summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZDivEucl.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZDivEucl.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v605
1 files changed, 605 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
new file mode 100644
index 00000000..bcd16fec
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -0,0 +1,605 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * Euclidean Division for integers, Euclid convention
+
+ We use here the "usual" formulation of the Euclid Theorem
+ [forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ]
+
+ The outcome of the modulo function is hence always positive.
+ This corresponds to convention "E" in the following paper:
+
+ R. Boute, "The Euclidean definition of the functions div and mod",
+ ACM Transactions on Programming Languages and Systems,
+ Vol. 14, No.2, pp. 127-144, April 1992.
+
+ See files [ZDivTrunc] and [ZDivFloor] for others conventions.
+*)
+
+Require Import ZAxioms ZProperties NZDiv.
+
+Module Type ZDivSpecific (Import Z : ZAxiomsExtSig')(Import DM : DivMod' Z).
+ Axiom mod_always_pos : forall a b, 0 <= a mod b < abs b.
+End ZDivSpecific.
+
+Module Type ZDiv (Z:ZAxiomsExtSig)
+ := DivMod Z <+ NZDivCommon Z <+ ZDivSpecific Z.
+
+Module Type ZDivSig := ZAxiomsExtSig <+ ZDiv.
+Module Type ZDivSig' := ZAxiomsExtSig' <+ ZDiv <+ DivModNotation.
+
+Module ZDivPropFunct (Import Z : ZDivSig')(Import ZP : ZPropSig Z).
+
+(** We benefit from what already exists for NZ *)
+
+ Module ZD <: NZDiv Z.
+ Definition div := div.
+ Definition modulo := modulo.
+ Definition div_wd := div_wd.
+ Definition mod_wd := mod_wd.
+ Definition div_mod := div_mod.
+ Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
+ Proof.
+ intros. rewrite <- (abs_eq b) at 3 by now apply lt_le_incl.
+ apply mod_always_pos.
+ Qed.
+ End ZD.
+ Module Import NZDivP := NZDivPropFunct Z ZP ZD.
+
+(** Another formulation of the main equation *)
+
+Lemma mod_eq :
+ forall a b, b~=0 -> a mod b == a - b*(a/b).
+Proof.
+intros.
+rewrite <- add_move_l.
+symmetry. now apply div_mod.
+Qed.
+
+Ltac pos_or_neg a :=
+ let LT := fresh "LT" in
+ let LE := fresh "LE" in
+ destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].
+
+(** Uniqueness theorems *)
+
+Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
+ 0<=r1<abs b -> 0<=r2<abs b ->
+ b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
+Proof.
+intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
+pos_or_neg b.
+rewrite abs_eq in * by trivial.
+apply div_mod_unique with b; trivial.
+rewrite abs_neq' in * by auto using lt_le_incl.
+rewrite eq_sym_iff. apply div_mod_unique with (-b); trivial.
+rewrite 2 mul_opp_l.
+rewrite add_move_l, sub_opp_r.
+rewrite <-add_assoc.
+symmetry. rewrite add_move_l, sub_opp_r.
+now rewrite (add_comm r2), (add_comm r1).
+Qed.
+
+Theorem div_unique:
+ forall a b q r, 0<=r<abs b -> a == b*q + r -> q == a/b.
+Proof.
+intros a b q r Hr EQ.
+assert (Hb : b~=0).
+ pos_or_neg b.
+ rewrite abs_eq in Hr; intuition; order.
+ rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
+destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
+now apply mod_always_pos.
+now rewrite <- div_mod.
+Qed.
+
+Theorem mod_unique:
+ forall a b q r, 0<=r<abs b -> a == b*q + r -> r == a mod b.
+Proof.
+intros a b q r Hr EQ.
+assert (Hb : b~=0).
+ pos_or_neg b.
+ rewrite abs_eq in Hr; intuition; order.
+ rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
+destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
+now apply mod_always_pos.
+now rewrite <- div_mod.
+Qed.
+
+(** Sign rules *)
+
+Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
+Proof.
+intros. symmetry.
+apply div_unique with (a mod b).
+rewrite abs_opp; apply mod_always_pos.
+rewrite mul_opp_opp; now apply div_mod.
+Qed.
+
+Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
+Proof.
+intros. symmetry.
+apply mod_unique with (-(a/b)).
+rewrite abs_opp; apply mod_always_pos.
+rewrite mul_opp_opp; now apply div_mod.
+Qed.
+
+Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
+ (-a)/b == -(a/b).
+Proof.
+intros a b Hb Hab. symmetry.
+apply div_unique with (-(a mod b)).
+rewrite Hab, opp_0. split; [order|].
+pos_or_neg b; [rewrite abs_eq | rewrite abs_neq']; order.
+now rewrite mul_opp_r, <-opp_add_distr, <-div_mod.
+Qed.
+
+Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
+ (-a)/b == -(a/b)-sgn b.
+Proof.
+intros a b Hb Hab. symmetry.
+apply div_unique with (abs b -(a mod b)).
+rewrite lt_sub_lt_add_l.
+rewrite <- le_add_le_sub_l. nzsimpl.
+rewrite <- (add_0_l (abs b)) at 2.
+rewrite <- add_lt_mono_r.
+destruct (mod_always_pos a b); intuition order.
+rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
+rewrite sgn_abs.
+rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
+rewrite <-opp_add_distr, <-div_mod; order.
+Qed.
+
+Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
+ (-a) mod b == 0.
+Proof.
+intros a b Hb Hab. symmetry.
+apply mod_unique with (-(a/b)).
+split; [order|now rewrite abs_pos].
+now rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod.
+Qed.
+
+Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
+ (-a) mod b == abs b - (a mod b).
+Proof.
+intros a b Hb Hab. symmetry.
+apply mod_unique with (-(a/b)-sgn b).
+rewrite lt_sub_lt_add_l.
+rewrite <- le_add_le_sub_l. nzsimpl.
+rewrite <- (add_0_l (abs b)) at 2.
+rewrite <- add_lt_mono_r.
+destruct (mod_always_pos a b); intuition order.
+rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
+rewrite sgn_abs.
+rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
+rewrite <-opp_add_distr, <-div_mod; order.
+Qed.
+
+Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
+ (-a)/(-b) == a/b.
+Proof.
+intros. now rewrite div_opp_r, div_opp_l_z, opp_involutive.
+Qed.
+
+Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
+ (-a)/(-b) == a/b + sgn(b).
+Proof.
+intros. rewrite div_opp_r, div_opp_l_nz by trivial.
+now rewrite opp_sub_distr, opp_involutive.
+Qed.
+
+Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
+ (-a) mod (-b) == 0.
+Proof.
+intros. now rewrite mod_opp_r, mod_opp_l_z.
+Qed.
+
+Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
+ (-a) mod (-b) == abs b - a mod b.
+Proof.
+intros. now rewrite mod_opp_r, mod_opp_l_nz.
+Qed.
+
+(** A division by itself returns 1 *)
+
+Lemma div_same : forall a, a~=0 -> a/a == 1.
+Proof.
+intros. symmetry. apply div_unique with 0.
+split; [order|now rewrite abs_pos].
+now nzsimpl.
+Qed.
+
+Lemma mod_same : forall a, a~=0 -> a mod a == 0.
+Proof.
+intros.
+rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag.
+Qed.
+
+(** A division of a small number by a bigger one yields zero. *)
+
+Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
+Proof. exact div_small. Qed.
+
+(** Same situation, in term of modulo: *)
+
+Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
+Proof. exact mod_small. Qed.
+
+(** * Basic values of divisions and modulo. *)
+
+Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
+Proof.
+intros. pos_or_neg a. apply div_0_l; order.
+apply opp_inj. rewrite <- div_opp_r, opp_0 by trivial. now apply div_0_l.
+Qed.
+
+Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
+Proof.
+intros; rewrite mod_eq, div_0_l; now nzsimpl.
+Qed.
+
+Lemma div_1_r: forall a, a/1 == a.
+Proof.
+intros. symmetry. apply div_unique with 0.
+assert (H:=lt_0_1); rewrite abs_pos; intuition; order.
+now nzsimpl.
+Qed.
+
+Lemma mod_1_r: forall a, a mod 1 == 0.
+Proof.
+intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
+apply neq_sym, lt_neq; apply lt_0_1.
+Qed.
+
+Lemma div_1_l: forall a, 1<a -> 1/a == 0.
+Proof. exact div_1_l. Qed.
+
+Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
+Proof. exact mod_1_l. Qed.
+
+Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
+Proof.
+intros. symmetry. apply div_unique with 0.
+split; [order|now rewrite abs_pos].
+nzsimpl; apply mul_comm.
+Qed.
+
+Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
+Proof.
+intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag.
+Qed.
+
+(** * Order results about mod and div *)
+
+(** A modulo cannot grow beyond its starting point. *)
+
+Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a.
+Proof.
+intros. pos_or_neg b. apply mod_le; order.
+rewrite <- mod_opp_r by trivial. apply mod_le; order.
+Qed.
+
+Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
+Proof. exact div_pos. Qed.
+
+Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
+Proof. exact div_str_pos. Qed.
+
+Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<abs b).
+Proof.
+intros a b Hb.
+split.
+intros EQ.
+rewrite (div_mod a b Hb), EQ; nzsimpl.
+apply mod_always_pos.
+intros. pos_or_neg b.
+apply div_small.
+now rewrite <- (abs_eq b).
+apply opp_inj; rewrite opp_0, <- div_opp_r by trivial.
+apply div_small.
+rewrite <- (abs_neq' b) by order. trivial.
+Qed.
+
+Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<abs b).
+Proof.
+intros.
+rewrite <- div_small_iff, mod_eq by trivial.
+rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
+rewrite eq_sym_iff, eq_mul_0. tauto.
+Qed.
+
+(** As soon as the divisor is strictly greater than 1,
+ the division is strictly decreasing. *)
+
+Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
+Proof. exact div_lt. Qed.
+
+(** [le] is compatible with a positive division. *)
+
+Lemma div_le_mono : forall a b c, 0<c -> a<=b -> a/c <= b/c.
+Proof.
+intros a b c Hc Hab.
+rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ];
+ [|rewrite EQ; order].
+rewrite <- lt_succ_r.
+rewrite (mul_lt_mono_pos_l c) by order.
+nzsimpl.
+rewrite (add_lt_mono_r _ _ (a mod c)).
+rewrite <- div_mod by order.
+apply lt_le_trans with b; trivial.
+rewrite (div_mod b c) at 1 by order.
+rewrite <- add_assoc, <- add_le_mono_l.
+apply le_trans with (c+0).
+nzsimpl; destruct (mod_always_pos b c); try order.
+rewrite abs_eq in *; order.
+rewrite <- add_le_mono_l. destruct (mod_always_pos a c); order.
+Qed.
+
+(** In this convention, [div] performs Rounding-Toward-Bottom
+ when divisor is positive, and Rounding-Toward-Top otherwise.
+
+ Since we cannot speak of rational values here, we express this
+ fact by multiplying back by [b], and this leads to a nice
+ unique statement.
+*)
+
+Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a.
+Proof.
+intros.
+rewrite (div_mod a b) at 2; trivial.
+rewrite <- (add_0_r (b*(a/b))) at 1.
+rewrite <- add_le_mono_l.
+now destruct (mod_always_pos a b).
+Qed.
+
+(** Giving a reversed bound is slightly more complex *)
+
+Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)).
+Proof.
+intros.
+nzsimpl.
+rewrite (div_mod a b) at 1; try order.
+rewrite <- add_lt_mono_l.
+destruct (mod_always_pos a b).
+rewrite abs_eq in *; order.
+Qed.
+
+Lemma mul_pred_div_gt: forall a b, b<0 -> a < b*(P (a/b)).
+Proof.
+intros a b Hb.
+rewrite mul_pred_r, <- add_opp_r.
+rewrite (div_mod a b) at 1; try order.
+rewrite <- add_lt_mono_l.
+destruct (mod_always_pos a b).
+rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order.
+Qed.
+
+(** NB: The three previous properties could be used as
+ specifications for [div]. *)
+
+(** Inequality [mul_div_le] is exact iff the modulo is zero. *)
+
+Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
+Proof.
+intros.
+rewrite (div_mod a b) at 1; try order.
+rewrite <- (add_0_r (b*(a/b))) at 2.
+apply add_cancel_l.
+Qed.
+
+(** Some additionnal inequalities about div. *)
+
+Theorem div_lt_upper_bound:
+ forall a b q, 0<b -> a < b*q -> a/b < q.
+Proof.
+intros.
+rewrite (mul_lt_mono_pos_l b) by trivial.
+apply le_lt_trans with a; trivial.
+apply mul_div_le; order.
+Qed.
+
+Theorem div_le_upper_bound:
+ forall a b q, 0<b -> a <= b*q -> a/b <= q.
+Proof.
+intros.
+rewrite <- (div_mul q b) by order.
+apply div_le_mono; trivial. now rewrite mul_comm.
+Qed.
+
+Theorem div_le_lower_bound:
+ forall a b q, 0<b -> b*q <= a -> q <= a/b.
+Proof.
+intros.
+rewrite <- (div_mul q b) by order.
+apply div_le_mono; trivial. now rewrite mul_comm.
+Qed.
+
+(** A division respects opposite monotonicity for the divisor *)
+
+Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p/r <= p/q.
+Proof. exact div_le_compat_l. Qed.
+
+(** * Relations between usual operations and mod and div *)
+
+Lemma mod_add : forall a b c, c~=0 ->
+ (a + b * c) mod c == a mod c.
+Proof.
+intros.
+symmetry.
+apply mod_unique with (a/c+b); trivial.
+now apply mod_always_pos.
+rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
+now rewrite mul_comm.
+Qed.
+
+Lemma div_add : forall a b c, c~=0 ->
+ (a + b * c) / c == a / c + b.
+Proof.
+intros.
+apply (mul_cancel_l _ _ c); try order.
+apply (add_cancel_r _ _ ((a+b*c) mod c)).
+rewrite <- div_mod, mod_add by order.
+rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
+now rewrite mul_comm.
+Qed.
+
+Lemma div_add_l: forall a b c, b~=0 ->
+ (a * b + c) / b == a + c / b.
+Proof.
+ intros a b c. rewrite (add_comm _ c), (add_comm a).
+ now apply div_add.
+Qed.
+
+(** Cancellations. *)
+
+(** With the current convention, the following isn't always true
+ when [c<0]: [-3*-1 / -2*-1 = 3/2 = 1] while [-3/-2 = 2] *)
+
+Lemma div_mul_cancel_r : forall a b c, b~=0 -> 0<c ->
+ (a*c)/(b*c) == a/b.
+Proof.
+intros.
+symmetry.
+apply div_unique with ((a mod b)*c).
+(* ineqs *)
+rewrite abs_mul, (abs_eq c) by order.
+rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial.
+apply mod_always_pos.
+(* equation *)
+rewrite (div_mod a b) at 1 by order.
+rewrite mul_add_distr_r.
+rewrite add_cancel_r.
+rewrite <- 2 mul_assoc. now rewrite (mul_comm c).
+Qed.
+
+Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0<c ->
+ (c*a)/(c*b) == a/b.
+Proof.
+intros. rewrite !(mul_comm c); now apply div_mul_cancel_r.
+Qed.
+
+Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0<c ->
+ (c*a) mod (c*b) == c * (a mod b).
+Proof.
+intros.
+rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))).
+rewrite <- div_mod.
+rewrite div_mul_cancel_l by trivial.
+rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
+apply div_mod; order.
+rewrite <- neq_mul_0; intuition; order.
+Qed.
+
+Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0<c ->
+ (a*c) mod (b*c) == (a mod b) * c.
+Proof.
+ intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l.
+Qed.
+
+
+(** Operations modulo. *)
+
+Theorem mod_mod: forall a n, n~=0 ->
+ (a mod n) mod n == a mod n.
+Proof.
+intros. rewrite mod_small_iff by trivial.
+now apply mod_always_pos.
+Qed.
+
+Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
+ ((a mod n)*b) mod n == (a*b) mod n.
+Proof.
+ intros a b n Hn. symmetry.
+ rewrite (div_mod a n) at 1 by order.
+ rewrite add_comm, (mul_comm n), (mul_comm _ b).
+ rewrite mul_add_distr_l, mul_assoc.
+ rewrite mod_add by trivial.
+ now rewrite mul_comm.
+Qed.
+
+Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
+ (a*(b mod n)) mod n == (a*b) mod n.
+Proof.
+ intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l.
+Qed.
+
+Theorem mul_mod: forall a b n, n~=0 ->
+ (a * b) mod n == ((a mod n) * (b mod n)) mod n.
+Proof.
+ intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r.
+Qed.
+
+Lemma add_mod_idemp_l : forall a b n, n~=0 ->
+ ((a mod n)+b) mod n == (a+b) mod n.
+Proof.
+ intros a b n Hn. symmetry.
+ rewrite (div_mod a n) at 1 by order.
+ rewrite <- add_assoc, add_comm, mul_comm.
+ now rewrite mod_add.
+Qed.
+
+Lemma add_mod_idemp_r : forall a b n, n~=0 ->
+ (a+(b mod n)) mod n == (a+b) mod n.
+Proof.
+ intros. rewrite !(add_comm a). now apply add_mod_idemp_l.
+Qed.
+
+Theorem add_mod: forall a b n, n~=0 ->
+ (a+b) mod n == (a mod n + b mod n) mod n.
+Proof.
+ intros. now rewrite add_mod_idemp_l, add_mod_idemp_r.
+Qed.
+
+(** With the current convention, the following result isn't always
+ true for negative divisors. For instance
+ [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ]. *)
+
+Lemma div_div : forall a b c, 0<b -> 0<c ->
+ (a/b)/c == a/(b*c).
+Proof.
+ intros a b c Hb Hc.
+ apply div_unique with (b*((a/b) mod c) + a mod b).
+ (* begin 0<= ... <abs(b*c) *)
+ rewrite abs_mul.
+ destruct (mod_always_pos (a/b) c), (mod_always_pos a b).
+ split.
+ apply add_nonneg_nonneg; trivial.
+ apply mul_nonneg_nonneg; order.
+ apply lt_le_trans with (b*((a/b) mod c) + abs b).
+ now rewrite <- add_lt_mono_l.
+ rewrite (abs_eq b) by order.
+ now rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l.
+ (* end 0<= ... < abs(b*c) *)
+ rewrite (div_mod a b) at 1 by order.
+ rewrite add_assoc, add_cancel_r.
+ rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
+ apply div_mod; order.
+Qed.
+
+(** A last inequality: *)
+
+Theorem div_mul_le:
+ forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
+Proof. exact div_mul_le. Qed.
+
+(** mod is related to divisibility *)
+
+Lemma mod_divides : forall a b, b~=0 ->
+ (a mod b == 0 <-> exists c, a == b*c).
+Proof.
+intros a b Hb. split.
+intros Hab. exists (a/b). rewrite (div_mod a b Hb) at 1.
+ rewrite Hab; now nzsimpl.
+intros (c,Hc).
+rewrite Hc, mul_comm.
+now apply mod_mul.
+Qed.
+
+
+End ZDivPropFunct.
+