summaryrefslogtreecommitdiff
path: root/theories/Numbers/DecimalPos.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/DecimalPos.v')
-rw-r--r--theories/Numbers/DecimalPos.v383
1 files changed, 383 insertions, 0 deletions
diff --git a/theories/Numbers/DecimalPos.v b/theories/Numbers/DecimalPos.v
new file mode 100644
index 00000000..722e73d9
--- /dev/null
+++ b/theories/Numbers/DecimalPos.v
@@ -0,0 +1,383 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(** * DecimalPos
+
+ Proofs that conversions between decimal numbers and [positive]
+ are bijections. *)
+
+Require Import Decimal DecimalFacts PArith NArith.
+
+Module Unsigned.
+
+Local Open Scope N.
+
+(** A direct version of [of_little_uint] *)
+Fixpoint of_lu (d:uint) : N :=
+ match d with
+ | Nil => 0
+ | D0 d => 10 * of_lu d
+ | D1 d => 1 + 10 * of_lu d
+ | D2 d => 2 + 10 * of_lu d
+ | D3 d => 3 + 10 * of_lu d
+ | D4 d => 4 + 10 * of_lu d
+ | D5 d => 5 + 10 * of_lu d
+ | D6 d => 6 + 10 * of_lu d
+ | D7 d => 7 + 10 * of_lu d
+ | D8 d => 8 + 10 * of_lu d
+ | D9 d => 9 + 10 * of_lu d
+ end.
+
+Definition hd d :=
+match d with
+ | Nil => 0
+ | D0 _ => 0
+ | D1 _ => 1
+ | D2 _ => 2
+ | D3 _ => 3
+ | D4 _ => 4
+ | D5 _ => 5
+ | D6 _ => 6
+ | D7 _ => 7
+ | D8 _ => 8
+ | D9 _ => 9
+end.
+
+Definition tl d :=
+ match d with
+ | Nil => d
+ | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
+end.
+
+Lemma of_lu_eqn d :
+ of_lu d = hd d + 10 * (of_lu (tl d)).
+Proof.
+ induction d; simpl; trivial.
+Qed.
+
+Ltac simpl_of_lu :=
+ match goal with
+ | |- context [ of_lu (?f ?x) ] =>
+ rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
+ end.
+
+Fixpoint usize (d:uint) : N :=
+ match d with
+ | Nil => 0
+ | D0 d => N.succ (usize d)
+ | D1 d => N.succ (usize d)
+ | D2 d => N.succ (usize d)
+ | D3 d => N.succ (usize d)
+ | D4 d => N.succ (usize d)
+ | D5 d => N.succ (usize d)
+ | D6 d => N.succ (usize d)
+ | D7 d => N.succ (usize d)
+ | D8 d => N.succ (usize d)
+ | D9 d => N.succ (usize d)
+ end.
+
+Lemma of_lu_revapp d d' :
+ of_lu (revapp d d') =
+ of_lu (rev d) + of_lu d' * 10^usize d.
+Proof.
+ revert d'.
+ induction d; simpl; intro d'; [ now rewrite N.mul_1_r | .. ];
+ unfold rev; simpl revapp; rewrite 2 IHd;
+ rewrite <- N.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
+ rewrite N.pow_succ_r'; ring.
+Qed.
+
+Definition Nadd n p :=
+ match n with
+ | N0 => p
+ | Npos p0 => (p0+p)%positive
+ end.
+
+Lemma Nadd_simpl n p q : Npos (Nadd n (p * q)) = n + Npos p * Npos q.
+Proof.
+ now destruct n.
+Qed.
+
+Lemma of_uint_acc_eqn d acc : d<>Nil ->
+ Pos.of_uint_acc d acc = Pos.of_uint_acc (tl d) (Nadd (hd d) (10*acc)).
+Proof.
+ destruct d; simpl; trivial. now destruct 1.
+Qed.
+
+Lemma of_uint_acc_rev d acc :
+ Npos (Pos.of_uint_acc d acc) =
+ of_lu (rev d) + (Npos acc) * 10^usize d.
+Proof.
+ revert acc.
+ induction d; intros; simpl usize;
+ [ simpl; now rewrite Pos.mul_1_r | .. ];
+ rewrite N.pow_succ_r';
+ unfold rev; simpl revapp; try rewrite of_lu_revapp; simpl of_lu;
+ rewrite of_uint_acc_eqn by easy; simpl tl; simpl hd;
+ rewrite IHd, Nadd_simpl; ring.
+Qed.
+
+Lemma of_uint_alt d : Pos.of_uint d = of_lu (rev d).
+Proof.
+ induction d; simpl; trivial; unfold rev; simpl revapp;
+ rewrite of_lu_revapp; simpl of_lu; try apply of_uint_acc_rev.
+ rewrite IHd. ring.
+Qed.
+
+Lemma of_lu_rev d : Pos.of_uint (rev d) = of_lu d.
+Proof.
+ rewrite of_uint_alt. now rewrite rev_rev.
+Qed.
+
+Lemma of_lu_double_gen d :
+ of_lu (Little.double d) = N.double (of_lu d) /\
+ of_lu (Little.succ_double d) = N.succ_double (of_lu d).
+Proof.
+ rewrite N.double_spec, N.succ_double_spec.
+ induction d; try destruct IHd as (IH1,IH2);
+ simpl Little.double; simpl Little.succ_double;
+ repeat (simpl_of_lu; rewrite ?IH1, ?IH2); split; reflexivity || ring.
+Qed.
+
+Lemma of_lu_double d :
+ of_lu (Little.double d) = N.double (of_lu d).
+Proof.
+ apply of_lu_double_gen.
+Qed.
+
+Lemma of_lu_succ_double d :
+ of_lu (Little.succ_double d) = N.succ_double (of_lu d).
+Proof.
+ apply of_lu_double_gen.
+Qed.
+
+(** First bijection result *)
+
+Lemma of_to (p:positive) : Pos.of_uint (Pos.to_uint p) = Npos p.
+Proof.
+ unfold Pos.to_uint.
+ rewrite of_lu_rev.
+ induction p; simpl; trivial.
+ - now rewrite of_lu_succ_double, IHp.
+ - now rewrite of_lu_double, IHp.
+Qed.
+
+(** The other direction *)
+
+Definition to_lu n :=
+ match n with
+ | N0 => Decimal.zero
+ | Npos p => Pos.to_little_uint p
+ end.
+
+Lemma succ_double_alt d :
+ Little.succ_double d = Little.succ (Little.double d).
+Proof.
+ now induction d.
+Qed.
+
+Lemma double_succ d :
+ Little.double (Little.succ d) =
+ Little.succ (Little.succ_double d).
+Proof.
+ induction d; simpl; f_equal; auto using succ_double_alt.
+Qed.
+
+Lemma to_lu_succ n :
+ to_lu (N.succ n) = Little.succ (to_lu n).
+Proof.
+ destruct n; simpl; trivial.
+ induction p; simpl; rewrite ?IHp;
+ auto using succ_double_alt, double_succ.
+Qed.
+
+Lemma nat_iter_S n {A} (f:A->A) i :
+ Nat.iter (S n) f i = f (Nat.iter n f i).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma nat_iter_0 {A} (f:A->A) i : Nat.iter 0 f i = i.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma to_ldec_tenfold p :
+ to_lu (10 * Npos p) = D0 (to_lu (Npos p)).
+Proof.
+ induction p using Pos.peano_rect.
+ - trivial.
+ - change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
+ rewrite N.mul_succ_r.
+ change 10 at 2 with (Nat.iter 10%nat N.succ 0).
+ rewrite ?nat_iter_S, nat_iter_0.
+ rewrite !N.add_succ_r, N.add_0_r, !to_lu_succ, IHp.
+ destruct (to_lu (N.pos p)); simpl; auto.
+Qed.
+
+Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
+Proof.
+ induction d; try simpl_of_lu; split; trivial; try discriminate;
+ try (intros H; now apply N.eq_add_0 in H).
+ - rewrite N.add_0_l. intros H.
+ apply N.eq_mul_0_r in H; [|easy]. rewrite IHd in H.
+ simpl. now rewrite H.
+ - simpl. destruct (nztail d); try discriminate.
+ now destruct IHd as [_ ->].
+Qed.
+
+Lemma to_of_lu_tenfold d :
+ to_lu (of_lu d) = lnorm d ->
+ to_lu (10 * of_lu d) = lnorm (D0 d).
+Proof.
+ intro IH.
+ destruct (N.eq_dec (of_lu d) 0) as [H|H].
+ - rewrite H. simpl. rewrite of_lu_0 in H.
+ unfold lnorm. simpl. now rewrite H.
+ - destruct (of_lu d) eqn:Eq; [easy| ].
+ rewrite to_ldec_tenfold; auto. rewrite IH.
+ rewrite <- Eq in H. rewrite of_lu_0 in H.
+ unfold lnorm. simpl. now destruct (nztail d).
+Qed.
+
+Lemma Nadd_alt n m : n + m = Nat.iter (N.to_nat n) N.succ m.
+Proof.
+ destruct n. trivial.
+ induction p using Pos.peano_rect.
+ - now rewrite N.add_1_l.
+ - change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
+ now rewrite N.add_succ_l, IHp, N2Nat.inj_succ.
+Qed.
+
+Ltac simpl_to_nat := simpl N.to_nat; unfold Pos.to_nat; simpl Pos.iter_op.
+
+Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
+Proof.
+ induction d; [reflexivity|..];
+ simpl_of_lu; rewrite Nadd_alt; simpl_to_nat;
+ rewrite ?nat_iter_S, nat_iter_0, ?to_lu_succ, to_of_lu_tenfold by assumption;
+ unfold lnorm; simpl; destruct nztail; auto.
+Qed.
+
+(** Second bijection result *)
+
+Lemma to_of (d:uint) : N.to_uint (Pos.of_uint d) = unorm d.
+Proof.
+ rewrite of_uint_alt.
+ unfold N.to_uint, Pos.to_uint.
+ destruct (of_lu (rev d)) eqn:H.
+ - rewrite of_lu_0 in H. rewrite <- rev_lnorm_rev.
+ unfold lnorm. now rewrite H.
+ - change (Pos.to_little_uint p) with (to_lu (N.pos p)).
+ rewrite <- H. rewrite to_of_lu. apply rev_lnorm_rev.
+Qed.
+
+(** Some consequences *)
+
+Lemma to_uint_nonzero p : Pos.to_uint p <> zero.
+Proof.
+ intro E. generalize (of_to p). now rewrite E.
+Qed.
+
+Lemma to_uint_nonnil p : Pos.to_uint p <> Nil.
+Proof.
+ intros E. generalize (of_to p). now rewrite E.
+Qed.
+
+Lemma to_uint_inj p p' : Pos.to_uint p = Pos.to_uint p' -> p = p'.
+Proof.
+ intro E.
+ assert (E' : N.pos p = N.pos p').
+ { now rewrite <- (of_to p), <- (of_to p'), E. }
+ now injection E'.
+Qed.
+
+Lemma to_uint_pos_surj d :
+ unorm d<>zero -> exists p, Pos.to_uint p = unorm d.
+Proof.
+ intros.
+ destruct (Pos.of_uint d) eqn:E.
+ - destruct H. generalize (to_of d). now rewrite E.
+ - exists p. generalize (to_of d). now rewrite E.
+Qed.
+
+Lemma of_uint_norm d : Pos.of_uint (unorm d) = Pos.of_uint d.
+Proof.
+ now induction d.
+Qed.
+
+Lemma of_inj d d' :
+ Pos.of_uint d = Pos.of_uint d' -> unorm d = unorm d'.
+Proof.
+ intros. rewrite <- !to_of. now f_equal.
+Qed.
+
+Lemma of_iff d d' : Pos.of_uint d = Pos.of_uint d' <-> unorm d = unorm d'.
+Proof.
+ split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
+ apply of_uint_norm.
+Qed.
+
+End Unsigned.
+
+(** Conversion from/to signed decimal numbers *)
+
+Module Signed.
+
+Lemma of_to (p:positive) : Pos.of_int (Pos.to_int p) = Some p.
+Proof.
+ unfold Pos.to_int, Pos.of_int, norm.
+ now rewrite Unsigned.of_to.
+Qed.
+
+Lemma to_of (d:int)(p:positive) :
+ Pos.of_int d = Some p -> Pos.to_int p = norm d.
+Proof.
+ unfold Pos.of_int.
+ destruct d; [ | intros [=]].
+ simpl norm. rewrite <- Unsigned.to_of.
+ destruct (Pos.of_uint d); now intros [= <-].
+Qed.
+
+Lemma to_int_inj p p' : Pos.to_int p = Pos.to_int p' -> p = p'.
+Proof.
+ intro E.
+ assert (E' : Some p = Some p').
+ { now rewrite <- (of_to p), <- (of_to p'), E. }
+ now injection E'.
+Qed.
+
+Lemma to_int_pos_surj d :
+ unorm d <> zero -> exists p, Pos.to_int p = norm (Pos d).
+Proof.
+ simpl. unfold Pos.to_int. intros H.
+ destruct (Unsigned.to_uint_pos_surj d H) as (p,Hp).
+ exists p. now f_equal.
+Qed.
+
+Lemma of_int_norm d : Pos.of_int (norm d) = Pos.of_int d.
+Proof.
+ unfold Pos.of_int.
+ destruct d.
+ - simpl. now rewrite Unsigned.of_uint_norm.
+ - simpl. now destruct (nzhead d) eqn:H.
+Qed.
+
+Lemma of_inj_pos d d' :
+ Pos.of_int (Pos d) = Pos.of_int (Pos d') -> unorm d = unorm d'.
+Proof.
+ unfold Pos.of_int.
+ destruct (Pos.of_uint d) eqn:Hd, (Pos.of_uint d') eqn:Hd';
+ intros [=].
+ - apply Unsigned.of_inj; now rewrite Hd, Hd'.
+ - apply Unsigned.of_inj; rewrite Hd, Hd'; now f_equal.
+Qed.
+
+End Signed.