summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v628
1 files changed, 628 insertions, 0 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
new file mode 100644
index 00000000..c7d83acc
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
@@ -0,0 +1,628 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleMul.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleMul.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_succ : w -> w.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_add : w -> w -> w.
+ Variable w_sub: w -> w -> w.
+ Variable w_mul_c : w -> w -> zn2z w.
+ Variable w_mul : w -> w -> w.
+ Variable w_square_c : w -> zn2z w.
+ Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_add : zn2z w -> zn2z w -> zn2z w.
+ Variable ww_add_carry : zn2z w -> zn2z w -> zn2z w.
+ Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_sub : zn2z w -> zn2z w -> zn2z w.
+
+ (* ** Multiplication ** *)
+
+ (* (xh*B+xl) (yh*B + yl)
+ xh*yh = hh = |hhh|hhl|B2
+ xh*yl +xl*yh = cc = |cch|ccl|B
+ xl*yl = ll = |llh|lll
+ *)
+
+ Definition double_mul_c (cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w) x y :=
+ match x, y with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW xh xl, WW yh yl =>
+ let hh := w_mul_c xh yh in
+ let ll := w_mul_c xl yl in
+ let (wc,cc) := cross xh xl yh yl hh ll in
+ match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end
+ end.
+
+ Definition ww_mul_c :=
+ double_mul_c
+ (fun xh xl yh yl hh ll=>
+ match ww_add_c (w_mul_c xh yl) (w_mul_c xl yh) with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end).
+
+ Definition w_2 := w_add w_1 w_1.
+
+ Definition kara_prod xh xl yh yl hh ll :=
+ match ww_add_c hh ll with
+ C0 m =>
+ match w_compare xl xh with
+ Eq => (w_0, m)
+ | Lt =>
+ match w_compare yl yh with
+ Eq => (w_0, m)
+ | Lt => (w_0, ww_sub m (w_mul_c (w_sub xh xl) (w_sub yh yl)))
+ | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with
+ C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1)
+ end
+ end
+ | Gt =>
+ match w_compare yl yh with
+ Eq => (w_0, m)
+ | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with
+ C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1)
+ end
+ | Gt => (w_0, ww_sub m (w_mul_c (w_sub xl xh) (w_sub yl yh)))
+ end
+ end
+ | C1 m =>
+ match w_compare xl xh with
+ Eq => (w_1, m)
+ | Lt =>
+ match w_compare yl yh with
+ Eq => (w_1, m)
+ | Lt => match ww_sub_c m (w_mul_c (w_sub xh xl) (w_sub yh yl)) with
+ C0 m1 => (w_1, m1) | C1 m1 => (w_0, m1)
+ end
+ | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with
+ C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1)
+ end
+ end
+ | Gt =>
+ match w_compare yl yh with
+ Eq => (w_1, m)
+ | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with
+ C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1)
+ end
+ | Gt => match ww_sub_c m (w_mul_c (w_sub xl xh) (w_sub yl yh)) with
+ C1 m1 => (w_0, m1) | C0 m1 => (w_1, m1)
+ end
+ end
+ end
+ end.
+
+ Definition ww_karatsuba_c := double_mul_c kara_prod.
+
+ Definition ww_mul x y :=
+ match x, y with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW xh xl, WW yh yl =>
+ let ccl := w_add (w_mul xh yl) (w_mul xl yh) in
+ ww_add (w_W0 ccl) (w_mul_c xl yl)
+ end.
+
+ Definition ww_square_c x :=
+ match x with
+ | W0 => W0
+ | WW xh xl =>
+ let hh := w_square_c xh in
+ let ll := w_square_c xl in
+ let xhxl := w_mul_c xh xl in
+ let (wc,cc) :=
+ match ww_add_c xhxl xhxl with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end in
+ match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end
+ end.
+
+ Section DoubleMulAddn1.
+ Variable w_mul_add : w -> w -> w -> w * w.
+
+ Fixpoint double_mul_add_n1 (n:nat) : word w n -> w -> w -> w * word w n :=
+ match n return word w n -> w -> w -> w * word w n with
+ | O => w_mul_add
+ | S n1 =>
+ let mul_add := double_mul_add_n1 n1 in
+ fun x y r =>
+ match x with
+ | W0 => (w_0,extend w_0W n1 r)
+ | WW xh xl =>
+ let (rl,l) := mul_add xl y r in
+ let (rh,h) := mul_add xh y rl in
+ (rh, double_WW w_WW n1 h l)
+ end
+ end.
+
+ End DoubleMulAddn1.
+
+ Section DoubleMulAddmn1.
+ Variable wn: Type.
+ Variable extend_n : w -> wn.
+ Variable wn_0W : wn -> zn2z wn.
+ Variable wn_WW : wn -> wn -> zn2z wn.
+ Variable w_mul_add_n1 : wn -> w -> w -> w*wn.
+ Fixpoint double_mul_add_mn1 (m:nat) :
+ word wn m -> w -> w -> w*word wn m :=
+ match m return word wn m -> w -> w -> w*word wn m with
+ | O => w_mul_add_n1
+ | S m1 =>
+ let mul_add := double_mul_add_mn1 m1 in
+ fun x y r =>
+ match x with
+ | W0 => (w_0,extend wn_0W m1 (extend_n r))
+ | WW xh xl =>
+ let (rl,l) := mul_add xl y r in
+ let (rh,h) := mul_add xh y rl in
+ (rh, double_WW wn_WW m1 h l)
+ end
+ end.
+
+ End DoubleMulAddmn1.
+
+ Definition w_mul_add x y r :=
+ match w_mul_c x y with
+ | W0 => (w_0, r)
+ | WW h l =>
+ match w_add_c l r with
+ | C0 lr => (h,lr)
+ | C1 lr => (w_succ h, lr)
+ end
+ end.
+
+
+ (*Section DoubleProof. *)
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99).
+
+ Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
+ (at level 0, x at level 99).
+
+ Variable spec_more_than_1_digit: 1 < Zpos w_digits.
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_w_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
+ Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+
+ Variable spec_w_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|].
+ Variable spec_w_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB.
+ Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|].
+
+ Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
+ Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
+ Variable spec_ww_add_carry :
+ forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB.
+ Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+ Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
+
+
+ Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB.
+ Proof. intros x;apply spec_ww_to_Z;auto. Qed.
+
+ Lemma spec_ww_to_Z_wBwB : forall x, 0 <= [[x]] < wB^2.
+ Proof. rewrite <- wwB_wBwB;apply spec_ww_to_Z. Qed.
+
+ Hint Resolve spec_ww_to_Z spec_ww_to_Z_wBwB : mult.
+ Ltac zarith := auto with zarith mult.
+
+ Lemma wBwB_lex: forall a b c d,
+ a * wB^2 + [[b]] <= c * wB^2 + [[d]] ->
+ a <= c.
+ Proof.
+ intros a b c d H; apply beta_lex with [[b]] [[d]] (wB^2);zarith.
+ Qed.
+
+ Lemma wBwB_lex_inv: forall a b c d,
+ a < c ->
+ a * wB^2 + [[b]] < c * wB^2 + [[d]].
+ Proof.
+ intros a b c d H; apply beta_lex_inv; zarith.
+ Qed.
+
+ Lemma sum_mul_carry : forall xh xl yh yl wc cc,
+ [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] ->
+ 0 <= [|wc|] <= 1.
+ Proof.
+ intros.
+ apply (sum_mul_carry [|xh|] [|xl|] [|yh|] [|yl|] [|wc|][[cc]] wB);zarith.
+ apply wB_pos.
+ Qed.
+
+ Theorem mult_add_ineq: forall xH yH crossH,
+ 0 <= [|xH|] * [|yH|] + [|crossH|] < wwB.
+ Proof.
+ intros;rewrite wwB_wBwB;apply mult_add_ineq;zarith.
+ Qed.
+
+ Hint Resolve mult_add_ineq : mult.
+
+ Lemma spec_mul_aux : forall xh xl yh yl wc (cc:zn2z w) hh ll,
+ [[hh]] = [|xh|] * [|yh|] ->
+ [[ll]] = [|xl|] * [|yl|] ->
+ [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] ->
+ [||match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end||] = ([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|]).
+ Proof.
+ intros;assert (U1 := wB_pos w_digits).
+ replace (([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|])) with
+ ([|xh|]*[|yh|]*wB^2 + ([|xh|]*[|yl|] + [|xl|]*[|yh|])*wB + [|xl|]*[|yl|]).
+ 2:ring. rewrite <- H1;rewrite <- H;rewrite <- H0.
+ assert (H2 := sum_mul_carry _ _ _ _ _ _ H1).
+ destruct cc as [ | cch ccl]; simpl zn2z_to_Z; simpl ww_to_Z.
+ rewrite spec_ww_add;rewrite spec_w_W0;rewrite Zmod_small;
+ rewrite wwB_wBwB. ring.
+ rewrite <- (Zplus_0_r ([|wc|]*wB));rewrite H;apply mult_add_ineq3;zarith.
+ simpl ww_to_Z in H1. assert (U:=spec_to_Z cch).
+ assert ([|wc|]*wB + [|cch|] <= 2*wB - 3).
+ destruct (Z_le_gt_dec ([|wc|]*wB + [|cch|]) (2*wB - 3));trivial.
+ assert ([|xh|] * [|yl|] + [|xl|] * [|yh|] <= (2*wB - 4)*wB + 2).
+ ring_simplify ((2*wB - 4)*wB + 2).
+ assert (H4 := Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)).
+ assert (H5 := Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)).
+ omega.
+ generalize H3;clear H3;rewrite <- H1.
+ rewrite Zplus_assoc; rewrite Zpower_2; rewrite Zmult_assoc;
+ rewrite <- Zmult_plus_distr_l.
+ assert (((2 * wB - 4) + 2)*wB <= ([|wc|] * wB + [|cch|])*wB).
+ apply Zmult_le_compat;zarith.
+ rewrite Zmult_plus_distr_l in H3.
+ intros. assert (U2 := spec_to_Z ccl);omega.
+ generalize (spec_ww_add_c (w_W0 ccl) ll);destruct (ww_add_c (w_W0 ccl) ll)
+ as [l|l];unfold interp_carry;rewrite spec_w_W0;try rewrite Zmult_1_l;
+ simpl zn2z_to_Z;
+ try rewrite spec_ww_add;try rewrite spec_ww_add_carry;rewrite spec_w_WW;
+ rewrite Zmod_small;rewrite wwB_wBwB;intros.
+ rewrite H4;ring. rewrite H;apply mult_add_ineq2;zarith.
+ rewrite Zplus_assoc;rewrite Zmult_plus_distr_l.
+ rewrite Zmult_1_l;rewrite <- Zplus_assoc;rewrite H4;ring.
+ repeat rewrite <- Zplus_assoc;rewrite H;apply mult_add_ineq2;zarith.
+ Qed.
+
+ Lemma spec_double_mul_c : forall cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w,
+ (forall xh xl yh yl hh ll,
+ [[hh]] = [|xh|]*[|yh|] ->
+ [[ll]] = [|xl|]*[|yl|] ->
+ let (wc,cc) := cross xh xl yh yl hh ll in
+ [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]) ->
+ forall x y, [||double_mul_c cross x y||] = [[x]] * [[y]].
+ Proof.
+ intros cross Hcross x y;destruct x as [ |xh xl];simpl;trivial.
+ destruct y as [ |yh yl];simpl. rewrite Zmult_0_r;trivial.
+ assert (H1:= spec_w_mul_c xh yh);assert (H2:= spec_w_mul_c xl yl).
+ generalize (Hcross _ _ _ _ _ _ H1 H2).
+ destruct (cross xh xl yh yl (w_mul_c xh yh) (w_mul_c xl yl)) as (wc,cc).
+ intros;apply spec_mul_aux;trivial.
+ rewrite <- wwB_wBwB;trivial.
+ Qed.
+
+ Lemma spec_ww_mul_c : forall x y, [||ww_mul_c x y||] = [[x]] * [[y]].
+ Proof.
+ intros x y;unfold ww_mul_c;apply spec_double_mul_c.
+ intros xh xl yh yl hh ll H1 H2.
+ generalize (spec_ww_add_c (w_mul_c xh yl) (w_mul_c xl yh));
+ destruct (ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)) as [c|c];
+ unfold interp_carry;repeat rewrite spec_w_mul_c;intros H;
+ (rewrite spec_w_0 || rewrite spec_w_1);rewrite H;ring.
+ Qed.
+
+ Lemma spec_w_2: [|w_2|] = 2.
+ unfold w_2; rewrite spec_w_add; rewrite spec_w_1; simpl.
+ apply Zmod_small; split; auto with zarith.
+ rewrite <- (Zpower_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith.
+ Qed.
+
+ Lemma kara_prod_aux : forall xh xl yh yl,
+ xh*yh + xl*yl - (xh-xl)*(yh-yl) = xh*yl + xl*yh.
+ Proof. intros;ring. Qed.
+
+ Lemma spec_kara_prod : forall xh xl yh yl hh ll,
+ [[hh]] = [|xh|]*[|yh|] ->
+ [[ll]] = [|xl|]*[|yl|] ->
+ let (wc,cc) := kara_prod xh xl yh yl hh ll in
+ [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|].
+ Proof.
+ intros xh xl yh yl hh ll H H0; rewrite <- kara_prod_aux;
+ rewrite <- H; rewrite <- H0; unfold kara_prod.
+ assert (Hxh := (spec_to_Z xh)); assert (Hxl := (spec_to_Z xl));
+ assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)).
+ generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll);
+ intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)).
+ generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite Hylh; rewrite spec_w_0; try (ring; fail).
+ rewrite spec_w_0; try (ring; fail).
+ repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ split; auto with zarith.
+ simpl in Hz; rewrite Hz; rewrite H; rewrite H0.
+ rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith.
+ apply Zle_lt_trans with ([[z]]-0); auto with zarith.
+ unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive.
+ apply Zmult_le_0_compat; auto with zarith.
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2;
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite Hylh; rewrite spec_w_0; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2;
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; try (ring; fail).
+ repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ split.
+ match goal with |- context[(?x - ?y) * (?z - ?t)] =>
+ replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring]
+ end.
+ simpl in Hz; rewrite Hz; rewrite H; rewrite H0.
+ rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith.
+ apply Zle_lt_trans with ([[z]]-0); auto with zarith.
+ unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive.
+ apply Zmult_le_0_compat; auto with zarith.
+ (** there is a carry in hh + ll **)
+ rewrite Zmult_1_l.
+ generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
+ match goal with |- context[ww_sub_c ?x ?y] =>
+ generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ generalize Hz2; clear Hz2; unfold interp_carry.
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_2; unfold interp_carry in Hz2.
+ apply trans_equal with (wwB + (1 * wwB + [[z1]])).
+ ring.
+ rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_2; unfold interp_carry in Hz2.
+ apply trans_equal with (wwB + (1 * wwB + [[z1]])).
+ ring.
+ rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ match goal with |- context[ww_sub_c ?x ?y] =>
+ generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ match goal with |- context[(?x - ?y) * (?z - ?t)] =>
+ replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring]
+ end.
+ generalize Hz2; clear Hz2; unfold interp_carry.
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ Qed.
+
+ Lemma sub_carry : forall xh xl yh yl z,
+ 0 <= z ->
+ [|xh|]*[|yl|] + [|xl|]*[|yh|] = wwB + z ->
+ z < wwB.
+ Proof.
+ intros xh xl yh yl z Hle Heq.
+ destruct (Z_le_gt_dec wwB z);auto with zarith.
+ generalize (Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)).
+ generalize (Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)).
+ rewrite <- wwB_wBwB;intros H1 H2.
+ assert (H3 := wB_pos w_digits).
+ assert (2*wB <= wwB).
+ rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_le_compat;zarith.
+ omega.
+ Qed.
+
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "H" in
+ assert (H:= spec_ww_to_Z x).
+
+ Ltac Zmult_lt_b x y :=
+ let H := fresh "H" in
+ assert (H := Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)).
+
+ Lemma spec_ww_karatsuba_c : forall x y, [||ww_karatsuba_c x y||]=[[x]]*[[y]].
+ Proof.
+ intros x y; unfold ww_karatsuba_c;apply spec_double_mul_c.
+ intros; apply spec_kara_prod; auto.
+ Qed.
+
+ Lemma spec_ww_mul : forall x y, [[ww_mul x y]] = [[x]]*[[y]] mod wwB.
+ Proof.
+ assert (U:= lt_0_wB w_digits).
+ assert (U1:= lt_0_wwB w_digits).
+ intros x y; case x; auto; intros xh xl.
+ case y; auto.
+ simpl; rewrite Zmult_0_r; rewrite Zmod_small; auto with zarith.
+ intros yh yl;simpl.
+ repeat (rewrite spec_ww_add || rewrite spec_w_W0 || rewrite spec_w_mul_c
+ || rewrite spec_w_add || rewrite spec_w_mul).
+ rewrite <- Zplus_mod; auto with zarith.
+ repeat (rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r).
+ rewrite <- Zmult_mod_distr_r; auto with zarith.
+ rewrite <- Zpower_2; rewrite <- wwB_wBwB; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_mod; auto with zarith.
+ rewrite <- Zplus_mod; auto with zarith.
+ match goal with |- ?X mod _ = _ =>
+ rewrite <- Z_mod_plus with (a := X) (b := [|xh|] * [|yh|])
+ end; auto with zarith.
+ f_equal; auto; rewrite wwB_wBwB; ring.
+ Qed.
+
+ Lemma spec_ww_square_c : forall x, [||ww_square_c x||] = [[x]]*[[x]].
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ case_eq match ww_add_c (w_mul_c xh xl) (w_mul_c xh xl) with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end;intros wc cc Heq.
+ apply (spec_mul_aux xh xl xh xl wc cc);trivial.
+ generalize Heq (spec_ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));clear Heq.
+ rewrite spec_w_mul_c;destruct (ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));
+ unfold interp_carry;try rewrite Zmult_1_l;intros Heq Heq';inversion Heq;
+ rewrite (Zmult_comm [|xl|]);subst.
+ rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l;trivial.
+ rewrite spec_w_1;rewrite Zmult_1_l;rewrite <- wwB_wBwB;trivial.
+ Qed.
+
+ Section DoubleMulAddn1Proof.
+
+ Variable w_mul_add : w -> w -> w -> w * w.
+ Variable spec_w_mul_add : forall x y r,
+ let (h,l):= w_mul_add x y r in
+ [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|].
+
+ Lemma spec_double_mul_add_n1 : forall n x y r,
+ let (h,l) := double_mul_add_n1 w_mul_add n x y r in
+ [|h|]*double_wB w_digits n + [!n|l!] = [!n|x!]*[|y|]+[|r|].
+ Proof.
+ induction n;intros x y r;trivial.
+ exact (spec_w_mul_add x y r).
+ unfold double_mul_add_n1;destruct x as[ |xh xl];
+ fold(double_mul_add_n1 w_mul_add).
+ rewrite spec_w_0;rewrite spec_extend;simpl;trivial.
+ assert(H:=IHn xl y r);destruct (double_mul_add_n1 w_mul_add n xl y r)as(rl,l).
+ assert(U:=IHn xh y rl);destruct(double_mul_add_n1 w_mul_add n xh y rl)as(rh,h).
+ rewrite <- double_wB_wwB. rewrite spec_double_WW;simpl;trivial.
+ rewrite Zmult_plus_distr_l;rewrite <- Zplus_assoc;rewrite <- H.
+ rewrite Zmult_assoc;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite U;ring.
+ Qed.
+
+ End DoubleMulAddn1Proof.
+
+ Lemma spec_w_mul_add : forall x y r,
+ let (h,l):= w_mul_add x y r in
+ [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|].
+ Proof.
+ intros x y r;unfold w_mul_add;assert (H:=spec_w_mul_c x y);
+ destruct (w_mul_c x y) as [ |h l];simpl;rewrite <- H.
+ rewrite spec_w_0;trivial.
+ assert (U:=spec_w_add_c l r);destruct (w_add_c l r) as [lr|lr];unfold
+ interp_carry in U;try rewrite Zmult_1_l in H;simpl.
+ rewrite U;ring. rewrite spec_w_succ. rewrite Zmod_small.
+ rewrite <- Zplus_assoc;rewrite <- U;ring.
+ simpl in H;assert (H1:= Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)).
+ rewrite <- H in H1.
+ assert (H2:=spec_to_Z h);split;zarith.
+ case H1;clear H1;intro H1;clear H1.
+ replace (wB ^ 2 - 2 * wB) with ((wB - 2)*wB). 2:ring.
+ intros H0;assert (U1:= wB_pos w_digits).
+ assert (H1 := beta_lex _ _ _ _ _ H0 (spec_to_Z l));zarith.
+ Qed.
+
+(* End DoubleProof. *)
+
+End DoubleMul.