diff options
Diffstat (limited to 'theories/Numbers/Integer/SpecViaZ/ZSig.v')
-rw-r--r-- | theories/Numbers/Integer/SpecViaZ/ZSig.v | 116 |
1 files changed, 50 insertions, 66 deletions
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSig.v b/theories/Numbers/Integer/SpecViaZ/ZSig.v index 0af98c74..ffa91706 100644 --- a/theories/Numbers/Integer/SpecViaZ/ZSig.v +++ b/theories/Numbers/Integer/SpecViaZ/ZSig.v @@ -8,7 +8,7 @@ (* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) (************************************************************************) -(*i $Id: ZSig.v 11027 2008-06-01 13:28:59Z letouzey $ i*) +(*i $Id$ i*) Require Import ZArith Znumtheory. @@ -25,93 +25,77 @@ Module Type ZType. Parameter t : Type. Parameter to_Z : t -> Z. - Notation "[ x ]" := (to_Z x). + Local Notation "[ x ]" := (to_Z x). - Definition eq x y := ([x] = [y]). + Definition eq x y := [x] = [y]. + Definition lt x y := [x] < [y]. + Definition le x y := [x] <= [y]. Parameter of_Z : Z -> t. Parameter spec_of_Z: forall x, to_Z (of_Z x) = x. + Parameter compare : t -> t -> comparison. + Parameter eq_bool : t -> t -> bool. + Parameter min : t -> t -> t. + Parameter max : t -> t -> t. Parameter zero : t. Parameter one : t. Parameter minus_one : t. - - Parameter spec_0: [zero] = 0. - Parameter spec_1: [one] = 1. - Parameter spec_m1: [minus_one] = -1. - - Parameter compare : t -> t -> comparison. - - Parameter spec_compare: forall x y, - match compare x y with - | Eq => [x] = [y] - | Lt => [x] < [y] - | Gt => [x] > [y] - end. - - Definition lt n m := compare n m = Lt. - Definition le n m := compare n m <> Gt. - Definition min n m := match compare n m with Gt => m | _ => n end. - Definition max n m := match compare n m with Lt => m | _ => n end. - - Parameter eq_bool : t -> t -> bool. - - Parameter spec_eq_bool: forall x y, - if eq_bool x y then [x] = [y] else [x] <> [y]. - Parameter succ : t -> t. - - Parameter spec_succ: forall n, [succ n] = [n] + 1. - Parameter add : t -> t -> t. - - Parameter spec_add: forall x y, [add x y] = [x] + [y]. - Parameter pred : t -> t. - - Parameter spec_pred: forall x, [pred x] = [x] - 1. - Parameter sub : t -> t -> t. - - Parameter spec_sub: forall x y, [sub x y] = [x] - [y]. - Parameter opp : t -> t. - - Parameter spec_opp: forall x, [opp x] = - [x]. - Parameter mul : t -> t -> t. - - Parameter spec_mul: forall x y, [mul x y] = [x] * [y]. - Parameter square : t -> t. - - Parameter spec_square: forall x, [square x] = [x] * [x]. - Parameter power_pos : t -> positive -> t. - - Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n. - + Parameter power : t -> N -> t. Parameter sqrt : t -> t. - - Parameter spec_sqrt: forall x, 0 <= [x] -> - [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2. - Parameter div_eucl : t -> t -> t * t. - - Parameter spec_div_eucl: forall x y, [y] <> 0 -> - let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y]. - Parameter div : t -> t -> t. - - Parameter spec_div: forall x y, [y] <> 0 -> [div x y] = [x] / [y]. - Parameter modulo : t -> t -> t. - - Parameter spec_modulo: forall x y, [y] <> 0 -> - [modulo x y] = [x] mod [y]. - Parameter gcd : t -> t -> t. + Parameter sgn : t -> t. + Parameter abs : t -> t. + Parameter spec_compare: forall x y, compare x y = Zcompare [x] [y]. + Parameter spec_eq_bool: forall x y, eq_bool x y = Zeq_bool [x] [y]. + Parameter spec_min : forall x y, [min x y] = Zmin [x] [y]. + Parameter spec_max : forall x y, [max x y] = Zmax [x] [y]. + Parameter spec_0: [zero] = 0. + Parameter spec_1: [one] = 1. + Parameter spec_m1: [minus_one] = -1. + Parameter spec_succ: forall n, [succ n] = [n] + 1. + Parameter spec_add: forall x y, [add x y] = [x] + [y]. + Parameter spec_pred: forall x, [pred x] = [x] - 1. + Parameter spec_sub: forall x y, [sub x y] = [x] - [y]. + Parameter spec_opp: forall x, [opp x] = - [x]. + Parameter spec_mul: forall x y, [mul x y] = [x] * [y]. + Parameter spec_square: forall x, [square x] = [x] * [x]. + Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n. + Parameter spec_power: forall x n, [power x n] = [x] ^ Z_of_N n. + Parameter spec_sqrt: forall x, 0 <= [x] -> + [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2. + Parameter spec_div_eucl: forall x y, + let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y]. + Parameter spec_div: forall x y, [div x y] = [x] / [y]. + Parameter spec_modulo: forall x y, [modulo x y] = [x] mod [y]. Parameter spec_gcd: forall a b, [gcd a b] = Zgcd (to_Z a) (to_Z b). + Parameter spec_sgn : forall x, [sgn x] = Zsgn [x]. + Parameter spec_abs : forall x, [abs x] = Zabs [x]. End ZType. + +Module Type ZType_Notation (Import Z:ZType). + Notation "[ x ]" := (to_Z x). + Infix "==" := eq (at level 70). + Notation "0" := zero. + Infix "+" := add. + Infix "-" := sub. + Infix "*" := mul. + Notation "- x" := (opp x). + Infix "<=" := le. + Infix "<" := lt. +End ZType_Notation. + +Module Type ZType' := ZType <+ ZType_Notation.
\ No newline at end of file |