-Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
+Theorem mul_le_mono_nonpos_r : forall n m p, p <= 0 -> n <= m -> m * p <= n * p.
Proof.
-intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
-now apply NZmul_le_mono_nonpos_l.
+intros n m p H1 H2;
+rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonpos_l.
Qed.
-Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
+Theorem mul_cancel_l : forall n m p, p ~= 0 -> (p * n == p * m <-> n == m).
Proof.
intros n m p H; split; intro H1.
-destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
-apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
-assert (H4 : p * m < p * n); [now apply -> NZmul_lt_mono_neg_l |].
-rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
-assert (H4 : p * n < p * m); [now apply -> NZmul_lt_mono_neg_l |].
-rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+destruct (lt_trichotomy p 0) as [H2 | [H2 | H2]].
+apply -> eq_dne; intro H3. apply -> lt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * m < p * n); [now apply -> mul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 lt_irrefl.
+assert (H4 : p * n < p * m); [now apply -> mul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 lt_irrefl.
false_hyp H2 H.
-apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
-assert (H4 : p * n < p * m) by (now apply -> NZmul_lt_mono_pos_l).
-rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
-assert (H4 : p * m < p * n) by (now apply -> NZmul_lt_mono_pos_l).
-rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+apply -> eq_dne; intro H3. apply -> lt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * n < p * m) by (now apply -> mul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 lt_irrefl.
+assert (H4 : p * m < p * n) by (now apply -> mul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 lt_irrefl.
now rewrite H1.
Qed.
-Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
+Theorem mul_cancel_r : forall n m p, p ~= 0 -> (n * p == m * p <-> n == m).
Proof.
-intros n m p. rewrite (NZmul_comm n p), (NZmul_comm m p); apply NZmul_cancel_l.
+intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_cancel_l.
Qed.
-Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
+Theorem mul_id_l : forall n m, m ~= 0 -> (n * m == m <-> n == 1).
Proof.
intros n m H.
-stepl (n * m == 1 * m) by now rewrite NZmul_1_l. now apply NZmul_cancel_r.
+stepl (n * m == 1 * m) by now rewrite mul_1_l. now apply mul_cancel_r.
Qed.
-Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
+Theorem mul_id_r : forall n m, n ~= 0 -> (n * m == n <-> m == 1).
Proof.
-intros n m; rewrite NZmul_comm; apply NZmul_id_l.
+intros n m; rewrite mul_comm; apply mul_id_l.
Qed.
-Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
+Theorem mul_le_mono_pos_l : forall n m p, 0 < p -> (n <= m <-> p * n <= p * m).
Proof.
-intros n m p H; do 2 rewrite NZlt_eq_cases.
-rewrite (NZmul_lt_mono_pos_l p n m) by assumption.
-now rewrite -> (NZmul_cancel_l n m p) by
-(intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+intros n m p H; do 2 rewrite lt_eq_cases.
+rewrite (mul_lt_mono_pos_l p n m) by assumption.
+now rewrite -> (mul_cancel_l n m p) by
+(intro H1; rewrite H1 in H; false_hyp H lt_irrefl).
Qed.
-Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
+Theorem mul_le_mono_pos_r : forall n m p, 0 < p -> (n <= m <-> n * p <= m * p).
Proof.
-intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
-apply NZmul_le_mono_pos_l.
+intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_pos_l.
Qed.
-Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
+Theorem mul_le_mono_neg_l : forall n m p, p < 0 -> (n <= m <-> p * m <= p * n).
Proof.
-intros n m p H; do 2 rewrite NZlt_eq_cases.
-rewrite (NZmul_lt_mono_neg_l p n m); [| assumption].
-rewrite -> (NZmul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
-now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
+intros n m p H; do 2 rewrite lt_eq_cases.
+rewrite (mul_lt_mono_neg_l p n m); [| assumption].
+rewrite -> (mul_cancel_l m n p)
+ by (intro H1; rewrite H1 in H; false_hyp H lt_irrefl).
+now setoid_replace (n == m) with (m == n) by (split; now intro).
Qed.
-Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
+Theorem mul_le_mono_neg_r : forall n m p, p < 0 -> (n <= m <-> m * p <= n * p).
Proof.
-intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
-apply NZmul_le_mono_neg_l.
+intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_neg_l.
Qed.
-Theorem NZmul_lt_mono_nonneg :
- forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
+Theorem mul_lt_mono_nonneg :
+ forall n m p q, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
Proof.
intros n m p q H1 H2 H3 H4.
-apply NZle_lt_trans with (m * p).
-apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
-apply -> NZmul_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
+apply le_lt_trans with (m * p).
+apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl].
+apply -> mul_lt_mono_pos_l; [assumption | now apply le_lt_trans with n].
Qed.
(* There are still many variants of the theorem above. One can assume 0 < n
or 0 < p or n <= m or p <= q. *)
-Theorem NZmul_le_mono_nonneg :
- forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
+Theorem mul_le_mono_nonneg :
+ forall n m p q, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
Proof.
intros n m p q H1 H2 H3 H4.
le_elim H2; le_elim H4.
-apply NZlt_le_incl; now apply NZmul_lt_mono_nonneg.
-rewrite <- H4; apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
-rewrite <- H2; apply NZmul_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
-rewrite H2; rewrite H4; now apply NZeq_le_incl.
+apply lt_le_incl; now apply mul_lt_mono_nonneg.
+rewrite <- H4; apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl].
+rewrite <- H2; apply mul_le_mono_nonneg_l; [assumption | now apply lt_le_incl].
+rewrite H2; rewrite H4; now apply eq_le_incl.
Qed.
-Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
+Theorem mul_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n * m.
Proof.
-intros n m H1 H2.
-rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_pos_r.
+intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_pos_r.
Qed.
-Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
+Theorem mul_neg_neg : forall n m, n < 0 -> m < 0 -> 0 < n * m.
Proof.
-intros n m H1 H2.
-rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_neg_r.
Qed.
-Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
+Theorem mul_pos_neg : forall n m, 0 < n -> m < 0 -> n * m < 0.
Proof.
-intros n m H1 H2.
-rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_neg_r.
Qed.
-Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
+Theorem mul_neg_pos : forall n m, n < 0 -> 0 < m -> n * m < 0.
Proof.
-intros; rewrite NZmul_comm; now apply NZmul_pos_neg.
+intros; rewrite mul_comm; now apply mul_pos_neg.
Qed.
-Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
+Theorem mul_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n*m.
Proof.
-intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
-rewrite NZmul_1_l in H1. now apply NZlt_1_l with m.
+intros. rewrite <- (mul_0_l m). apply mul_le_mono_nonneg; order.
+Qed.
+
+Theorem lt_1_mul_pos : forall n m, 1 < n -> 0 < m -> 1 < n * m.
+Proof.
+intros n m H1 H2. apply -> (mul_lt_mono_pos_r m) in H1.
+rewrite mul_1_l in H1. now apply lt_1_l with m.
assumption.
Qed.
-Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
+Theorem eq_mul_0 : forall n m, n * m == 0 <-> n == 0 \/ m == 0.
Proof.
intros n m; split.
-intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
-destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
+intro H; destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]];
+destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]];
try (now right); try (now left).
-elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_neg_neg |].
-elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_neg_pos |].
-elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_pos_neg |].
-elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_pos_pos |].
-intros [H | H]. now rewrite H, NZmul_0_l. now rewrite H, NZmul_0_r.
+exfalso; now apply (lt_neq 0 (n * m)); [apply mul_neg_neg |].
+exfalso; now apply (lt_neq (n * m) 0); [apply mul_neg_pos |].
+exfalso; now apply (lt_neq (n * m) 0); [apply mul_pos_neg |].
+exfalso; now apply (lt_neq 0 (n * m)); [apply mul_pos_pos |].
+intros [H | H]. now rewrite H, mul_0_l. now rewrite H, mul_0_r.
Qed.
-Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Theorem neq_mul_0 : forall n m, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
Proof.
intros n m; split; intro H.
-intro H1; apply -> NZeq_mul_0 in H1. tauto.
+intro H1; apply -> eq_mul_0 in H1. tauto.
split; intro H1; rewrite H1 in H;
-(rewrite NZmul_0_l in H || rewrite NZmul_0_r in H); now apply H.
+(rewrite mul_0_l in H || rewrite mul_0_r in H); now apply H.
Qed.
-Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.
+Theorem eq_square_0 : forall n, n * n == 0 <-> n == 0.
Proof.
-intro n; rewrite NZeq_mul_0; tauto.
+intro n; rewrite eq_mul_0; tauto.
Qed.
-Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
+Theorem eq_mul_0_l : forall n m, n * m == 0 -> m ~= 0 -> n == 0.
Proof.
-intros n m H1 H2. apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+intros n m H1 H2. apply -> eq_mul_0 in H1. destruct H1 as [H1 | H1].
assumption. false_hyp H1 H2.
Qed.
-Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
+Theorem eq_mul_0_r : forall n m, n * m == 0 -> n ~= 0 -> m == 0.
Proof.
-intros n m H1 H2; apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+intros n m H1 H2; apply -> eq_mul_0 in H1. destruct H1 as [H1 | H1].
false_hyp H1 H2. assumption.
Qed.
-Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
+Theorem lt_0_mul : forall n m, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
-destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
-[| rewrite H1 in H; rewrite NZmul_0_l in H; false_hyp H NZlt_irrefl |];
-(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
-[| rewrite H2 in H; rewrite NZmul_0_r in H; false_hyp H NZlt_irrefl |]);
+destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]];
+[| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |];
+(destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]];
+[| rewrite H2 in H; rewrite mul_0_r in H; false_hyp H lt_irrefl |]);
try (left; now split); try (right; now split).
-assert (H3 : n * m < 0) by now apply NZmul_neg_pos.
-elimtype False; now apply (NZlt_asymm (n * m) 0).
-assert (H3 : n * m < 0) by now apply NZmul_pos_neg.
-elimtype False; now apply (NZlt_asymm (n * m) 0).
-now apply NZmul_pos_pos. now apply NZmul_neg_neg.
+assert (H3 : n * m < 0) by now apply mul_neg_pos.
+exfalso; now apply (lt_asymm (n * m) 0).
+assert (H3 : n * m < 0) by now apply mul_pos_neg.
+exfalso; now apply (lt_asymm (n * m) 0).
+now apply mul_pos_pos. now apply mul_neg_neg.
Qed.
-Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.
+Theorem square_lt_mono_nonneg : forall n m, 0 <= n -> n < m -> n * n < m * m.
Proof.
-intros n m H1 H2. now apply NZmul_lt_mono_nonneg.
+intros n m H1 H2. now apply mul_lt_mono_nonneg.
Qed.
-Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.
+Theorem square_le_mono_nonneg : forall n m, 0 <= n -> n <= m -> n * n <= m * m.
Proof.
-intros n m H1 H2. now apply NZmul_le_mono_nonneg.
+intros n m H1 H2. now apply mul_le_mono_nonneg.
Qed.
(* The converse theorems require nonnegativity (or nonpositivity) of the
other variable *)
-Theorem NZsquare_lt_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n < m * m -> n < m.
+Theorem square_lt_simpl_nonneg : forall n m, 0 <= m -> n * n < m * m -> n < m.
Proof.
-intros n m H1 H2. destruct (NZlt_ge_cases n 0).
-now apply NZlt_le_trans with 0.
-destruct (NZlt_ge_cases n m).
-assumption. assert (F : m * m <= n * n) by now apply NZsquare_le_mono_nonneg.
-apply -> NZle_ngt in F. false_hyp H2 F.
+intros n m H1 H2. destruct (lt_ge_cases n 0).
+now apply lt_le_trans with 0.
+destruct (lt_ge_cases n m).
+assumption. assert (F : m * m <= n * n) by now apply square_le_mono_nonneg.
+apply -> le_ngt in F. false_hyp H2 F.
Qed.
-Theorem NZsquare_le_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n <= m * m -> n <= m.
+Theorem square_le_simpl_nonneg : forall n m, 0 <= m -> n * n <= m * m -> n <= m.
Proof.
-intros n m H1 H2. destruct (NZlt_ge_cases n 0).
-apply NZlt_le_incl; now apply NZlt_le_trans with 0.
-destruct (NZle_gt_cases n m).
-assumption. assert (F : m * m < n * n) by now apply NZsquare_lt_mono_nonneg.
-apply -> NZlt_nge in F. false_hyp H2 F.
+intros n m H1 H2. destruct (lt_ge_cases n 0).
+apply lt_le_incl; now apply lt_le_trans with 0.
+destruct (le_gt_cases n m).
+assumption. assert (F : m * m < n * n) by now apply square_lt_mono_nonneg.
+apply -> lt_nge in F. false_hyp H2 F.
Qed.
-Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Theorem mul_2_mono_l : forall n m, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
Proof.
-intros n m H. apply <- NZle_succ_l in H.
-apply -> (NZmul_le_mono_pos_l (S n) m (1 + 1)) in H.
-repeat rewrite NZmul_add_distr_r in *; repeat rewrite NZmul_1_l in *.
-repeat rewrite NZadd_succ_r in *. repeat rewrite NZadd_succ_l in *. rewrite NZadd_0_l.
-now apply -> NZle_succ_l.
-apply NZadd_pos_pos; now apply NZlt_succ_diag_r.
+intros n m. rewrite <- le_succ_l, (mul_le_mono_pos_l (S n) m (1 + 1)).
+rewrite !mul_add_distr_r; nzsimpl; now rewrite le_succ_l.
+apply add_pos_pos; now apply lt_0_1.
Qed.
-End NZMulOrderPropFunct.
+End NZMulOrderPropSig.