summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/BigZ/ZMake.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/BigZ/ZMake.v')
-rw-r--r--theories/Numbers/Integer/BigZ/ZMake.v759
1 files changed, 0 insertions, 759 deletions
diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v
deleted file mode 100644
index fec6e068..00000000
--- a/theories/Numbers/Integer/BigZ/ZMake.v
+++ /dev/null
@@ -1,759 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Require Import ZArith.
-Require Import BigNumPrelude.
-Require Import NSig.
-Require Import ZSig.
-
-Open Scope Z_scope.
-
-(** * ZMake
-
- A generic transformation from a structure of natural numbers
- [NSig.NType] to a structure of integers [ZSig.ZType].
-*)
-
-Module Make (NN:NType) <: ZType.
-
- Inductive t_ :=
- | Pos : NN.t -> t_
- | Neg : NN.t -> t_.
-
- Definition t := t_.
-
- Definition zero := Pos NN.zero.
- Definition one := Pos NN.one.
- Definition two := Pos NN.two.
- Definition minus_one := Neg NN.one.
-
- Definition of_Z x :=
- match x with
- | Zpos x => Pos (NN.of_N (Npos x))
- | Z0 => zero
- | Zneg x => Neg (NN.of_N (Npos x))
- end.
-
- Definition to_Z x :=
- match x with
- | Pos nx => NN.to_Z nx
- | Neg nx => Z.opp (NN.to_Z nx)
- end.
-
- Theorem spec_of_Z: forall x, to_Z (of_Z x) = x.
- Proof.
- intros x; case x; unfold to_Z, of_Z, zero.
- exact NN.spec_0.
- intros; rewrite NN.spec_of_N; auto.
- intros; rewrite NN.spec_of_N; auto.
- Qed.
-
- Definition eq x y := (to_Z x = to_Z y).
-
- Theorem spec_0: to_Z zero = 0.
- exact NN.spec_0.
- Qed.
-
- Theorem spec_1: to_Z one = 1.
- exact NN.spec_1.
- Qed.
-
- Theorem spec_2: to_Z two = 2.
- exact NN.spec_2.
- Qed.
-
- Theorem spec_m1: to_Z minus_one = -1.
- simpl; rewrite NN.spec_1; auto.
- Qed.
-
- Definition compare x y :=
- match x, y with
- | Pos nx, Pos ny => NN.compare nx ny
- | Pos nx, Neg ny =>
- match NN.compare nx NN.zero with
- | Gt => Gt
- | _ => NN.compare ny NN.zero
- end
- | Neg nx, Pos ny =>
- match NN.compare NN.zero nx with
- | Lt => Lt
- | _ => NN.compare NN.zero ny
- end
- | Neg nx, Neg ny => NN.compare ny nx
- end.
-
- Theorem spec_compare :
- forall x y, compare x y = Z.compare (to_Z x) (to_Z y).
- Proof.
- unfold compare, to_Z.
- destruct x as [x|x], y as [y|y];
- rewrite ?NN.spec_compare, ?NN.spec_0, ?Z.compare_opp; auto;
- assert (Hx:=NN.spec_pos x); assert (Hy:=NN.spec_pos y);
- set (X:=NN.to_Z x) in *; set (Y:=NN.to_Z y) in *; clearbody X Y.
- - destruct (Z.compare_spec X 0) as [EQ|LT|GT].
- + rewrite <- Z.opp_0 in EQ. now rewrite EQ, Z.compare_opp.
- + exfalso. omega.
- + symmetry. change (X > -Y). omega.
- - destruct (Z.compare_spec 0 X) as [EQ|LT|GT].
- + rewrite <- EQ, Z.opp_0; auto.
- + symmetry. change (-X < Y). omega.
- + exfalso. omega.
- Qed.
-
- Definition eqb x y :=
- match compare x y with
- | Eq => true
- | _ => false
- end.
-
- Theorem spec_eqb x y : eqb x y = Z.eqb (to_Z x) (to_Z y).
- Proof.
- apply Bool.eq_iff_eq_true.
- unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare.
- split; [now destruct Z.compare | now intros ->].
- Qed.
-
- Definition lt n m := to_Z n < to_Z m.
- Definition le n m := to_Z n <= to_Z m.
-
-
- Definition ltb (x y : t) : bool :=
- match compare x y with
- | Lt => true
- | _ => false
- end.
-
- Theorem spec_ltb x y : ltb x y = Z.ltb (to_Z x) (to_Z y).
- Proof.
- apply Bool.eq_iff_eq_true.
- rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare.
- split; [now destruct Z.compare | now intros ->].
- Qed.
-
- Definition leb (x y : t) : bool :=
- match compare x y with
- | Gt => false
- | _ => true
- end.
-
- Theorem spec_leb x y : leb x y = Z.leb (to_Z x) (to_Z y).
- Proof.
- apply Bool.eq_iff_eq_true.
- rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare.
- now destruct Z.compare; split.
- Qed.
-
- Definition min n m := match compare n m with Gt => m | _ => n end.
- Definition max n m := match compare n m with Lt => m | _ => n end.
-
- Theorem spec_min : forall n m, to_Z (min n m) = Z.min (to_Z n) (to_Z m).
- Proof.
- unfold min, Z.min. intros. rewrite spec_compare. destruct Z.compare; auto.
- Qed.
-
- Theorem spec_max : forall n m, to_Z (max n m) = Z.max (to_Z n) (to_Z m).
- Proof.
- unfold max, Z.max. intros. rewrite spec_compare. destruct Z.compare; auto.
- Qed.
-
- Definition to_N x :=
- match x with
- | Pos nx => nx
- | Neg nx => nx
- end.
-
- Definition abs x := Pos (to_N x).
-
- Theorem spec_abs: forall x, to_Z (abs x) = Z.abs (to_Z x).
- Proof.
- intros x; case x; clear x; intros x; assert (F:=NN.spec_pos x).
- simpl; rewrite Z.abs_eq; auto.
- simpl; rewrite Z.abs_neq; simpl; auto with zarith.
- Qed.
-
- Definition opp x :=
- match x with
- | Pos nx => Neg nx
- | Neg nx => Pos nx
- end.
-
- Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x.
- Proof.
- intros x; case x; simpl; auto with zarith.
- Qed.
-
- Definition succ x :=
- match x with
- | Pos n => Pos (NN.succ n)
- | Neg n =>
- match NN.compare NN.zero n with
- | Lt => Neg (NN.pred n)
- | _ => one
- end
- end.
-
- Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1.
- Proof.
- intros x; case x; clear x; intros x.
- exact (NN.spec_succ x).
- simpl. rewrite NN.spec_compare. case Z.compare_spec; rewrite ?NN.spec_0; simpl.
- intros HH; rewrite <- HH; rewrite NN.spec_1; ring.
- intros HH; rewrite NN.spec_pred, Z.max_r; auto with zarith.
- generalize (NN.spec_pos x); auto with zarith.
- Qed.
-
- Definition add x y :=
- match x, y with
- | Pos nx, Pos ny => Pos (NN.add nx ny)
- | Pos nx, Neg ny =>
- match NN.compare nx ny with
- | Gt => Pos (NN.sub nx ny)
- | Eq => zero
- | Lt => Neg (NN.sub ny nx)
- end
- | Neg nx, Pos ny =>
- match NN.compare nx ny with
- | Gt => Neg (NN.sub nx ny)
- | Eq => zero
- | Lt => Pos (NN.sub ny nx)
- end
- | Neg nx, Neg ny => Neg (NN.add nx ny)
- end.
-
- Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y.
- Proof.
- unfold add, to_Z; intros [x | x] [y | y];
- try (rewrite NN.spec_add; auto with zarith);
- rewrite NN.spec_compare; case Z.compare_spec;
- unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *.
- Qed.
-
- Definition pred x :=
- match x with
- | Pos nx =>
- match NN.compare NN.zero nx with
- | Lt => Pos (NN.pred nx)
- | _ => minus_one
- end
- | Neg nx => Neg (NN.succ nx)
- end.
-
- Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1.
- Proof.
- unfold pred, to_Z, minus_one; intros [x | x];
- try (rewrite NN.spec_succ; ring).
- rewrite NN.spec_compare; case Z.compare_spec;
- rewrite ?NN.spec_0, ?NN.spec_1, ?NN.spec_pred;
- generalize (NN.spec_pos x); omega with *.
- Qed.
-
- Definition sub x y :=
- match x, y with
- | Pos nx, Pos ny =>
- match NN.compare nx ny with
- | Gt => Pos (NN.sub nx ny)
- | Eq => zero
- | Lt => Neg (NN.sub ny nx)
- end
- | Pos nx, Neg ny => Pos (NN.add nx ny)
- | Neg nx, Pos ny => Neg (NN.add nx ny)
- | Neg nx, Neg ny =>
- match NN.compare nx ny with
- | Gt => Neg (NN.sub nx ny)
- | Eq => zero
- | Lt => Pos (NN.sub ny nx)
- end
- end.
-
- Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y.
- Proof.
- unfold sub, to_Z; intros [x | x] [y | y];
- try (rewrite NN.spec_add; auto with zarith);
- rewrite NN.spec_compare; case Z.compare_spec;
- unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *.
- Qed.
-
- Definition mul x y :=
- match x, y with
- | Pos nx, Pos ny => Pos (NN.mul nx ny)
- | Pos nx, Neg ny => Neg (NN.mul nx ny)
- | Neg nx, Pos ny => Neg (NN.mul nx ny)
- | Neg nx, Neg ny => Pos (NN.mul nx ny)
- end.
-
- Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y.
- Proof.
- unfold mul, to_Z; intros [x | x] [y | y]; rewrite NN.spec_mul; ring.
- Qed.
-
- Definition square x :=
- match x with
- | Pos nx => Pos (NN.square nx)
- | Neg nx => Pos (NN.square nx)
- end.
-
- Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x.
- Proof.
- unfold square, to_Z; intros [x | x]; rewrite NN.spec_square; ring.
- Qed.
-
- Definition pow_pos x p :=
- match x with
- | Pos nx => Pos (NN.pow_pos nx p)
- | Neg nx =>
- match p with
- | xH => x
- | xO _ => Pos (NN.pow_pos nx p)
- | xI _ => Neg (NN.pow_pos nx p)
- end
- end.
-
- Theorem spec_pow_pos: forall x n, to_Z (pow_pos x n) = to_Z x ^ Zpos n.
- Proof.
- assert (F0: forall x, (-x)^2 = x^2).
- intros x; rewrite Z.pow_2_r; ring.
- unfold pow_pos, to_Z; intros [x | x] [p | p |];
- try rewrite NN.spec_pow_pos; try ring.
- assert (F: 0 <= 2 * Zpos p).
- assert (0 <= Zpos p); auto with zarith.
- rewrite Pos2Z.inj_xI; repeat rewrite Zpower_exp; auto with zarith.
- repeat rewrite Z.pow_mul_r; auto with zarith.
- rewrite F0; ring.
- assert (F: 0 <= 2 * Zpos p).
- assert (0 <= Zpos p); auto with zarith.
- rewrite Pos2Z.inj_xO; repeat rewrite Zpower_exp; auto with zarith.
- repeat rewrite Z.pow_mul_r; auto with zarith.
- rewrite F0; ring.
- Qed.
-
- Definition pow_N x n :=
- match n with
- | N0 => one
- | Npos p => pow_pos x p
- end.
-
- Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z.of_N n.
- Proof.
- destruct n; simpl. apply NN.spec_1.
- apply spec_pow_pos.
- Qed.
-
- Definition pow x y :=
- match to_Z y with
- | Z0 => one
- | Zpos p => pow_pos x p
- | Zneg p => zero
- end.
-
- Theorem spec_pow: forall x y, to_Z (pow x y) = to_Z x ^ to_Z y.
- Proof.
- intros. unfold pow. destruct (to_Z y); simpl.
- apply NN.spec_1.
- apply spec_pow_pos.
- apply NN.spec_0.
- Qed.
-
- Definition log2 x :=
- match x with
- | Pos nx => Pos (NN.log2 nx)
- | Neg nx => zero
- end.
-
- Theorem spec_log2: forall x, to_Z (log2 x) = Z.log2 (to_Z x).
- Proof.
- intros. destruct x as [p|p]; simpl. apply NN.spec_log2.
- rewrite NN.spec_0.
- destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ].
- rewrite Z.log2_nonpos; auto with zarith.
- now rewrite <- EQ.
- Qed.
-
- Definition sqrt x :=
- match x with
- | Pos nx => Pos (NN.sqrt nx)
- | Neg nx => Neg NN.zero
- end.
-
- Theorem spec_sqrt: forall x, to_Z (sqrt x) = Z.sqrt (to_Z x).
- Proof.
- destruct x as [p|p]; simpl.
- apply NN.spec_sqrt.
- rewrite NN.spec_0.
- destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ].
- rewrite Z.sqrt_neg; auto with zarith.
- now rewrite <- EQ.
- Qed.
-
- Definition div_eucl x y :=
- match x, y with
- | Pos nx, Pos ny =>
- let (q, r) := NN.div_eucl nx ny in
- (Pos q, Pos r)
- | Pos nx, Neg ny =>
- let (q, r) := NN.div_eucl nx ny in
- if NN.eqb NN.zero r
- then (Neg q, zero)
- else (Neg (NN.succ q), Neg (NN.sub ny r))
- | Neg nx, Pos ny =>
- let (q, r) := NN.div_eucl nx ny in
- if NN.eqb NN.zero r
- then (Neg q, zero)
- else (Neg (NN.succ q), Pos (NN.sub ny r))
- | Neg nx, Neg ny =>
- let (q, r) := NN.div_eucl nx ny in
- (Pos q, Neg r)
- end.
-
- Ltac break_nonneg x px EQx :=
- let H := fresh "H" in
- assert (H:=NN.spec_pos x);
- destruct (NN.to_Z x) as [|px|px] eqn:EQx;
- [clear H|clear H|elim H; reflexivity].
-
- Theorem spec_div_eucl: forall x y,
- let (q,r) := div_eucl x y in
- (to_Z q, to_Z r) = Z.div_eucl (to_Z x) (to_Z y).
- Proof.
- unfold div_eucl, to_Z. intros [x | x] [y | y].
- (* Pos Pos *)
- generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y); auto.
- (* Pos Neg *)
- generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r).
- break_nonneg x px EQx; break_nonneg y py EQy;
- try (injection 1 as Hq Hr; rewrite NN.spec_eqb, NN.spec_0, Hr;
- simpl; rewrite Hq, NN.spec_0; auto).
- change (- Zpos py) with (Zneg py).
- assert (GT : Zpos py > 0) by (compute; auto).
- generalize (Z_div_mod (Zpos px) (Zpos py) GT).
- unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r').
- intros (EQ,MOD). injection 1 as Hq' Hr'.
- rewrite NN.spec_eqb, NN.spec_0, Hr'.
- break_nonneg r pr EQr.
- subst; simpl. rewrite NN.spec_0; auto.
- subst. lazy iota beta delta [Z.eqb].
- rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *.
- (* Neg Pos *)
- generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r).
- break_nonneg x px EQx; break_nonneg y py EQy;
- try (injection 1 as Hq Hr; rewrite NN.spec_eqb, NN.spec_0, Hr;
- simpl; rewrite Hq, NN.spec_0; auto).
- change (- Zpos px) with (Zneg px).
- assert (GT : Zpos py > 0) by (compute; auto).
- generalize (Z_div_mod (Zpos px) (Zpos py) GT).
- unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r').
- intros (EQ,MOD). injection 1 as Hq' Hr'.
- rewrite NN.spec_eqb, NN.spec_0, Hr'.
- break_nonneg r pr EQr.
- subst; simpl. rewrite NN.spec_0; auto.
- subst. lazy iota beta delta [Z.eqb].
- rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *.
- (* Neg Neg *)
- generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r).
- break_nonneg x px EQx; break_nonneg y py EQy;
- try (injection 1 as -> ->; auto).
- simpl. intros <-; auto.
- Qed.
-
- Definition div x y := fst (div_eucl x y).
-
- Definition spec_div: forall x y,
- to_Z (div x y) = to_Z x / to_Z y.
- Proof.
- intros x y; generalize (spec_div_eucl x y); unfold div, Z.div.
- case div_eucl; case Z.div_eucl; simpl; auto.
- intros q r q11 r1 H; injection H; auto.
- Qed.
-
- Definition modulo x y := snd (div_eucl x y).
-
- Theorem spec_modulo:
- forall x y, to_Z (modulo x y) = to_Z x mod to_Z y.
- Proof.
- intros x y; generalize (spec_div_eucl x y); unfold modulo, Z.modulo.
- case div_eucl; case Z.div_eucl; simpl; auto.
- intros q r q11 r1 H; injection H; auto.
- Qed.
-
- Definition quot x y :=
- match x, y with
- | Pos nx, Pos ny => Pos (NN.div nx ny)
- | Pos nx, Neg ny => Neg (NN.div nx ny)
- | Neg nx, Pos ny => Neg (NN.div nx ny)
- | Neg nx, Neg ny => Pos (NN.div nx ny)
- end.
-
- Definition rem x y :=
- if eqb y zero then x
- else
- match x, y with
- | Pos nx, Pos ny => Pos (NN.modulo nx ny)
- | Pos nx, Neg ny => Pos (NN.modulo nx ny)
- | Neg nx, Pos ny => Neg (NN.modulo nx ny)
- | Neg nx, Neg ny => Neg (NN.modulo nx ny)
- end.
-
- Lemma spec_quot : forall x y, to_Z (quot x y) = (to_Z x) ÷ (to_Z y).
- Proof.
- intros [x|x] [y|y]; simpl; symmetry; rewrite NN.spec_div;
- (* Nota: we rely here on [forall a b, a ÷ 0 = b / 0] *)
- destruct (Z.eq_dec (NN.to_Z y) 0) as [EQ|NEQ];
- try (rewrite EQ; now destruct (NN.to_Z x));
- rewrite ?Z.quot_opp_r, ?Z.quot_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd;
- trivial; apply Z.quot_div_nonneg;
- generalize (NN.spec_pos x) (NN.spec_pos y); Z.order.
- Qed.
-
- Lemma spec_rem : forall x y,
- to_Z (rem x y) = Z.rem (to_Z x) (to_Z y).
- Proof.
- intros x y. unfold rem. rewrite spec_eqb, spec_0.
- case Z.eqb_spec; intros Hy.
- (* Nota: we rely here on [Z.rem a 0 = a] *)
- rewrite Hy. now destruct (to_Z x).
- destruct x as [x|x], y as [y|y]; simpl in *; symmetry;
- rewrite ?Z.eq_opp_l, ?Z.opp_0 in Hy;
- rewrite NN.spec_modulo, ?Z.rem_opp_r, ?Z.rem_opp_l, ?Z.opp_involutive,
- ?Z.opp_inj_wd;
- trivial; apply Z.rem_mod_nonneg;
- generalize (NN.spec_pos x) (NN.spec_pos y); Z.order.
- Qed.
-
- Definition gcd x y :=
- match x, y with
- | Pos nx, Pos ny => Pos (NN.gcd nx ny)
- | Pos nx, Neg ny => Pos (NN.gcd nx ny)
- | Neg nx, Pos ny => Pos (NN.gcd nx ny)
- | Neg nx, Neg ny => Pos (NN.gcd nx ny)
- end.
-
- Theorem spec_gcd: forall a b, to_Z (gcd a b) = Z.gcd (to_Z a) (to_Z b).
- Proof.
- unfold gcd, Z.gcd, to_Z; intros [x | x] [y | y]; rewrite NN.spec_gcd; unfold Z.gcd;
- auto; case NN.to_Z; simpl; auto with zarith;
- try rewrite Z.abs_opp; auto;
- case NN.to_Z; simpl; auto with zarith.
- Qed.
-
- Definition sgn x :=
- match compare zero x with
- | Lt => one
- | Eq => zero
- | Gt => minus_one
- end.
-
- Lemma spec_sgn : forall x, to_Z (sgn x) = Z.sgn (to_Z x).
- Proof.
- intros. unfold sgn. rewrite spec_compare. case Z.compare_spec.
- rewrite spec_0. intros <-; auto.
- rewrite spec_0, spec_1. symmetry. rewrite Z.sgn_pos_iff; auto.
- rewrite spec_0, spec_m1. symmetry. rewrite Z.sgn_neg_iff; auto with zarith.
- Qed.
-
- Definition even z :=
- match z with
- | Pos n => NN.even n
- | Neg n => NN.even n
- end.
-
- Definition odd z :=
- match z with
- | Pos n => NN.odd n
- | Neg n => NN.odd n
- end.
-
- Lemma spec_even : forall z, even z = Z.even (to_Z z).
- Proof.
- intros [n|n]; simpl; rewrite NN.spec_even; trivial.
- destruct (NN.to_Z n) as [|p|p]; now try destruct p.
- Qed.
-
- Lemma spec_odd : forall z, odd z = Z.odd (to_Z z).
- Proof.
- intros [n|n]; simpl; rewrite NN.spec_odd; trivial.
- destruct (NN.to_Z n) as [|p|p]; now try destruct p.
- Qed.
-
- Definition norm_pos z :=
- match z with
- | Pos _ => z
- | Neg n => if NN.eqb n NN.zero then Pos n else z
- end.
-
- Definition testbit a n :=
- match norm_pos n, norm_pos a with
- | Pos p, Pos a => NN.testbit a p
- | Pos p, Neg a => negb (NN.testbit (NN.pred a) p)
- | Neg p, _ => false
- end.
-
- Definition shiftl a n :=
- match norm_pos a, n with
- | Pos a, Pos n => Pos (NN.shiftl a n)
- | Pos a, Neg n => Pos (NN.shiftr a n)
- | Neg a, Pos n => Neg (NN.shiftl a n)
- | Neg a, Neg n => Neg (NN.succ (NN.shiftr (NN.pred a) n))
- end.
-
- Definition shiftr a n := shiftl a (opp n).
-
- Definition lor a b :=
- match norm_pos a, norm_pos b with
- | Pos a, Pos b => Pos (NN.lor a b)
- | Neg a, Pos b => Neg (NN.succ (NN.ldiff (NN.pred a) b))
- | Pos a, Neg b => Neg (NN.succ (NN.ldiff (NN.pred b) a))
- | Neg a, Neg b => Neg (NN.succ (NN.land (NN.pred a) (NN.pred b)))
- end.
-
- Definition land a b :=
- match norm_pos a, norm_pos b with
- | Pos a, Pos b => Pos (NN.land a b)
- | Neg a, Pos b => Pos (NN.ldiff b (NN.pred a))
- | Pos a, Neg b => Pos (NN.ldiff a (NN.pred b))
- | Neg a, Neg b => Neg (NN.succ (NN.lor (NN.pred a) (NN.pred b)))
- end.
-
- Definition ldiff a b :=
- match norm_pos a, norm_pos b with
- | Pos a, Pos b => Pos (NN.ldiff a b)
- | Neg a, Pos b => Neg (NN.succ (NN.lor (NN.pred a) b))
- | Pos a, Neg b => Pos (NN.land a (NN.pred b))
- | Neg a, Neg b => Pos (NN.ldiff (NN.pred b) (NN.pred a))
- end.
-
- Definition lxor a b :=
- match norm_pos a, norm_pos b with
- | Pos a, Pos b => Pos (NN.lxor a b)
- | Neg a, Pos b => Neg (NN.succ (NN.lxor (NN.pred a) b))
- | Pos a, Neg b => Neg (NN.succ (NN.lxor a (NN.pred b)))
- | Neg a, Neg b => Pos (NN.lxor (NN.pred a) (NN.pred b))
- end.
-
- Definition div2 x := shiftr x one.
-
- Lemma Zlnot_alt1 : forall x, -(x+1) = Z.lnot x.
- Proof.
- unfold Z.lnot, Z.pred; auto with zarith.
- Qed.
-
- Lemma Zlnot_alt2 : forall x, Z.lnot (x-1) = -x.
- Proof.
- unfold Z.lnot, Z.pred; auto with zarith.
- Qed.
-
- Lemma Zlnot_alt3 : forall x, Z.lnot (-x) = x-1.
- Proof.
- unfold Z.lnot, Z.pred; auto with zarith.
- Qed.
-
- Lemma spec_norm_pos : forall x, to_Z (norm_pos x) = to_Z x.
- Proof.
- intros [x|x]; simpl; trivial.
- rewrite NN.spec_eqb, NN.spec_0.
- case Z.eqb_spec; simpl; auto with zarith.
- Qed.
-
- Lemma spec_norm_pos_pos : forall x y, norm_pos x = Neg y ->
- 0 < NN.to_Z y.
- Proof.
- intros [x|x] y; simpl; try easy.
- rewrite NN.spec_eqb, NN.spec_0.
- case Z.eqb_spec; simpl; try easy.
- inversion 2. subst. generalize (NN.spec_pos y); auto with zarith.
- Qed.
-
- Ltac destr_norm_pos x :=
- rewrite <- (spec_norm_pos x);
- let H := fresh in
- let x' := fresh x in
- assert (H := spec_norm_pos_pos x);
- destruct (norm_pos x) as [x'|x'];
- specialize (H x' (eq_refl _)) || clear H.
-
- Lemma spec_testbit: forall x p, testbit x p = Z.testbit (to_Z x) (to_Z p).
- Proof.
- intros x p. unfold testbit.
- destr_norm_pos p; simpl. destr_norm_pos x; simpl.
- apply NN.spec_testbit.
- rewrite NN.spec_testbit, NN.spec_pred, Z.max_r by auto with zarith.
- symmetry. apply Z.bits_opp. apply NN.spec_pos.
- symmetry. apply Z.testbit_neg_r; auto with zarith.
- Qed.
-
- Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Z.shiftl (to_Z x) (to_Z p).
- Proof.
- intros x p. unfold shiftl.
- destr_norm_pos x; destruct p as [p|p]; simpl;
- assert (Hp := NN.spec_pos p).
- apply NN.spec_shiftl.
- rewrite Z.shiftl_opp_r. apply NN.spec_shiftr.
- rewrite !NN.spec_shiftl.
- rewrite !Z.shiftl_mul_pow2 by apply NN.spec_pos.
- symmetry. apply Z.mul_opp_l.
- rewrite Z.shiftl_opp_r, NN.spec_succ, NN.spec_shiftr, NN.spec_pred, Z.max_r
- by auto with zarith.
- now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2.
- Qed.
-
- Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Z.shiftr (to_Z x) (to_Z p).
- Proof.
- intros. unfold shiftr. rewrite spec_shiftl, spec_opp.
- apply Z.shiftl_opp_r.
- Qed.
-
- Lemma spec_land: forall x y, to_Z (land x y) = Z.land (to_Z x) (to_Z y).
- Proof.
- intros x y. unfold land.
- destr_norm_pos x; destr_norm_pos y; simpl;
- rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor,
- ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith.
- now rewrite Z.ldiff_land, Zlnot_alt2.
- now rewrite Z.ldiff_land, Z.land_comm, Zlnot_alt2.
- now rewrite Z.lnot_lor, !Zlnot_alt2.
- Qed.
-
- Lemma spec_lor: forall x y, to_Z (lor x y) = Z.lor (to_Z x) (to_Z y).
- Proof.
- intros x y. unfold lor.
- destr_norm_pos x; destr_norm_pos y; simpl;
- rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor,
- ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith.
- now rewrite Z.lnot_ldiff, Z.lor_comm, Zlnot_alt2.
- now rewrite Z.lnot_ldiff, Zlnot_alt2.
- now rewrite Z.lnot_land, !Zlnot_alt2.
- Qed.
-
- Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Z.ldiff (to_Z x) (to_Z y).
- Proof.
- intros x y. unfold ldiff.
- destr_norm_pos x; destr_norm_pos y; simpl;
- rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor,
- ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith.
- now rewrite Z.ldiff_land, Zlnot_alt3.
- now rewrite Z.lnot_lor, Z.ldiff_land, <- Zlnot_alt2.
- now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3.
- Qed.
-
- Lemma spec_lxor: forall x y, to_Z (lxor x y) = Z.lxor (to_Z x) (to_Z y).
- Proof.
- intros x y. unfold lxor.
- destr_norm_pos x; destr_norm_pos y; simpl;
- rewrite ?NN.spec_succ, ?NN.spec_lxor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1;
- auto with zarith.
- now rewrite !Z.lnot_lxor_r, Zlnot_alt2.
- now rewrite !Z.lnot_lxor_l, Zlnot_alt2.
- now rewrite <- Z.lxor_lnot_lnot, !Zlnot_alt2.
- Qed.
-
- Lemma spec_div2: forall x, to_Z (div2 x) = Z.div2 (to_Z x).
- Proof.
- intros x. unfold div2. now rewrite spec_shiftr, Z.div2_spec, spec_1.
- Qed.
-
-End Make.