summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZGcd.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZGcd.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZGcd.v274
1 files changed, 274 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZGcd.v b/theories/Numbers/Integer/Abstract/ZGcd.v
new file mode 100644
index 00000000..404fc0c4
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZGcd.v
@@ -0,0 +1,274 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Properties of the greatest common divisor *)
+
+Require Import ZAxioms ZMulOrder ZSgnAbs NZGcd.
+
+Module Type ZGcdProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B).
+
+ Include NZGcdProp A A B.
+
+(** Results concerning divisibility*)
+
+Lemma divide_opp_l : forall n m, (-n | m) <-> (n | m).
+Proof.
+ intros n m. split; intros (p,Hp); exists (-p); rewrite Hp.
+ now rewrite mul_opp_l, mul_opp_r.
+ now rewrite mul_opp_opp.
+Qed.
+
+Lemma divide_opp_r : forall n m, (n | -m) <-> (n | m).
+Proof.
+ intros n m. split; intros (p,Hp); exists (-p).
+ now rewrite mul_opp_l, <- Hp, opp_involutive.
+ now rewrite Hp, mul_opp_l.
+Qed.
+
+Lemma divide_abs_l : forall n m, (abs n | m) <-> (n | m).
+Proof.
+ intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
+ easy. apply divide_opp_l.
+Qed.
+
+Lemma divide_abs_r : forall n m, (n | abs m) <-> (n | m).
+Proof.
+ intros n m. destruct (abs_eq_or_opp m) as [H|H]; rewrite H.
+ easy. apply divide_opp_r.
+Qed.
+
+Lemma divide_1_r_abs : forall n, (n | 1) -> abs n == 1.
+Proof.
+ intros n Hn. apply divide_1_r_nonneg. apply abs_nonneg.
+ now apply divide_abs_l.
+Qed.
+
+Lemma divide_1_r : forall n, (n | 1) -> n==1 \/ n==-1.
+Proof.
+ intros n (m,H). rewrite mul_comm in H. now apply eq_mul_1 with m.
+Qed.
+
+Lemma divide_antisym_abs : forall n m,
+ (n | m) -> (m | n) -> abs n == abs m.
+Proof.
+ intros. apply divide_antisym_nonneg; try apply abs_nonneg.
+ now apply divide_abs_l, divide_abs_r.
+ now apply divide_abs_l, divide_abs_r.
+Qed.
+
+Lemma divide_antisym : forall n m,
+ (n | m) -> (m | n) -> n == m \/ n == -m.
+Proof.
+ intros. now apply abs_eq_cases, divide_antisym_abs.
+Qed.
+
+Lemma divide_sub_r : forall n m p, (n | m) -> (n | p) -> (n | m - p).
+Proof.
+ intros n m p H H'. rewrite <- add_opp_r.
+ apply divide_add_r; trivial. now apply divide_opp_r.
+Qed.
+
+Lemma divide_add_cancel_r : forall n m p, (n | m) -> (n | m + p) -> (n | p).
+Proof.
+ intros n m p H H'. rewrite <- (add_simpl_l m p). now apply divide_sub_r.
+Qed.
+
+(** Properties of gcd *)
+
+Lemma gcd_opp_l : forall n m, gcd (-n) m == gcd n m.
+Proof.
+ intros. apply gcd_unique_alt; try apply gcd_nonneg.
+ intros. rewrite divide_opp_r. apply gcd_divide_iff.
+Qed.
+
+Lemma gcd_opp_r : forall n m, gcd n (-m) == gcd n m.
+Proof.
+ intros. now rewrite gcd_comm, gcd_opp_l, gcd_comm.
+Qed.
+
+Lemma gcd_abs_l : forall n m, gcd (abs n) m == gcd n m.
+Proof.
+ intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
+ easy. apply gcd_opp_l.
+Qed.
+
+Lemma gcd_abs_r : forall n m, gcd n (abs m) == gcd n m.
+Proof.
+ intros. now rewrite gcd_comm, gcd_abs_l, gcd_comm.
+Qed.
+
+Lemma gcd_0_l : forall n, gcd 0 n == abs n.
+Proof.
+ intros. rewrite <- gcd_abs_r. apply gcd_0_l_nonneg, abs_nonneg.
+Qed.
+
+Lemma gcd_0_r : forall n, gcd n 0 == abs n.
+Proof.
+ intros. now rewrite gcd_comm, gcd_0_l.
+Qed.
+
+Lemma gcd_diag : forall n, gcd n n == abs n.
+Proof.
+ intros. rewrite <- gcd_abs_l, <- gcd_abs_r.
+ apply gcd_diag_nonneg, abs_nonneg.
+Qed.
+
+Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
+Proof.
+ intros. apply gcd_unique_alt; try apply gcd_nonneg.
+ intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
+ apply divide_add_r; trivial. now apply divide_mul_r.
+ apply divide_add_cancel_r with (p*n); trivial.
+ now apply divide_mul_r. now rewrite add_comm.
+Qed.
+
+Lemma gcd_add_diag_r : forall n m, gcd n (m+n) == gcd n m.
+Proof.
+ intros n m. rewrite <- (mul_1_l n) at 2. apply gcd_add_mult_diag_r.
+Qed.
+
+Lemma gcd_sub_diag_r : forall n m, gcd n (m-n) == gcd n m.
+Proof.
+ intros n m. rewrite <- (mul_1_l n) at 2.
+ rewrite <- add_opp_r, <- mul_opp_l. apply gcd_add_mult_diag_r.
+Qed.
+
+Definition Bezout n m p := exists a b, a*n + b*m == p.
+
+Instance Bezout_wd : Proper (eq==>eq==>eq==>iff) Bezout.
+Proof.
+ unfold Bezout. intros x x' Hx y y' Hy z z' Hz.
+ setoid_rewrite Hx. setoid_rewrite Hy. now setoid_rewrite Hz.
+Qed.
+
+Lemma bezout_1_gcd : forall n m, Bezout n m 1 -> gcd n m == 1.
+Proof.
+ intros n m (q & r & H).
+ apply gcd_unique; trivial using divide_1_l, le_0_1.
+ intros p Hn Hm.
+ rewrite <- H. apply divide_add_r; now apply divide_mul_r.
+Qed.
+
+Lemma gcd_bezout : forall n m p, gcd n m == p -> Bezout n m p.
+Proof.
+ (* First, a version restricted to natural numbers *)
+ assert (aux : forall n, 0<=n -> forall m, 0<=m -> Bezout n m (gcd n m)).
+ intros n Hn; pattern n.
+ apply strong_right_induction with (z:=0); trivial.
+ unfold Bezout. solve_proper.
+ clear n Hn. intros n Hn IHn.
+ apply le_lteq in Hn; destruct Hn as [Hn|Hn].
+ intros m Hm; pattern m.
+ apply strong_right_induction with (z:=0); trivial.
+ unfold Bezout. solve_proper.
+ clear m Hm. intros m Hm IHm.
+ destruct (lt_trichotomy n m) as [LT|[EQ|LT]].
+ (* n < m *)
+ destruct (IHm (m-n)) as (a & b & EQ).
+ apply sub_nonneg; order.
+ now apply lt_sub_pos.
+ exists (a-b). exists b.
+ rewrite gcd_sub_diag_r in EQ. rewrite <- EQ.
+ rewrite mul_sub_distr_r, mul_sub_distr_l.
+ now rewrite add_sub_assoc, add_sub_swap.
+ (* n = m *)
+ rewrite EQ. rewrite gcd_diag_nonneg; trivial.
+ exists 1. exists 0. now nzsimpl.
+ (* m < n *)
+ destruct (IHn m Hm LT n) as (a & b & EQ). order.
+ exists b. exists a. now rewrite gcd_comm, <- EQ, add_comm.
+ (* n = 0 *)
+ intros m Hm. rewrite <- Hn, gcd_0_l_nonneg; trivial.
+ exists 0. exists 1. now nzsimpl.
+ (* Then we relax the positivity condition on n *)
+ assert (aux' : forall n m, 0<=m -> Bezout n m (gcd n m)).
+ intros n m Hm.
+ destruct (le_ge_cases 0 n). now apply aux.
+ assert (Hn' : 0 <= -n) by now apply opp_nonneg_nonpos.
+ destruct (aux (-n) Hn' m Hm) as (a & b & EQ).
+ exists (-a). exists b. now rewrite <- gcd_opp_l, <- EQ, mul_opp_r, mul_opp_l.
+ (* And finally we do the same for m *)
+ intros n m p Hp. rewrite <- Hp; clear Hp.
+ destruct (le_ge_cases 0 m). now apply aux'.
+ assert (Hm' : 0 <= -m) by now apply opp_nonneg_nonpos.
+ destruct (aux' n (-m) Hm') as (a & b & EQ).
+ exists a. exists (-b). now rewrite <- gcd_opp_r, <- EQ, mul_opp_r, mul_opp_l.
+Qed.
+
+Lemma gcd_mul_mono_l :
+ forall n m p, gcd (p * n) (p * m) == abs p * gcd n m.
+Proof.
+ intros n m p.
+ apply gcd_unique.
+ apply mul_nonneg_nonneg; trivial using gcd_nonneg, abs_nonneg.
+ destruct (gcd_divide_l n m) as (q,Hq).
+ rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
+ rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
+ destruct (gcd_divide_r n m) as (q,Hq).
+ rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
+ rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
+ intros q H H'.
+ destruct (gcd_bezout n m (gcd n m) (eq_refl _)) as (a & b & EQ).
+ rewrite <- EQ, <- sgn_abs, mul_add_distr_l. apply divide_add_r.
+ rewrite mul_shuffle2. now apply divide_mul_l.
+ rewrite mul_shuffle2. now apply divide_mul_l.
+Qed.
+
+Lemma gcd_mul_mono_l_nonneg :
+ forall n m p, 0<=p -> gcd (p*n) (p*m) == p * gcd n m.
+Proof.
+ intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l.
+Qed.
+
+Lemma gcd_mul_mono_r :
+ forall n m p, gcd (n * p) (m * p) == gcd n m * abs p.
+Proof.
+ intros n m p. now rewrite !(mul_comm _ p), gcd_mul_mono_l, mul_comm.
+Qed.
+
+Lemma gcd_mul_mono_r_nonneg :
+ forall n m p, 0<=p -> gcd (n*p) (m*p) == gcd n m * p.
+Proof.
+ intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r.
+Qed.
+
+Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).
+Proof.
+ intros n m p H G.
+ destruct (gcd_bezout n m 1 G) as (a & b & EQ).
+ rewrite <- (mul_1_l p), <- EQ, mul_add_distr_r.
+ apply divide_add_r. rewrite mul_shuffle0. apply divide_factor_r.
+ rewrite <- mul_assoc. now apply divide_mul_r.
+Qed.
+
+Lemma divide_mul_split : forall n m p, n ~= 0 -> (n | m * p) ->
+ exists q r, n == q*r /\ (q | m) /\ (r | p).
+Proof.
+ intros n m p Hn H.
+ assert (G := gcd_nonneg n m).
+ apply le_lteq in G; destruct G as [G|G].
+ destruct (gcd_divide_l n m) as (q,Hq).
+ exists (gcd n m). exists q.
+ split. now rewrite mul_comm.
+ split. apply gcd_divide_r.
+ destruct (gcd_divide_r n m) as (r,Hr).
+ rewrite Hr in H. rewrite Hq in H at 1.
+ rewrite mul_shuffle0 in H. apply mul_divide_cancel_r in H; [|order].
+ apply gauss with r; trivial.
+ apply mul_cancel_r with (gcd n m); [order|].
+ rewrite mul_1_l.
+ rewrite <- gcd_mul_mono_r_nonneg, <- Hq, <- Hr; order.
+ symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
+Qed.
+
+(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)
+
+End ZGcdProp.