summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v')
-rw-r--r--theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v527
1 files changed, 0 insertions, 527 deletions
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
deleted file mode 100644
index 32410d1d..00000000
--- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
+++ /dev/null
@@ -1,527 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Bool ZArith OrdersFacts Nnat ZAxioms ZSig.
-
-(** * The interface [ZSig.ZType] implies the interface [ZAxiomsSig] *)
-
-Module ZTypeIsZAxioms (Import ZZ : ZType').
-
-Hint Rewrite
- spec_0 spec_1 spec_2 spec_add spec_sub spec_pred spec_succ
- spec_mul spec_opp spec_of_Z spec_div spec_modulo spec_square spec_sqrt
- spec_compare spec_eqb spec_ltb spec_leb spec_max spec_min
- spec_abs spec_sgn spec_pow spec_log2 spec_even spec_odd spec_gcd
- spec_quot spec_rem spec_testbit spec_shiftl spec_shiftr
- spec_land spec_lor spec_ldiff spec_lxor spec_div2
- : zsimpl.
-
-Ltac zsimpl := autorewrite with zsimpl.
-Ltac zcongruence := repeat red; intros; zsimpl; congruence.
-Ltac zify := unfold eq, lt, le in *; zsimpl.
-
-Instance eq_equiv : Equivalence eq.
-Proof. unfold eq. firstorder. Qed.
-
-Local Obligation Tactic := zcongruence.
-
-Program Instance succ_wd : Proper (eq ==> eq) succ.
-Program Instance pred_wd : Proper (eq ==> eq) pred.
-Program Instance add_wd : Proper (eq ==> eq ==> eq) add.
-Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
-Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
-
-Theorem pred_succ : forall n, pred (succ n) == n.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem one_succ : 1 == succ 0.
-Proof.
-now zify.
-Qed.
-
-Theorem two_succ : 2 == succ 1.
-Proof.
-now zify.
-Qed.
-
-Section Induction.
-
-Variable A : ZZ.t -> Prop.
-Hypothesis A_wd : Proper (eq==>iff) A.
-Hypothesis A0 : A 0.
-Hypothesis AS : forall n, A n <-> A (succ n).
-
-Let B (z : Z) := A (of_Z z).
-
-Lemma B0 : B 0.
-Proof.
-unfold B; simpl.
-rewrite <- (A_wd 0); auto.
-zify. auto.
-Qed.
-
-Lemma BS : forall z : Z, B z -> B (z + 1).
-Proof.
-intros z H.
-unfold B in *. apply -> AS in H.
-setoid_replace (of_Z (z + 1)) with (succ (of_Z z)); auto.
-zify. auto.
-Qed.
-
-Lemma BP : forall z : Z, B z -> B (z - 1).
-Proof.
-intros z H.
-unfold B in *. rewrite AS.
-setoid_replace (succ (of_Z (z - 1))) with (of_Z z); auto.
-zify. auto with zarith.
-Qed.
-
-Lemma B_holds : forall z : Z, B z.
-Proof.
-intros; destruct (Z_lt_le_dec 0 z).
-apply natlike_ind; auto with zarith.
-apply B0.
-intros; apply BS; auto.
-replace z with (-(-z))%Z in * by (auto with zarith).
-remember (-z)%Z as z'.
-pattern z'; apply natlike_ind.
-apply B0.
-intros; rewrite Z.opp_succ; unfold Z.pred; apply BP; auto.
-subst z'; auto with zarith.
-Qed.
-
-Theorem bi_induction : forall n, A n.
-Proof.
-intro n. setoid_replace n with (of_Z (to_Z n)).
-apply B_holds.
-zify. auto.
-Qed.
-
-End Induction.
-
-Theorem add_0_l : forall n, 0 + n == n.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m).
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem sub_0_r : forall n, n - 0 == n.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem mul_0_l : forall n, 0 * n == 0.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m.
-Proof.
-intros. zify. ring.
-Qed.
-
-(** Order *)
-
-Lemma eqb_eq x y : eqb x y = true <-> x == y.
-Proof.
- zify. apply Z.eqb_eq.
-Qed.
-
-Lemma leb_le x y : leb x y = true <-> x <= y.
-Proof.
- zify. apply Z.leb_le.
-Qed.
-
-Lemma ltb_lt x y : ltb x y = true <-> x < y.
-Proof.
- zify. apply Z.ltb_lt.
-Qed.
-
-Lemma compare_eq_iff n m : compare n m = Eq <-> n == m.
-Proof.
- intros. zify. apply Z.compare_eq_iff.
-Qed.
-
-Lemma compare_lt_iff n m : compare n m = Lt <-> n < m.
-Proof.
- intros. zify. reflexivity.
-Qed.
-
-Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m.
-Proof.
- intros. zify. reflexivity.
-Qed.
-
-Lemma compare_antisym n m : compare m n = CompOpp (compare n m).
-Proof.
- intros. zify. apply Z.compare_antisym.
-Qed.
-
-Include BoolOrderFacts ZZ ZZ ZZ [no inline].
-
-Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
-Proof.
-intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
-Qed.
-
-Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb.
-Proof.
-intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
-Qed.
-
-Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb.
-Proof.
-intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
-Qed.
-
-Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb.
-Proof.
-intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
-Qed.
-
-Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
-Proof.
-intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
-Qed.
-
-Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m.
-Proof.
-intros. zify. omega.
-Qed.
-
-Theorem min_l : forall n m, n <= m -> min n m == n.
-Proof.
-intros n m. zify. omega with *.
-Qed.
-
-Theorem min_r : forall n m, m <= n -> min n m == m.
-Proof.
-intros n m. zify. omega with *.
-Qed.
-
-Theorem max_l : forall n m, m <= n -> max n m == n.
-Proof.
-intros n m. zify. omega with *.
-Qed.
-
-Theorem max_r : forall n m, n <= m -> max n m == m.
-Proof.
-intros n m. zify. omega with *.
-Qed.
-
-(** Part specific to integers, not natural numbers *)
-
-Theorem succ_pred : forall n, succ (pred n) == n.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-(** Opp *)
-
-Program Instance opp_wd : Proper (eq ==> eq) opp.
-
-Theorem opp_0 : - 0 == 0.
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-Theorem opp_succ : forall n, - (succ n) == pred (- n).
-Proof.
-intros. zify. auto with zarith.
-Qed.
-
-(** Abs / Sgn *)
-
-Theorem abs_eq : forall n, 0 <= n -> abs n == n.
-Proof.
-intros n. zify. omega with *.
-Qed.
-
-Theorem abs_neq : forall n, n <= 0 -> abs n == -n.
-Proof.
-intros n. zify. omega with *.
-Qed.
-
-Theorem sgn_null : forall n, n==0 -> sgn n == 0.
-Proof.
-intros n. zify. omega with *.
-Qed.
-
-Theorem sgn_pos : forall n, 0<n -> sgn n == 1.
-Proof.
-intros n. zify. omega with *.
-Qed.
-
-Theorem sgn_neg : forall n, n<0 -> sgn n == opp 1.
-Proof.
-intros n. zify. omega with *.
-Qed.
-
-(** Power *)
-
-Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
-
-Lemma pow_0_r : forall a, a^0 == 1.
-Proof.
- intros. now zify.
-Qed.
-
-Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
-Proof.
- intros a b. zify. intros. now rewrite Z.add_1_r, Z.pow_succ_r.
-Qed.
-
-Lemma pow_neg_r : forall a b, b<0 -> a^b == 0.
-Proof.
- intros a b. zify. intros Hb.
- destruct [b]; reflexivity || discriminate.
-Qed.
-
-Lemma pow_pow_N : forall a b, 0<=b -> a^b == pow_N a (Z.to_N (to_Z b)).
-Proof.
- intros a b. zify. intros Hb. now rewrite spec_pow_N, Z2N.id.
-Qed.
-
-Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p).
-Proof.
- intros a b. red. now rewrite spec_pow_N, spec_pow_pos.
-Qed.
-
-(** Square *)
-
-Lemma square_spec n : square n == n * n.
-Proof.
- now zify.
-Qed.
-
-(** Sqrt *)
-
-Lemma sqrt_spec : forall n, 0<=n ->
- (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)).
-Proof.
- intros n. zify. apply Z.sqrt_spec.
-Qed.
-
-Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0.
-Proof.
- intros n. zify. apply Z.sqrt_neg.
-Qed.
-
-(** Log2 *)
-
-Lemma log2_spec : forall n, 0<n ->
- 2^(log2 n) <= n /\ n < 2^(succ (log2 n)).
-Proof.
- intros n. zify. apply Z.log2_spec.
-Qed.
-
-Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0.
-Proof.
- intros n. zify. apply Z.log2_nonpos.
-Qed.
-
-(** Even / Odd *)
-
-Definition Even n := exists m, n == 2*m.
-Definition Odd n := exists m, n == 2*m+1.
-
-Lemma even_spec n : even n = true <-> Even n.
-Proof.
- unfold Even. zify. rewrite Z.even_spec.
- split; intros (m,Hm).
- - exists (of_Z m). now zify.
- - exists [m]. revert Hm. now zify.
-Qed.
-
-Lemma odd_spec n : odd n = true <-> Odd n.
-Proof.
- unfold Odd. zify. rewrite Z.odd_spec.
- split; intros (m,Hm).
- - exists (of_Z m). now zify.
- - exists [m]. revert Hm. now zify.
-Qed.
-
-(** Div / Mod *)
-
-Program Instance div_wd : Proper (eq==>eq==>eq) div.
-Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
-
-Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b).
-Proof.
-intros a b. zify. intros. apply Z.div_mod; auto.
-Qed.
-
-Theorem mod_pos_bound :
- forall a b, 0 < b -> 0 <= modulo a b /\ modulo a b < b.
-Proof.
-intros a b. zify. intros. apply Z_mod_lt; auto with zarith.
-Qed.
-
-Theorem mod_neg_bound :
- forall a b, b < 0 -> b < modulo a b /\ modulo a b <= 0.
-Proof.
-intros a b. zify. intros. apply Z_mod_neg; auto with zarith.
-Qed.
-
-Definition mod_bound_pos :
- forall a b, 0<=a -> 0<b -> 0 <= modulo a b /\ modulo a b < b :=
- fun a b _ H => mod_pos_bound a b H.
-
-(** Quot / Rem *)
-
-Program Instance quot_wd : Proper (eq==>eq==>eq) quot.
-Program Instance rem_wd : Proper (eq==>eq==>eq) rem.
-
-Theorem quot_rem : forall a b, ~b==0 -> a == b*(quot a b) + rem a b.
-Proof.
-intros a b. zify. apply Z.quot_rem.
-Qed.
-
-Theorem rem_bound_pos :
- forall a b, 0<=a -> 0<b -> 0 <= rem a b /\ rem a b < b.
-Proof.
-intros a b. zify. apply Z.rem_bound_pos.
-Qed.
-
-Theorem rem_opp_l : forall a b, ~b==0 -> rem (-a) b == -(rem a b).
-Proof.
-intros a b. zify. apply Z.rem_opp_l.
-Qed.
-
-Theorem rem_opp_r : forall a b, ~b==0 -> rem a (-b) == rem a b.
-Proof.
-intros a b. zify. apply Z.rem_opp_r.
-Qed.
-
-(** Gcd *)
-
-Definition divide n m := exists p, m == p*n.
-Local Notation "( x | y )" := (divide x y) (at level 0).
-
-Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m].
-Proof.
- intros n m. split.
- - intros (p,H). exists [p]. revert H; now zify.
- - intros (z,H). exists (of_Z z). now zify.
-Qed.
-
-Lemma gcd_divide_l : forall n m, (gcd n m | n).
-Proof.
- intros n m. apply spec_divide. zify. apply Z.gcd_divide_l.
-Qed.
-
-Lemma gcd_divide_r : forall n m, (gcd n m | m).
-Proof.
- intros n m. apply spec_divide. zify. apply Z.gcd_divide_r.
-Qed.
-
-Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
-Proof.
- intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest.
-Qed.
-
-Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
-Proof.
- intros. zify. apply Z.gcd_nonneg.
-Qed.
-
-(** Bitwise operations *)
-
-Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
-
-Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true.
-Proof.
- intros. zify. apply Z.testbit_odd_0.
-Qed.
-
-Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false.
-Proof.
- intros. zify. apply Z.testbit_even_0.
-Qed.
-
-Lemma testbit_odd_succ : forall a n, 0<=n ->
- testbit (2*a+1) (succ n) = testbit a n.
-Proof.
- intros a n. zify. apply Z.testbit_odd_succ.
-Qed.
-
-Lemma testbit_even_succ : forall a n, 0<=n ->
- testbit (2*a) (succ n) = testbit a n.
-Proof.
- intros a n. zify. apply Z.testbit_even_succ.
-Qed.
-
-Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.
-Proof.
- intros a n. zify. apply Z.testbit_neg_r.
-Qed.
-
-Lemma shiftr_spec : forall a n m, 0<=m ->
- testbit (shiftr a n) m = testbit a (m+n).
-Proof.
- intros a n m. zify. apply Z.shiftr_spec.
-Qed.
-
-Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m ->
- testbit (shiftl a n) m = testbit a (m-n).
-Proof.
- intros a n m. zify. intros Hn H.
- now apply Z.shiftl_spec_high.
-Qed.
-
-Lemma shiftl_spec_low : forall a n m, m<n ->
- testbit (shiftl a n) m = false.
-Proof.
- intros a n m. zify. intros H. now apply Z.shiftl_spec_low.
-Qed.
-
-Lemma land_spec : forall a b n,
- testbit (land a b) n = testbit a n && testbit b n.
-Proof.
- intros a n m. zify. now apply Z.land_spec.
-Qed.
-
-Lemma lor_spec : forall a b n,
- testbit (lor a b) n = testbit a n || testbit b n.
-Proof.
- intros a n m. zify. now apply Z.lor_spec.
-Qed.
-
-Lemma ldiff_spec : forall a b n,
- testbit (ldiff a b) n = testbit a n && negb (testbit b n).
-Proof.
- intros a n m. zify. now apply Z.ldiff_spec.
-Qed.
-
-Lemma lxor_spec : forall a b n,
- testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
-Proof.
- intros a n m. zify. now apply Z.lxor_spec.
-Qed.
-
-Lemma div2_spec : forall a, div2 a == shiftr a 1.
-Proof.
- intros a. zify. now apply Z.div2_spec.
-Qed.
-
-End ZTypeIsZAxioms.
-
-Module ZType_ZAxioms (ZZ : ZType)
- <: ZAxiomsSig <: OrderFunctions ZZ <: HasMinMax ZZ
- := ZZ <+ ZTypeIsZAxioms.