summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZSgnAbs.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZSgnAbs.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZSgnAbs.v348
1 files changed, 348 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZSgnAbs.v b/theories/Numbers/Integer/Abstract/ZSgnAbs.v
new file mode 100644
index 00000000..8b191613
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZSgnAbs.v
@@ -0,0 +1,348 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Export ZMulOrder.
+
+(** An axiomatization of [abs]. *)
+
+Module Type HasAbs(Import Z : ZAxiomsSig').
+ Parameter Inline abs : t -> t.
+ Axiom abs_eq : forall n, 0<=n -> abs n == n.
+ Axiom abs_neq : forall n, n<=0 -> abs n == -n.
+End HasAbs.
+
+(** Since we already have [max], we could have defined [abs]. *)
+
+Module GenericAbs (Import Z : ZAxiomsSig')
+ (Import ZP : ZMulOrderPropFunct Z) <: HasAbs Z.
+ Definition abs n := max n (-n).
+ Lemma abs_eq : forall n, 0<=n -> abs n == n.
+ Proof.
+ intros. unfold abs. apply max_l.
+ apply le_trans with 0; auto.
+ rewrite opp_nonpos_nonneg; auto.
+ Qed.
+ Lemma abs_neq : forall n, n<=0 -> abs n == -n.
+ Proof.
+ intros. unfold abs. apply max_r.
+ apply le_trans with 0; auto.
+ rewrite opp_nonneg_nonpos; auto.
+ Qed.
+End GenericAbs.
+
+(** An Axiomatization of [sgn]. *)
+
+Module Type HasSgn (Import Z : ZAxiomsSig').
+ Parameter Inline sgn : t -> t.
+ Axiom sgn_null : forall n, n==0 -> sgn n == 0.
+ Axiom sgn_pos : forall n, 0<n -> sgn n == 1.
+ Axiom sgn_neg : forall n, n<0 -> sgn n == -(1).
+End HasSgn.
+
+(** We can deduce a [sgn] function from a [compare] function *)
+
+Module Type ZDecAxiomsSig := ZAxiomsSig <+ HasCompare.
+Module Type ZDecAxiomsSig' := ZAxiomsSig' <+ HasCompare.
+
+Module Type GenericSgn (Import Z : ZDecAxiomsSig')
+ (Import ZP : ZMulOrderPropFunct Z) <: HasSgn Z.
+ Definition sgn n :=
+ match compare 0 n with Eq => 0 | Lt => 1 | Gt => -(1) end.
+ Lemma sgn_null : forall n, n==0 -> sgn n == 0.
+ Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
+ Lemma sgn_pos : forall n, 0<n -> sgn n == 1.
+ Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
+ Lemma sgn_neg : forall n, n<0 -> sgn n == -(1).
+ Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
+End GenericSgn.
+
+Module Type ZAxiomsExtSig := ZAxiomsSig <+ HasAbs <+ HasSgn.
+Module Type ZAxiomsExtSig' := ZAxiomsSig' <+ HasAbs <+ HasSgn.
+
+Module Type ZSgnAbsPropSig (Import Z : ZAxiomsExtSig')
+ (Import ZP : ZMulOrderPropFunct Z).
+
+Ltac destruct_max n :=
+ destruct (le_ge_cases 0 n);
+ [rewrite (abs_eq n) by auto | rewrite (abs_neq n) by auto].
+
+Instance abs_wd : Proper (eq==>eq) abs.
+Proof.
+ intros x y EQ. destruct_max x.
+ rewrite abs_eq; trivial. now rewrite <- EQ.
+ rewrite abs_neq; try order. now rewrite opp_inj_wd.
+Qed.
+
+Lemma abs_max : forall n, abs n == max n (-n).
+Proof.
+ intros n. destruct_max n.
+ rewrite max_l; auto with relations.
+ apply le_trans with 0; auto.
+ rewrite opp_nonpos_nonneg; auto.
+ rewrite max_r; auto with relations.
+ apply le_trans with 0; auto.
+ rewrite opp_nonneg_nonpos; auto.
+Qed.
+
+Lemma abs_neq' : forall n, 0<=-n -> abs n == -n.
+Proof.
+ intros. apply abs_neq. now rewrite <- opp_nonneg_nonpos.
+Qed.
+
+Lemma abs_nonneg : forall n, 0 <= abs n.
+Proof.
+ intros n. destruct_max n; auto.
+ now rewrite opp_nonneg_nonpos.
+Qed.
+
+Lemma abs_eq_iff : forall n, abs n == n <-> 0<=n.
+Proof.
+ split; try apply abs_eq. intros EQ.
+ rewrite <- EQ. apply abs_nonneg.
+Qed.
+
+Lemma abs_neq_iff : forall n, abs n == -n <-> n<=0.
+Proof.
+ split; try apply abs_neq. intros EQ.
+ rewrite <- opp_nonneg_nonpos, <- EQ. apply abs_nonneg.
+Qed.
+
+Lemma abs_opp : forall n, abs (-n) == abs n.
+Proof.
+ intros. destruct_max n.
+ rewrite (abs_neq (-n)), opp_involutive. reflexivity.
+ now rewrite opp_nonpos_nonneg.
+ rewrite (abs_eq (-n)). reflexivity.
+ now rewrite opp_nonneg_nonpos.
+Qed.
+
+Lemma abs_0 : abs 0 == 0.
+Proof.
+ apply abs_eq. apply le_refl.
+Qed.
+
+Lemma abs_0_iff : forall n, abs n == 0 <-> n==0.
+Proof.
+ split. destruct_max n; auto.
+ now rewrite eq_opp_l, opp_0.
+ intros EQ; rewrite EQ. rewrite abs_eq; auto using eq_refl, le_refl.
+Qed.
+
+Lemma abs_pos : forall n, 0 < abs n <-> n~=0.
+Proof.
+ intros. rewrite <- abs_0_iff. split; [intros LT| intros NEQ].
+ intro EQ. rewrite EQ in LT. now elim (lt_irrefl 0).
+ assert (LE : 0 <= abs n) by apply abs_nonneg.
+ rewrite lt_eq_cases in LE; destruct LE; auto.
+ elim NEQ; auto with relations.
+Qed.
+
+Lemma abs_eq_or_opp : forall n, abs n == n \/ abs n == -n.
+Proof.
+ intros. destruct_max n; auto with relations.
+Qed.
+
+Lemma abs_or_opp_abs : forall n, n == abs n \/ n == - abs n.
+Proof.
+ intros. destruct_max n; rewrite ? opp_involutive; auto with relations.
+Qed.
+
+Lemma abs_involutive : forall n, abs (abs n) == abs n.
+Proof.
+ intros. apply abs_eq. apply abs_nonneg.
+Qed.
+
+Lemma abs_spec : forall n,
+ (0 <= n /\ abs n == n) \/ (n < 0 /\ abs n == -n).
+Proof.
+ intros. destruct (le_gt_cases 0 n).
+ left; split; auto. now apply abs_eq.
+ right; split; auto. apply abs_neq. now apply lt_le_incl.
+Qed.
+
+Lemma abs_case_strong :
+ forall (P:t->Prop) n, Proper (eq==>iff) P ->
+ (0<=n -> P n) -> (n<=0 -> P (-n)) -> P (abs n).
+Proof.
+ intros. destruct_max n; auto.
+Qed.
+
+Lemma abs_case : forall (P:t->Prop) n, Proper (eq==>iff) P ->
+ P n -> P (-n) -> P (abs n).
+Proof. intros. now apply abs_case_strong. Qed.
+
+Lemma abs_eq_cases : forall n m, abs n == abs m -> n == m \/ n == - m.
+Proof.
+ intros n m EQ. destruct (abs_or_opp_abs n) as [EQn|EQn].
+ rewrite EQn, EQ. apply abs_eq_or_opp.
+ rewrite EQn, EQ, opp_inj_wd, eq_opp_l, or_comm. apply abs_eq_or_opp.
+Qed.
+
+(** Triangular inequality *)
+
+Lemma abs_triangle : forall n m, abs (n + m) <= abs n + abs m.
+Proof.
+ intros. destruct_max n; destruct_max m.
+ rewrite abs_eq. apply le_refl. now apply add_nonneg_nonneg.
+ destruct_max (n+m); try rewrite opp_add_distr;
+ apply add_le_mono_l || apply add_le_mono_r.
+ apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
+ apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
+ destruct_max (n+m); try rewrite opp_add_distr;
+ apply add_le_mono_l || apply add_le_mono_r.
+ apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
+ apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
+ rewrite abs_neq, opp_add_distr. apply le_refl.
+ now apply add_nonpos_nonpos.
+Qed.
+
+Lemma abs_sub_triangle : forall n m, abs n - abs m <= abs (n-m).
+Proof.
+ intros.
+ rewrite le_sub_le_add_l, add_comm.
+ rewrite <- (sub_simpl_r n m) at 1.
+ apply abs_triangle.
+Qed.
+
+(** Absolute value and multiplication *)
+
+Lemma abs_mul : forall n m, abs (n * m) == abs n * abs m.
+Proof.
+ assert (H : forall n m, 0<=n -> abs (n*m) == n * abs m).
+ intros. destruct_max m.
+ rewrite abs_eq. apply eq_refl. now apply mul_nonneg_nonneg.
+ rewrite abs_neq, mul_opp_r. reflexivity. now apply mul_nonneg_nonpos .
+ intros. destruct_max n. now apply H.
+ rewrite <- mul_opp_opp, H, abs_opp. reflexivity.
+ now apply opp_nonneg_nonpos.
+Qed.
+
+Lemma abs_square : forall n, abs n * abs n == n * n.
+Proof.
+ intros. rewrite <- abs_mul. apply abs_eq. apply le_0_square.
+Qed.
+
+(** Some results about the sign function. *)
+
+Ltac destruct_sgn n :=
+ let LT := fresh "LT" in
+ let EQ := fresh "EQ" in
+ let GT := fresh "GT" in
+ destruct (lt_trichotomy 0 n) as [LT|[EQ|GT]];
+ [rewrite (sgn_pos n) by auto|
+ rewrite (sgn_null n) by auto with relations|
+ rewrite (sgn_neg n) by auto].
+
+Instance sgn_wd : Proper (eq==>eq) sgn.
+Proof.
+ intros x y Hxy. destruct_sgn x.
+ rewrite sgn_pos; auto with relations. rewrite <- Hxy; auto.
+ rewrite sgn_null; auto with relations. rewrite <- Hxy; auto with relations.
+ rewrite sgn_neg; auto with relations. rewrite <- Hxy; auto.
+Qed.
+
+Lemma sgn_spec : forall n,
+ 0 < n /\ sgn n == 1 \/
+ 0 == n /\ sgn n == 0 \/
+ 0 > n /\ sgn n == -(1).
+Proof.
+ intros n.
+ destruct_sgn n; [left|right;left|right;right]; auto with relations.
+Qed.
+
+Lemma sgn_0 : sgn 0 == 0.
+Proof.
+ now apply sgn_null.
+Qed.
+
+Lemma sgn_pos_iff : forall n, sgn n == 1 <-> 0<n.
+Proof.
+ split; try apply sgn_pos. destruct_sgn n; auto.
+ intros. elim (lt_neq 0 1); auto. apply lt_0_1.
+ intros. elim (lt_neq (-(1)) 1); auto.
+ apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1.
+Qed.
+
+Lemma sgn_null_iff : forall n, sgn n == 0 <-> n==0.
+Proof.
+ split; try apply sgn_null. destruct_sgn n; auto with relations.
+ intros. elim (lt_neq 0 1); auto with relations. apply lt_0_1.
+ intros. elim (lt_neq (-(1)) 0); auto.
+ rewrite opp_neg_pos. apply lt_0_1.
+Qed.
+
+Lemma sgn_neg_iff : forall n, sgn n == -(1) <-> n<0.
+Proof.
+ split; try apply sgn_neg. destruct_sgn n; auto with relations.
+ intros. elim (lt_neq (-(1)) 1); auto with relations.
+ apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1.
+ intros. elim (lt_neq (-(1)) 0); auto with relations.
+ rewrite opp_neg_pos. apply lt_0_1.
+Qed.
+
+Lemma sgn_opp : forall n, sgn (-n) == - sgn n.
+Proof.
+ intros. destruct_sgn n.
+ apply sgn_neg. now rewrite opp_neg_pos.
+ setoid_replace n with 0 by auto with relations.
+ rewrite opp_0. apply sgn_0.
+ rewrite opp_involutive. apply sgn_pos. now rewrite opp_pos_neg.
+Qed.
+
+Lemma sgn_nonneg : forall n, 0 <= sgn n <-> 0 <= n.
+Proof.
+ split.
+ destruct_sgn n; intros.
+ now apply lt_le_incl.
+ order.
+ elim (lt_irrefl 0). apply lt_le_trans with 1; auto using lt_0_1.
+ now rewrite <- opp_nonneg_nonpos.
+ rewrite lt_eq_cases; destruct 1.
+ rewrite sgn_pos by auto. apply lt_le_incl, lt_0_1.
+ rewrite sgn_null by auto with relations. apply le_refl.
+Qed.
+
+Lemma sgn_nonpos : forall n, sgn n <= 0 <-> n <= 0.
+Proof.
+ intros. rewrite <- 2 opp_nonneg_nonpos, <- sgn_opp. apply sgn_nonneg.
+Qed.
+
+Lemma sgn_mul : forall n m, sgn (n*m) == sgn n * sgn m.
+Proof.
+ intros. destruct_sgn n; nzsimpl.
+ destruct_sgn m.
+ apply sgn_pos. now apply mul_pos_pos.
+ apply sgn_null. rewrite eq_mul_0; auto with relations.
+ apply sgn_neg. now apply mul_pos_neg.
+ apply sgn_null. rewrite eq_mul_0; auto with relations.
+ destruct_sgn m; try rewrite mul_opp_opp; nzsimpl.
+ apply sgn_neg. now apply mul_neg_pos.
+ apply sgn_null. rewrite eq_mul_0; auto with relations.
+ apply sgn_pos. now apply mul_neg_neg.
+Qed.
+
+Lemma sgn_abs : forall n, n * sgn n == abs n.
+Proof.
+ intros. symmetry.
+ destruct_sgn n; try rewrite mul_opp_r; nzsimpl.
+ apply abs_eq. now apply lt_le_incl.
+ rewrite abs_0_iff; auto with relations.
+ apply abs_neq. now apply lt_le_incl.
+Qed.
+
+Lemma abs_sgn : forall n, abs n * sgn n == n.
+Proof.
+ intros.
+ destruct_sgn n; try rewrite mul_opp_r; nzsimpl; auto.
+ apply abs_eq. now apply lt_le_incl.
+ rewrite eq_opp_l. apply abs_neq. now apply lt_le_incl.
+Qed.
+
+End ZSgnAbsPropSig.
+
+