summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZDivEucl.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZDivEucl.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v103
1 files changed, 58 insertions, 45 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
index 4555e733..fe951a75 100644
--- a/theories/Numbers/Integer/Abstract/ZDivEucl.v
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -1,11 +1,13 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
+
(** * Euclidean Division for integers, Euclid convention
We use here the "usual" formulation of the Euclid Theorem
@@ -19,37 +21,29 @@
Vol. 14, No.2, pp. 127-144, April 1992.
See files [ZDivTrunc] and [ZDivFloor] for others conventions.
-*)
-
-Require Import ZAxioms ZProperties NZDiv.
-Module Type ZDivSpecific (Import Z : ZAxiomsExtSig')(Import DM : DivMod' Z).
- Axiom mod_always_pos : forall a b, 0 <= a mod b < abs b.
-End ZDivSpecific.
-
-Module Type ZDiv (Z:ZAxiomsExtSig)
- := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
+ We simply extend NZDiv with a bound for modulo that holds
+ regardless of the sign of a and b. This new specification
+ subsume mod_bound_pos, which nonetheless stays there for
+ subtyping. Note also that ZAxiomSig now already contain
+ a div and a modulo (that follow the Floor convention).
+ We just ignore them here.
+*)
-Module Type ZDivSig := ZAxiomsExtSig <+ ZDiv.
-Module Type ZDivSig' := ZAxiomsExtSig' <+ ZDiv <+ DivModNotation.
+Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod' A).
+ Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= a mod b < abs b.
+End EuclidSpec.
-Module ZDivPropFunct (Import Z : ZDivSig')(Import ZP : ZPropSig Z).
+Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z.
+Module Type ZEuclid' (Z:ZAxiomsSig) := NZDiv.NZDiv' Z <+ EuclidSpec Z.
-(** We benefit from what already exists for NZ *)
+Module ZEuclidProp
+ (Import A : ZAxiomsSig')
+ (Import B : ZMulOrderProp A)
+ (Import C : ZSgnAbsProp A B)
+ (Import D : ZEuclid' A).
- Module ZD <: NZDiv Z.
- Definition div := div.
- Definition modulo := modulo.
- Definition div_wd := div_wd.
- Definition mod_wd := mod_wd.
- Definition div_mod := div_mod.
- Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Proof.
- intros. rewrite <- (abs_eq b) at 3 by now apply lt_le_incl.
- apply mod_always_pos.
- Qed.
- End ZD.
- Module Import NZDivP := NZDivPropFunct Z ZP ZD.
+ Module Import Private_NZDiv := Nop <+ NZDivProp A D B.
(** Another formulation of the main equation *)
@@ -117,7 +111,7 @@ Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
Proof.
intros. symmetry.
apply div_unique with (a mod b).
-rewrite abs_opp; apply mod_always_pos.
+rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
@@ -125,7 +119,7 @@ Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
Proof.
intros. symmetry.
apply mod_unique with (-(a/b)).
-rewrite abs_opp; apply mod_always_pos.
+rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.
@@ -274,6 +268,11 @@ Proof.
intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag.
Qed.
+Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b.
+Proof.
+ intros Hb H. rewrite H, mul_comm. symmetry. now apply div_mul.
+Qed.
+
(** * Order results about mod and div *)
(** A modulo cannot grow beyond its starting point. *)
@@ -296,7 +295,7 @@ intros a b Hb.
split.
intros EQ.
rewrite (div_mod a b Hb), EQ; nzsimpl.
-apply mod_always_pos.
+now apply mod_always_pos.
intros. pos_or_neg b.
apply div_small.
now rewrite <- (abs_eq b).
@@ -365,7 +364,7 @@ intros.
nzsimpl.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
-destruct (mod_always_pos a b).
+destruct (mod_always_pos a b). order.
rewrite abs_eq in *; order.
Qed.
@@ -375,7 +374,7 @@ intros a b Hb.
rewrite mul_pred_r, <- add_opp_r.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
-destruct (mod_always_pos a b).
+destruct (mod_always_pos a b). order.
rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order.
Qed.
@@ -469,7 +468,7 @@ apply div_unique with ((a mod b)*c).
(* ineqs *)
rewrite abs_mul, (abs_eq c) by order.
rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial.
-apply mod_always_pos.
+now apply mod_always_pos.
(* equation *)
rewrite (div_mod a b) at 1 by order.
rewrite mul_add_distr_r.
@@ -556,17 +555,18 @@ Proof.
Qed.
(** With the current convention, the following result isn't always
- true for negative divisors. For instance
- [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ]. *)
+ true with a negative intermediate divisor. For instance
+ [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ] and
+ [ 3/(-2)/2 = -1 <> 0 = 3 / (-2*2) ]. *)
-Lemma div_div : forall a b c, 0<b -> 0<c ->
+Lemma div_div : forall a b c, 0<b -> c~=0 ->
(a/b)/c == a/(b*c).
Proof.
intros a b c Hb Hc.
apply div_unique with (b*((a/b) mod c) + a mod b).
(* begin 0<= ... <abs(b*c) *)
rewrite abs_mul.
- destruct (mod_always_pos (a/b) c), (mod_always_pos a b).
+ destruct (mod_always_pos (a/b) c), (mod_always_pos a b); try order.
split.
apply add_nonneg_nonneg; trivial.
apply mul_nonneg_nonneg; order.
@@ -581,6 +581,22 @@ Proof.
apply div_mod; order.
Qed.
+(** Similarly, the following result doesn't always hold when [b<0].
+ For instance [3 mod (-2*-2)) = 3] while
+ [3 mod (-2) + (-2)*((3/-2) mod -2) = -1]. *)
+
+Lemma mod_mul_r : forall a b c, 0<b -> c~=0 ->
+ a mod (b*c) == a mod b + b*((a/b) mod c).
+Proof.
+ intros a b c Hb Hc.
+ apply add_cancel_l with (b*c*(a/(b*c))).
+ rewrite <- div_mod by (apply neq_mul_0; split; order).
+ rewrite <- div_div by trivial.
+ rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
+ rewrite <- div_mod by order.
+ apply div_mod; order.
+Qed.
+
(** A last inequality: *)
Theorem div_mul_le:
@@ -590,16 +606,13 @@ Proof. exact div_mul_le. Qed.
(** mod is related to divisibility *)
Lemma mod_divides : forall a b, b~=0 ->
- (a mod b == 0 <-> exists c, a == b*c).
+ (a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
-intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
- rewrite Hab; now nzsimpl.
-intros (c,Hc).
-rewrite Hc, mul_comm.
-now apply mod_mul.
+intros Hab. exists (a/b). rewrite mul_comm.
+ rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
+intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
-
-End ZDivPropFunct.
+End ZEuclidProp.