summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZDiv.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZDiv.v')
-rw-r--r--theories/Numbers/NatInt/NZDiv.v542
1 files changed, 542 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZDiv.v b/theories/Numbers/NatInt/NZDiv.v
new file mode 100644
index 00000000..1f6c615b
--- /dev/null
+++ b/theories/Numbers/NatInt/NZDiv.v
@@ -0,0 +1,542 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Euclidean Division *)
+
+Require Import NZAxioms NZMulOrder.
+
+(** The first signatures will be common to all divisions over NZ, N and Z *)
+
+Module Type DivMod (Import T:Typ).
+ Parameters Inline div modulo : t -> t -> t.
+End DivMod.
+
+Module Type DivModNotation (T:Typ)(Import NZ:DivMod T).
+ Infix "/" := div.
+ Infix "mod" := modulo (at level 40, no associativity).
+End DivModNotation.
+
+Module Type DivMod' (T:Typ) := DivMod T <+ DivModNotation T.
+
+Module Type NZDivCommon (Import NZ : NZAxiomsSig')(Import DM : DivMod' NZ).
+ Declare Instance div_wd : Proper (eq==>eq==>eq) div.
+ Declare Instance mod_wd : Proper (eq==>eq==>eq) modulo.
+ Axiom div_mod : forall a b, b ~= 0 -> a == b*(a/b) + (a mod b).
+End NZDivCommon.
+
+(** The different divisions will only differ in the conditions
+ they impose on [modulo]. For NZ, we only describe behavior
+ on positive numbers.
+
+ NB: This axiom would also be true for N and Z, but redundant.
+*)
+
+Module Type NZDivSpecific (Import NZ : NZOrdAxiomsSig')(Import DM : DivMod' NZ).
+ Axiom mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
+End NZDivSpecific.
+
+Module Type NZDiv (NZ:NZOrdAxiomsSig)
+ := DivMod NZ <+ NZDivCommon NZ <+ NZDivSpecific NZ.
+
+Module Type NZDiv' (NZ:NZOrdAxiomsSig) := NZDiv NZ <+ DivModNotation NZ.
+
+Module NZDivPropFunct
+ (Import NZ : NZOrdAxiomsSig')
+ (Import NZP : NZMulOrderPropSig NZ)
+ (Import NZD : NZDiv' NZ)
+.
+
+(** Uniqueness theorems *)
+
+Theorem div_mod_unique :
+ forall b q1 q2 r1 r2, 0<=r1<b -> 0<=r2<b ->
+ b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
+Proof.
+intros b.
+assert (U : forall q1 q2 r1 r2,
+ b*q1+r1 == b*q2+r2 -> 0<=r1<b -> 0<=r2 -> q1<q2 -> False).
+ intros q1 q2 r1 r2 EQ LT Hr1 Hr2.
+ contradict EQ.
+ apply lt_neq.
+ apply lt_le_trans with (b*q1+b).
+ rewrite <- add_lt_mono_l. tauto.
+ apply le_trans with (b*q2).
+ rewrite mul_comm, <- mul_succ_l, mul_comm.
+ apply mul_le_mono_nonneg_l; intuition; try order.
+ rewrite le_succ_l; auto.
+ rewrite <- (add_0_r (b*q2)) at 1.
+ rewrite <- add_le_mono_l. tauto.
+
+intros q1 q2 r1 r2 Hr1 Hr2 EQ; destruct (lt_trichotomy q1 q2) as [LT|[EQ'|GT]].
+elim (U q1 q2 r1 r2); intuition.
+split; auto. rewrite EQ' in EQ. rewrite add_cancel_l in EQ; auto.
+elim (U q2 q1 r2 r1); intuition.
+Qed.
+
+Theorem div_unique:
+ forall a b q r, 0<=a -> 0<=r<b ->
+ a == b*q + r -> q == a/b.
+Proof.
+intros a b q r Ha (Hb,Hr) EQ.
+destruct (div_mod_unique b q (a/b) r (a mod b)); auto.
+apply mod_bound; order.
+rewrite <- div_mod; order.
+Qed.
+
+Theorem mod_unique:
+ forall a b q r, 0<=a -> 0<=r<b ->
+ a == b*q + r -> r == a mod b.
+Proof.
+intros a b q r Ha (Hb,Hr) EQ.
+destruct (div_mod_unique b q (a/b) r (a mod b)); auto.
+apply mod_bound; order.
+rewrite <- div_mod; order.
+Qed.
+
+
+(** A division by itself returns 1 *)
+
+Lemma div_same : forall a, 0<a -> a/a == 1.
+Proof.
+intros. symmetry.
+apply div_unique with 0; intuition; try order.
+now nzsimpl.
+Qed.
+
+Lemma mod_same : forall a, 0<a -> a mod a == 0.
+Proof.
+intros. symmetry.
+apply mod_unique with 1; intuition; try order.
+now nzsimpl.
+Qed.
+
+(** A division of a small number by a bigger one yields zero. *)
+
+Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
+Proof.
+intros. symmetry.
+apply div_unique with a; intuition; try order.
+now nzsimpl.
+Qed.
+
+(** Same situation, in term of modulo: *)
+
+Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
+Proof.
+intros. symmetry.
+apply mod_unique with 0; intuition; try order.
+now nzsimpl.
+Qed.
+
+(** * Basic values of divisions and modulo. *)
+
+Lemma div_0_l: forall a, 0<a -> 0/a == 0.
+Proof.
+intros; apply div_small; split; order.
+Qed.
+
+Lemma mod_0_l: forall a, 0<a -> 0 mod a == 0.
+Proof.
+intros; apply mod_small; split; order.
+Qed.
+
+Lemma div_1_r: forall a, 0<=a -> a/1 == a.
+Proof.
+intros. symmetry.
+apply div_unique with 0; try split; try order; try apply lt_0_1.
+now nzsimpl.
+Qed.
+
+Lemma mod_1_r: forall a, 0<=a -> a mod 1 == 0.
+Proof.
+intros. symmetry.
+apply mod_unique with a; try split; try order; try apply lt_0_1.
+now nzsimpl.
+Qed.
+
+Lemma div_1_l: forall a, 1<a -> 1/a == 0.
+Proof.
+intros; apply div_small; split; auto. apply le_succ_diag_r.
+Qed.
+
+Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
+Proof.
+intros; apply mod_small; split; auto. apply le_succ_diag_r.
+Qed.
+
+Lemma div_mul : forall a b, 0<=a -> 0<b -> (a*b)/b == a.
+Proof.
+intros; symmetry.
+apply div_unique with 0; try split; try order.
+apply mul_nonneg_nonneg; order.
+nzsimpl; apply mul_comm.
+Qed.
+
+Lemma mod_mul : forall a b, 0<=a -> 0<b -> (a*b) mod b == 0.
+Proof.
+intros; symmetry.
+apply mod_unique with a; try split; try order.
+apply mul_nonneg_nonneg; order.
+nzsimpl; apply mul_comm.
+Qed.
+
+
+(** * Order results about mod and div *)
+
+(** A modulo cannot grow beyond its starting point. *)
+
+Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a.
+Proof.
+intros. destruct (le_gt_cases b a).
+apply le_trans with b; auto.
+apply lt_le_incl. destruct (mod_bound a b); auto.
+rewrite lt_eq_cases; right.
+apply mod_small; auto.
+Qed.
+
+
+(* Division of positive numbers is positive. *)
+
+Lemma div_pos: forall a b, 0<=a -> 0<b -> 0 <= a/b.
+Proof.
+intros.
+rewrite (mul_le_mono_pos_l _ _ b); auto; nzsimpl.
+rewrite (add_le_mono_r _ _ (a mod b)).
+rewrite <- div_mod by order.
+nzsimpl.
+apply mod_le; auto.
+Qed.
+
+Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
+Proof.
+intros a b (Hb,Hab).
+assert (LE : 0 <= a/b) by (apply div_pos; order).
+assert (MOD : a mod b < b) by (destruct (mod_bound a b); order).
+rewrite lt_eq_cases in LE; destruct LE as [LT|EQ]; auto.
+exfalso; revert Hab.
+rewrite (div_mod a b), <-EQ; nzsimpl; order.
+Qed.
+
+Lemma div_small_iff : forall a b, 0<=a -> 0<b -> (a/b==0 <-> a<b).
+Proof.
+intros a b Ha Hb; split; intros Hab.
+destruct (lt_ge_cases a b); auto.
+symmetry in Hab. contradict Hab. apply lt_neq, div_str_pos; auto.
+apply div_small; auto.
+Qed.
+
+Lemma mod_small_iff : forall a b, 0<=a -> 0<b -> (a mod b == a <-> a<b).
+Proof.
+intros a b Ha Hb. split; intros H; auto using mod_small.
+rewrite <- div_small_iff; auto.
+rewrite <- (mul_cancel_l _ _ b) by order.
+rewrite <- (add_cancel_r _ _ (a mod b)).
+rewrite <- div_mod, H by order. now nzsimpl.
+Qed.
+
+Lemma div_str_pos_iff : forall a b, 0<=a -> 0<b -> (0<a/b <-> b<=a).
+Proof.
+intros a b Ha Hb; split; intros Hab.
+destruct (lt_ge_cases a b) as [LT|LE]; auto.
+rewrite <- div_small_iff in LT; order.
+apply div_str_pos; auto.
+Qed.
+
+
+(** As soon as the divisor is strictly greater than 1,
+ the division is strictly decreasing. *)
+
+Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
+Proof.
+intros.
+assert (0 < b) by (apply lt_trans with 1; auto using lt_0_1).
+destruct (lt_ge_cases a b).
+rewrite div_small; try split; order.
+rewrite (div_mod a b) at 2 by order.
+apply lt_le_trans with (b*(a/b)).
+rewrite <- (mul_1_l (a/b)) at 1.
+rewrite <- mul_lt_mono_pos_r; auto.
+apply div_str_pos; auto.
+rewrite <- (add_0_r (b*(a/b))) at 1.
+rewrite <- add_le_mono_l. destruct (mod_bound a b); order.
+Qed.
+
+(** [le] is compatible with a positive division. *)
+
+Lemma div_le_mono : forall a b c, 0<c -> 0<=a<=b -> a/c <= b/c.
+Proof.
+intros a b c Hc (Ha,Hab).
+rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ];
+ [|rewrite EQ; order].
+rewrite <- lt_succ_r.
+rewrite (mul_lt_mono_pos_l c) by order.
+nzsimpl.
+rewrite (add_lt_mono_r _ _ (a mod c)).
+rewrite <- div_mod by order.
+apply lt_le_trans with b; auto.
+rewrite (div_mod b c) at 1 by order.
+rewrite <- add_assoc, <- add_le_mono_l.
+apply le_trans with (c+0).
+nzsimpl; destruct (mod_bound b c); order.
+rewrite <- add_le_mono_l. destruct (mod_bound a c); order.
+Qed.
+
+(** The following two properties could be used as specification of div *)
+
+Lemma mul_div_le : forall a b, 0<=a -> 0<b -> b*(a/b) <= a.
+Proof.
+intros.
+rewrite (add_le_mono_r _ _ (a mod b)), <- div_mod by order.
+rewrite <- (add_0_r a) at 1.
+rewrite <- add_le_mono_l. destruct (mod_bound a b); order.
+Qed.
+
+Lemma mul_succ_div_gt : forall a b, 0<=a -> 0<b -> a < b*(S (a/b)).
+Proof.
+intros.
+rewrite (div_mod a b) at 1 by order.
+rewrite (mul_succ_r).
+rewrite <- add_lt_mono_l.
+destruct (mod_bound a b); auto.
+Qed.
+
+
+(** The previous inequality is exact iff the modulo is zero. *)
+
+Lemma div_exact : forall a b, 0<=a -> 0<b -> (a == b*(a/b) <-> a mod b == 0).
+Proof.
+intros. rewrite (div_mod a b) at 1 by order.
+rewrite <- (add_0_r (b*(a/b))) at 2.
+apply add_cancel_l.
+Qed.
+
+(** Some additionnal inequalities about div. *)
+
+Theorem div_lt_upper_bound:
+ forall a b q, 0<=a -> 0<b -> a < b*q -> a/b < q.
+Proof.
+intros.
+rewrite (mul_lt_mono_pos_l b) by order.
+apply le_lt_trans with a; auto.
+apply mul_div_le; auto.
+Qed.
+
+Theorem div_le_upper_bound:
+ forall a b q, 0<=a -> 0<b -> a <= b*q -> a/b <= q.
+Proof.
+intros.
+rewrite (mul_le_mono_pos_l _ _ b) by order.
+apply le_trans with a; auto.
+apply mul_div_le; auto.
+Qed.
+
+Theorem div_le_lower_bound:
+ forall a b q, 0<=a -> 0<b -> b*q <= a -> q <= a/b.
+Proof.
+intros a b q Ha Hb H.
+destruct (lt_ge_cases 0 q).
+rewrite <- (div_mul q b); try order.
+apply div_le_mono; auto.
+rewrite mul_comm; split; auto.
+apply lt_le_incl, mul_pos_pos; auto.
+apply le_trans with 0; auto; apply div_pos; auto.
+Qed.
+
+(** A division respects opposite monotonicity for the divisor *)
+
+Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r ->
+ p/r <= p/q.
+Proof.
+ intros p q r Hp (Hq,Hqr).
+ apply div_le_lower_bound; auto.
+ rewrite (div_mod p r) at 2 by order.
+ apply le_trans with (r*(p/r)).
+ apply mul_le_mono_nonneg_r; try order.
+ apply div_pos; order.
+ rewrite <- (add_0_r (r*(p/r))) at 1.
+ rewrite <- add_le_mono_l. destruct (mod_bound p r); order.
+Qed.
+
+
+(** * Relations between usual operations and mod and div *)
+
+Lemma mod_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c ->
+ (a + b * c) mod c == a mod c.
+Proof.
+ intros.
+ symmetry.
+ apply mod_unique with (a/c+b); auto.
+ apply mod_bound; auto.
+ rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
+ now rewrite mul_comm.
+Qed.
+
+Lemma div_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c ->
+ (a + b * c) / c == a / c + b.
+Proof.
+ intros.
+ apply (mul_cancel_l _ _ c); try order.
+ apply (add_cancel_r _ _ ((a+b*c) mod c)).
+ rewrite <- div_mod, mod_add by order.
+ rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
+ now rewrite mul_comm.
+Qed.
+
+Lemma div_add_l: forall a b c, 0<=c -> 0<=a*b+c -> 0<b ->
+ (a * b + c) / b == a + c / b.
+Proof.
+ intros a b c. rewrite (add_comm _ c), (add_comm a).
+ intros. apply div_add; auto.
+Qed.
+
+(** Cancellations. *)
+
+Lemma div_mul_cancel_r : forall a b c, 0<=a -> 0<b -> 0<c ->
+ (a*c)/(b*c) == a/b.
+Proof.
+ intros.
+ symmetry.
+ apply div_unique with ((a mod b)*c).
+ apply mul_nonneg_nonneg; order.
+ split.
+ apply mul_nonneg_nonneg; destruct (mod_bound a b); order.
+ rewrite <- mul_lt_mono_pos_r; auto. destruct (mod_bound a b); auto.
+ rewrite (div_mod a b) at 1 by order.
+ rewrite mul_add_distr_r.
+ rewrite add_cancel_r.
+ rewrite <- 2 mul_assoc. now rewrite (mul_comm c).
+Qed.
+
+Lemma div_mul_cancel_l : forall a b c, 0<=a -> 0<b -> 0<c ->
+ (c*a)/(c*b) == a/b.
+Proof.
+ intros. rewrite !(mul_comm c); apply div_mul_cancel_r; auto.
+Qed.
+
+Lemma mul_mod_distr_l: forall a b c, 0<=a -> 0<b -> 0<c ->
+ (c*a) mod (c*b) == c * (a mod b).
+Proof.
+ intros.
+ rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))).
+ rewrite <- div_mod.
+ rewrite div_mul_cancel_l; auto.
+ rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
+ apply div_mod; order.
+ rewrite <- neq_mul_0; intuition; order.
+Qed.
+
+Lemma mul_mod_distr_r: forall a b c, 0<=a -> 0<b -> 0<c ->
+ (a*c) mod (b*c) == (a mod b) * c.
+Proof.
+ intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l.
+Qed.
+
+(** Operations modulo. *)
+
+Theorem mod_mod: forall a n, 0<=a -> 0<n ->
+ (a mod n) mod n == a mod n.
+Proof.
+ intros. destruct (mod_bound a n); auto. now rewrite mod_small_iff.
+Qed.
+
+Lemma mul_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n ->
+ ((a mod n)*b) mod n == (a*b) mod n.
+Proof.
+ intros a b n Ha Hb Hn. symmetry.
+ generalize (mul_nonneg_nonneg _ _ Ha Hb).
+ rewrite (div_mod a n) at 1 2 by order.
+ rewrite add_comm, (mul_comm n), (mul_comm _ b).
+ rewrite mul_add_distr_l, mul_assoc.
+ intros. rewrite mod_add; auto.
+ now rewrite mul_comm.
+ apply mul_nonneg_nonneg; destruct (mod_bound a n); auto.
+Qed.
+
+Lemma mul_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n ->
+ (a*(b mod n)) mod n == (a*b) mod n.
+Proof.
+ intros. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto.
+Qed.
+
+Theorem mul_mod: forall a b n, 0<=a -> 0<=b -> 0<n ->
+ (a * b) mod n == ((a mod n) * (b mod n)) mod n.
+Proof.
+ intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; trivial. reflexivity.
+ now destruct (mod_bound b n).
+Qed.
+
+Lemma add_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n ->
+ ((a mod n)+b) mod n == (a+b) mod n.
+Proof.
+ intros a b n Ha Hb Hn. symmetry.
+ generalize (add_nonneg_nonneg _ _ Ha Hb).
+ rewrite (div_mod a n) at 1 2 by order.
+ rewrite <- add_assoc, add_comm, mul_comm.
+ intros. rewrite mod_add; trivial. reflexivity.
+ apply add_nonneg_nonneg; auto. destruct (mod_bound a n); auto.
+Qed.
+
+Lemma add_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n ->
+ (a+(b mod n)) mod n == (a+b) mod n.
+Proof.
+ intros. rewrite !(add_comm a). apply add_mod_idemp_l; auto.
+Qed.
+
+Theorem add_mod: forall a b n, 0<=a -> 0<=b -> 0<n ->
+ (a+b) mod n == (a mod n + b mod n) mod n.
+Proof.
+ intros. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial. reflexivity.
+ now destruct (mod_bound b n).
+Qed.
+
+Lemma div_div : forall a b c, 0<=a -> 0<b -> 0<c ->
+ (a/b)/c == a/(b*c).
+Proof.
+ intros a b c Ha Hb Hc.
+ apply div_unique with (b*((a/b) mod c) + a mod b); trivial.
+ (* begin 0<= ... <b*c *)
+ destruct (mod_bound (a/b) c), (mod_bound a b); auto using div_pos.
+ split.
+ apply add_nonneg_nonneg; auto.
+ apply mul_nonneg_nonneg; order.
+ apply lt_le_trans with (b*((a/b) mod c) + b).
+ rewrite <- add_lt_mono_l; auto.
+ rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l; auto.
+ (* end 0<= ... < b*c *)
+ rewrite (div_mod a b) at 1 by order.
+ rewrite add_assoc, add_cancel_r.
+ rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
+ apply div_mod; order.
+Qed.
+
+(** A last inequality: *)
+
+Theorem div_mul_le:
+ forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
+Proof.
+ intros.
+ apply div_le_lower_bound; auto.
+ apply mul_nonneg_nonneg; auto.
+ rewrite mul_assoc, (mul_comm b c), <- mul_assoc.
+ apply mul_le_mono_nonneg_l; auto.
+ apply mul_div_le; auto.
+Qed.
+
+(** mod is related to divisibility *)
+
+Lemma mod_divides : forall a b, 0<=a -> 0<b ->
+ (a mod b == 0 <-> exists c, a == b*c).
+Proof.
+ split.
+ intros. exists (a/b). rewrite div_exact; auto.
+ intros (c,Hc). rewrite Hc, mul_comm. apply mod_mul; auto.
+ rewrite (mul_le_mono_pos_l _ _ b); auto. nzsimpl. order.
+Qed.
+
+End NZDivPropFunct.
+