summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZGcd.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZGcd.v')
-rw-r--r--theories/Numbers/NatInt/NZGcd.v307
1 files changed, 307 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZGcd.v b/theories/Numbers/NatInt/NZGcd.v
new file mode 100644
index 00000000..f72023d9
--- /dev/null
+++ b/theories/Numbers/NatInt/NZGcd.v
@@ -0,0 +1,307 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Greatest Common Divisor *)
+
+Require Import NZAxioms NZMulOrder.
+
+(** Interface of a gcd function, then its specification on naturals *)
+
+Module Type Gcd (Import A : Typ).
+ Parameter Inline gcd : t -> t -> t.
+End Gcd.
+
+Module Type NZGcdSpec (A : NZOrdAxiomsSig')(B : Gcd A).
+ Import A B.
+ Definition divide n m := exists p, m == p*n.
+ Local Notation "( n | m )" := (divide n m) (at level 0).
+ Axiom gcd_divide_l : forall n m, (gcd n m | n).
+ Axiom gcd_divide_r : forall n m, (gcd n m | m).
+ Axiom gcd_greatest : forall n m p, (p | n) -> (p | m) -> (p | gcd n m).
+ Axiom gcd_nonneg : forall n m, 0 <= gcd n m.
+End NZGcdSpec.
+
+Module Type DivideNotation (A:NZOrdAxiomsSig')(B:Gcd A)(C:NZGcdSpec A B).
+ Import A B C.
+ Notation "( n | m )" := (divide n m) (at level 0).
+End DivideNotation.
+
+Module Type NZGcd (A : NZOrdAxiomsSig) := Gcd A <+ NZGcdSpec A.
+Module Type NZGcd' (A : NZOrdAxiomsSig) :=
+ Gcd A <+ NZGcdSpec A <+ DivideNotation A.
+
+(** Derived properties of gcd *)
+
+Module NZGcdProp
+ (Import A : NZOrdAxiomsSig')
+ (Import B : NZGcd' A)
+ (Import C : NZMulOrderProp A).
+
+(** Results concerning divisibility*)
+
+Instance divide_wd : Proper (eq==>eq==>iff) divide.
+Proof.
+ unfold divide. intros x x' Hx y y' Hy.
+ setoid_rewrite Hx. setoid_rewrite Hy. easy.
+Qed.
+
+Lemma divide_1_l : forall n, (1 | n).
+Proof.
+ intros n. exists n. now nzsimpl.
+Qed.
+
+Lemma divide_0_r : forall n, (n | 0).
+Proof.
+ intros n. exists 0. now nzsimpl.
+Qed.
+
+Hint Rewrite divide_1_l divide_0_r : nz.
+
+Lemma divide_0_l : forall n, (0 | n) -> n==0.
+Proof.
+ intros n (m,Hm). revert Hm. now nzsimpl.
+Qed.
+
+Lemma eq_mul_1_nonneg : forall n m,
+ 0<=n -> n*m == 1 -> n==1 /\ m==1.
+Proof.
+ intros n m Hn H.
+ le_elim Hn.
+ destruct (lt_ge_cases m 0) as [Hm|Hm].
+ generalize (mul_pos_neg n m Hn Hm). order'.
+ le_elim Hm.
+ apply le_succ_l in Hn. rewrite <- one_succ in Hn.
+ le_elim Hn.
+ generalize (lt_1_mul_pos n m Hn Hm). order.
+ rewrite <- Hn, mul_1_l in H. now split.
+ rewrite <- Hm, mul_0_r in H. order'.
+ rewrite <- Hn, mul_0_l in H. order'.
+Qed.
+
+Lemma eq_mul_1_nonneg' : forall n m,
+ 0<=m -> n*m == 1 -> n==1 /\ m==1.
+Proof.
+ intros n m Hm H. rewrite mul_comm in H.
+ now apply and_comm, eq_mul_1_nonneg.
+Qed.
+
+Lemma divide_1_r_nonneg : forall n, 0<=n -> (n | 1) -> n==1.
+Proof.
+ intros n Hn (m,Hm). symmetry in Hm.
+ now apply (eq_mul_1_nonneg' m n).
+Qed.
+
+Lemma divide_refl : forall n, (n | n).
+Proof.
+ intros n. exists 1. now nzsimpl.
+Qed.
+
+Lemma divide_trans : forall n m p, (n | m) -> (m | p) -> (n | p).
+Proof.
+ intros n m p (q,Hq) (r,Hr). exists (r*q).
+ now rewrite Hr, Hq, mul_assoc.
+Qed.
+
+Instance divide_reflexive : Reflexive divide := divide_refl.
+Instance divide_transitive : Transitive divide := divide_trans.
+
+(** Due to sign, no general antisymmetry result *)
+
+Lemma divide_antisym_nonneg : forall n m,
+ 0<=n -> 0<=m -> (n | m) -> (m | n) -> n == m.
+Proof.
+ intros n m Hn Hm (q,Hq) (r,Hr).
+ le_elim Hn.
+ destruct (lt_ge_cases q 0) as [Hq'|Hq'].
+ generalize (mul_neg_pos q n Hq' Hn). order.
+ rewrite Hq, mul_assoc in Hr. symmetry in Hr.
+ apply mul_id_l in Hr; [|order].
+ destruct (eq_mul_1_nonneg' r q) as [_ H]; trivial.
+ now rewrite H, mul_1_l in Hq.
+ rewrite <- Hn, mul_0_r in Hq. now rewrite <- Hn.
+Qed.
+
+Lemma mul_divide_mono_l : forall n m p, (n | m) -> (p * n | p * m).
+Proof.
+ intros n m p (q,Hq). exists q. now rewrite mul_shuffle3, Hq.
+Qed.
+
+Lemma mul_divide_mono_r : forall n m p, (n | m) -> (n * p | m * p).
+Proof.
+ intros n m p (q,Hq). exists q. now rewrite mul_assoc, Hq.
+Qed.
+
+Lemma mul_divide_cancel_l : forall n m p, p ~= 0 ->
+ ((p * n | p * m) <-> (n | m)).
+Proof.
+ intros n m p Hp. split.
+ intros (q,Hq). exists q. now rewrite mul_shuffle3, mul_cancel_l in Hq.
+ apply mul_divide_mono_l.
+Qed.
+
+Lemma mul_divide_cancel_r : forall n m p, p ~= 0 ->
+ ((n * p | m * p) <-> (n | m)).
+Proof.
+ intros. rewrite 2 (mul_comm _ p). now apply mul_divide_cancel_l.
+Qed.
+
+Lemma divide_add_r : forall n m p, (n | m) -> (n | p) -> (n | m + p).
+Proof.
+ intros n m p (q,Hq) (r,Hr). exists (q+r).
+ now rewrite mul_add_distr_r, Hq, Hr.
+Qed.
+
+Lemma divide_mul_l : forall n m p, (n | m) -> (n | m * p).
+Proof.
+ intros n m p (q,Hq). exists (q*p). now rewrite mul_shuffle0, Hq.
+Qed.
+
+Lemma divide_mul_r : forall n m p, (n | p) -> (n | m * p).
+Proof.
+ intros n m p. rewrite mul_comm. apply divide_mul_l.
+Qed.
+
+Lemma divide_factor_l : forall n m, (n | n * m).
+Proof.
+ intros. apply divide_mul_l, divide_refl.
+Qed.
+
+Lemma divide_factor_r : forall n m, (n | m * n).
+Proof.
+ intros. apply divide_mul_r, divide_refl.
+Qed.
+
+Lemma divide_pos_le : forall n m, 0 < m -> (n | m) -> n <= m.
+Proof.
+ intros n m Hm (q,Hq).
+ destruct (le_gt_cases n 0) as [Hn|Hn]. order.
+ rewrite Hq.
+ destruct (lt_ge_cases q 0) as [Hq'|Hq'].
+ generalize (mul_neg_pos q n Hq' Hn). order.
+ le_elim Hq'.
+ rewrite <- (mul_1_l n) at 1. apply mul_le_mono_pos_r; trivial.
+ now rewrite one_succ, le_succ_l.
+ rewrite <- Hq', mul_0_l in Hq. order.
+Qed.
+
+(** Basic properties of gcd *)
+
+Lemma gcd_unique : forall n m p,
+ 0<=p -> (p|n) -> (p|m) ->
+ (forall q, (q|n) -> (q|m) -> (q|p)) ->
+ gcd n m == p.
+Proof.
+ intros n m p Hp Hn Hm H.
+ apply divide_antisym_nonneg; trivial. apply gcd_nonneg.
+ apply H. apply gcd_divide_l. apply gcd_divide_r.
+ now apply gcd_greatest.
+Qed.
+
+Instance gcd_wd : Proper (eq==>eq==>eq) gcd.
+Proof.
+ intros x x' Hx y y' Hy.
+ apply gcd_unique.
+ apply gcd_nonneg.
+ rewrite Hx. apply gcd_divide_l.
+ rewrite Hy. apply gcd_divide_r.
+ intro. rewrite Hx, Hy. apply gcd_greatest.
+Qed.
+
+Lemma gcd_divide_iff : forall n m p,
+ (p | gcd n m) <-> (p | n) /\ (p | m).
+Proof.
+ intros. split. split.
+ transitivity (gcd n m); trivial using gcd_divide_l.
+ transitivity (gcd n m); trivial using gcd_divide_r.
+ intros (H,H'). now apply gcd_greatest.
+Qed.
+
+Lemma gcd_unique_alt : forall n m p, 0<=p ->
+ (forall q, (q|p) <-> (q|n) /\ (q|m)) ->
+ gcd n m == p.
+Proof.
+ intros n m p Hp H.
+ apply gcd_unique; trivial.
+ apply H. apply divide_refl.
+ apply H. apply divide_refl.
+ intros. apply H. now split.
+Qed.
+
+Lemma gcd_comm : forall n m, gcd n m == gcd m n.
+Proof.
+ intros. apply gcd_unique_alt; try apply gcd_nonneg.
+ intros. rewrite and_comm. apply gcd_divide_iff.
+Qed.
+
+Lemma gcd_assoc : forall n m p, gcd n (gcd m p) == gcd (gcd n m) p.
+Proof.
+ intros. apply gcd_unique_alt; try apply gcd_nonneg.
+ intros. now rewrite !gcd_divide_iff, and_assoc.
+Qed.
+
+Lemma gcd_0_l_nonneg : forall n, 0<=n -> gcd 0 n == n.
+Proof.
+ intros. apply gcd_unique; trivial.
+ apply divide_0_r.
+ apply divide_refl.
+Qed.
+
+Lemma gcd_0_r_nonneg : forall n, 0<=n -> gcd n 0 == n.
+Proof.
+ intros. now rewrite gcd_comm, gcd_0_l_nonneg.
+Qed.
+
+Lemma gcd_1_l : forall n, gcd 1 n == 1.
+Proof.
+ intros. apply gcd_unique; trivial using divide_1_l, le_0_1.
+Qed.
+
+Lemma gcd_1_r : forall n, gcd n 1 == 1.
+Proof.
+ intros. now rewrite gcd_comm, gcd_1_l.
+Qed.
+
+Lemma gcd_diag_nonneg : forall n, 0<=n -> gcd n n == n.
+Proof.
+ intros. apply gcd_unique; trivial using divide_refl.
+Qed.
+
+Lemma gcd_eq_0_l : forall n m, gcd n m == 0 -> n == 0.
+Proof.
+ intros.
+ generalize (gcd_divide_l n m). rewrite H. apply divide_0_l.
+Qed.
+
+Lemma gcd_eq_0_r : forall n m, gcd n m == 0 -> m == 0.
+Proof.
+ intros. apply gcd_eq_0_l with n. now rewrite gcd_comm.
+Qed.
+
+Lemma gcd_eq_0 : forall n m, gcd n m == 0 <-> n == 0 /\ m == 0.
+Proof.
+ intros. split. split.
+ now apply gcd_eq_0_l with m.
+ now apply gcd_eq_0_r with n.
+ intros (EQ,EQ'). rewrite EQ, EQ'. now apply gcd_0_r_nonneg.
+Qed.
+
+Lemma gcd_mul_diag_l : forall n m, 0<=n -> gcd n (n*m) == n.
+Proof.
+ intros n m Hn. apply gcd_unique_alt; trivial.
+ intros q. split. split; trivial. now apply divide_mul_l.
+ now destruct 1.
+Qed.
+
+Lemma divide_gcd_iff : forall n m, 0<=n -> ((n|m) <-> gcd n m == n).
+Proof.
+ intros n m Hn. split. intros (q,Hq). rewrite Hq.
+ rewrite mul_comm. now apply gcd_mul_diag_l.
+ intros EQ. rewrite <- EQ. apply gcd_divide_r.
+Qed.
+
+End NZGcdProp.