summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v475
1 files changed, 0 insertions, 475 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
deleted file mode 100644
index f65b47c8..00000000
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
+++ /dev/null
@@ -1,475 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Set Implicit Arguments.
-
-Require Import ZArith.
-Require Import BigNumPrelude.
-Require Import DoubleType.
-Require Import DoubleBase.
-
-Local Open Scope Z_scope.
-
-Section DoubleLift.
- Variable w : Type.
- Variable w_0 : w.
- Variable w_WW : w -> w -> zn2z w.
- Variable w_W0 : w -> zn2z w.
- Variable w_0W : w -> zn2z w.
- Variable w_compare : w -> w -> comparison.
- Variable ww_compare : zn2z w -> zn2z w -> comparison.
- Variable w_head0 : w -> w.
- Variable w_tail0 : w -> w.
- Variable w_add: w -> w -> zn2z w.
- Variable w_add_mul_div : w -> w -> w -> w.
- Variable ww_sub: zn2z w -> zn2z w -> zn2z w.
- Variable w_digits : positive.
- Variable ww_Digits : positive.
- Variable w_zdigits : w.
- Variable ww_zdigits : zn2z w.
- Variable low: zn2z w -> w.
-
- Definition ww_head0 x :=
- match x with
- | W0 => ww_zdigits
- | WW xh xl =>
- match w_compare w_0 xh with
- | Eq => w_add w_zdigits (w_head0 xl)
- | _ => w_0W (w_head0 xh)
- end
- end.
-
-
- Definition ww_tail0 x :=
- match x with
- | W0 => ww_zdigits
- | WW xh xl =>
- match w_compare w_0 xl with
- | Eq => w_add w_zdigits (w_tail0 xh)
- | _ => w_0W (w_tail0 xl)
- end
- end.
-
-
- (* 0 < p < ww_digits *)
- Definition ww_add_mul_div p x y :=
- let zdigits := w_0W w_zdigits in
- match x, y with
- | W0, W0 => W0
- | W0, WW yh yl =>
- match ww_compare p zdigits with
- | Eq => w_0W yh
- | Lt => w_0W (w_add_mul_div (low p) w_0 yh)
- | Gt =>
- let n := low (ww_sub p zdigits) in
- w_WW (w_add_mul_div n w_0 yh) (w_add_mul_div n yh yl)
- end
- | WW xh xl, W0 =>
- match ww_compare p zdigits with
- | Eq => w_W0 xl
- | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl w_0)
- | Gt =>
- let n := low (ww_sub p zdigits) in
- w_W0 (w_add_mul_div n xl w_0)
- end
- | WW xh xl, WW yh yl =>
- match ww_compare p zdigits with
- | Eq => w_WW xl yh
- | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl yh)
- | Gt =>
- let n := low (ww_sub p zdigits) in
- w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
- end
- end.
-
- Section DoubleProof.
- Variable w_to_Z : w -> Z.
-
- Notation wB := (base w_digits).
- Notation wwB := (base (ww_digits w_digits)).
- Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
- Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
-
- Variable spec_w_0 : [|w_0|] = 0.
- Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
- Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
- Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
- Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
- Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
- Variable spec_compare : forall x y,
- w_compare x y = Z.compare [|x|] [|y|].
- Variable spec_ww_compare : forall x y,
- ww_compare x y = Z.compare [[x]] [[y]].
- Variable spec_ww_digits : ww_Digits = xO w_digits.
- Variable spec_w_head00 : forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits.
- Variable spec_w_head0 : forall x, 0 < [|x|] ->
- wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB.
- Variable spec_w_tail00 : forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits.
- Variable spec_w_tail0 : forall x, 0 < [|x|] ->
- exists y, 0 <= y /\ [|x|] = (2* y + 1) * (2 ^ [|w_tail0 x|]).
- Variable spec_w_add_mul_div : forall x y p,
- [|p|] <= Zpos w_digits ->
- [| w_add_mul_div p x y |] =
- ([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
- Variable spec_w_add: forall x y,
- [[w_add x y]] = [|x|] + [|y|].
- Variable spec_ww_sub: forall x y,
- [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
-
- Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits.
- Variable spec_low: forall x, [| low x|] = [[x]] mod wB.
-
- Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos ww_Digits.
-
- Hint Resolve div_le_0 div_lt w_to_Z_wwB: lift.
- Ltac zarith := auto with zarith lift.
-
- Lemma spec_ww_head00 : forall x, [[x]] = 0 -> [[ww_head0 x]] = Zpos ww_Digits.
- Proof.
- intros x; case x; unfold ww_head0.
- intros HH; rewrite spec_ww_zdigits; auto.
- intros xh xl; simpl; intros Hx.
- case (spec_to_Z xh); intros Hx1 Hx2.
- case (spec_to_Z xl); intros Hy1 Hy2.
- assert (F1: [|xh|] = 0).
- { Z.le_elim Hy1; auto.
- - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
- apply Z.lt_le_trans with (1 := Hy1); auto with zarith.
- pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]).
- apply Z.add_le_mono_r; auto with zarith.
- - Z.le_elim Hx1; auto.
- absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
- rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith.
- apply Z.mul_pos_pos; auto with zarith. }
- rewrite spec_compare. case Z.compare_spec.
- intros H; simpl.
- rewrite spec_w_add; rewrite spec_w_head00.
- rewrite spec_zdigits; rewrite spec_ww_digits.
- rewrite Pos2Z.inj_xO; auto with zarith.
- rewrite F1 in Hx; auto with zarith.
- rewrite spec_w_0; auto with zarith.
- rewrite spec_w_0; auto with zarith.
- Qed.
-
- Lemma spec_ww_head0 : forall x, 0 < [[x]] ->
- wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
- Proof.
- clear spec_ww_zdigits.
- rewrite wwB_div_2;rewrite Z.mul_comm;rewrite wwB_wBwB.
- assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H.
- unfold Z.lt in H;discriminate H.
- rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0.
- rewrite <- H0 in *. simpl Z.add. simpl in H.
- case (spec_to_Z w_zdigits);
- case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4.
- rewrite spec_w_add.
- rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
- case (spec_w_head0 H); intros H1 H2.
- rewrite Z.pow_2_r; fold wB; rewrite <- Z.mul_assoc; split.
- apply Z.mul_le_mono_nonneg_l; auto with zarith.
- apply Z.mul_lt_mono_pos_l; auto with zarith.
- assert (H1 := spec_w_head0 H0).
- rewrite spec_w_0W.
- split.
- rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc.
- apply Z.le_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB).
- rewrite Z.mul_comm; zarith.
- assert (0 <= 2 ^ [|w_head0 xh|] * [|xl|]);zarith.
- assert (H2:=spec_to_Z xl);apply Z.mul_nonneg_nonneg;zarith.
- case (spec_to_Z (w_head0 xh)); intros H2 _.
- generalize ([|w_head0 xh|]) H1 H2;clear H1 H2;
- intros p H1 H2.
- assert (Eq1 : 2^p < wB).
- rewrite <- (Z.mul_1_r (2^p));apply Z.le_lt_trans with (2^p*[|xh|]);zarith.
- assert (Eq2: p < Zpos w_digits).
- destruct (Z.le_gt_cases (Zpos w_digits) p);trivial;contradict Eq1.
- apply Z.le_ngt;unfold base;apply Zpower_le_monotone;zarith.
- assert (Zpos w_digits = p + (Zpos w_digits - p)). ring.
- rewrite Z.pow_2_r.
- unfold base at 2;rewrite H3;rewrite Zpower_exp;zarith.
- rewrite <- Z.mul_assoc; apply Z.mul_lt_mono_pos_l; zarith.
- rewrite <- (Z.add_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith.
- apply Z.mul_lt_mono_pos_r with (2 ^ p); zarith.
- rewrite <- Zpower_exp;zarith.
- rewrite Z.mul_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith.
- assert (H1 := spec_to_Z xh);zarith.
- Qed.
-
- Lemma spec_ww_tail00 : forall x, [[x]] = 0 -> [[ww_tail0 x]] = Zpos ww_Digits.
- Proof.
- intros x; case x; unfold ww_tail0.
- intros HH; rewrite spec_ww_zdigits; auto.
- intros xh xl; simpl; intros Hx.
- case (spec_to_Z xh); intros Hx1 Hx2.
- case (spec_to_Z xl); intros Hy1 Hy2.
- assert (F1: [|xh|] = 0).
- { Z.le_elim Hy1; auto.
- - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
- apply Z.lt_le_trans with (1 := Hy1); auto with zarith.
- pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]).
- apply Z.add_le_mono_r; auto with zarith.
- - Z.le_elim Hx1; auto.
- absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
- rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith.
- apply Z.mul_pos_pos; auto with zarith. }
- assert (F2: [|xl|] = 0).
- rewrite F1 in Hx; auto with zarith.
- rewrite spec_compare; case Z.compare_spec.
- intros H; simpl.
- rewrite spec_w_add; rewrite spec_w_tail00; auto.
- rewrite spec_zdigits; rewrite spec_ww_digits.
- rewrite Pos2Z.inj_xO; auto with zarith.
- rewrite spec_w_0; auto with zarith.
- rewrite spec_w_0; auto with zarith.
- Qed.
-
- Lemma spec_ww_tail0 : forall x, 0 < [[x]] ->
- exists y, 0 <= y /\ [[x]] = (2 * y + 1) * 2 ^ [[ww_tail0 x]].
- Proof.
- clear spec_ww_zdigits.
- destruct x as [ |xh xl];simpl ww_to_Z;intros H.
- unfold Z.lt in H;discriminate H.
- rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0.
- rewrite <- H0; rewrite Z.add_0_r.
- case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
- generalize H; rewrite <- H0; rewrite Z.add_0_r; clear H; intros H.
- case (@spec_w_tail0 xh).
- apply Z.mul_lt_mono_pos_r with wB; auto with zarith.
- unfold base; auto with zarith.
- intros z (Hz1, Hz2); exists z; split; auto.
- rewrite spec_w_add; rewrite (fun x => Z.add_comm [|x|]).
- rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
- rewrite Z.mul_assoc; rewrite <- Hz2; auto.
-
- case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
- case (spec_w_tail0 H0); intros z (Hz1, Hz2).
- assert (Hp: [|w_tail0 xl|] < Zpos w_digits).
- case (Z.le_gt_cases (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1.
- absurd (2 ^ (Zpos w_digits) <= 2 ^ [|w_tail0 xl|]).
- apply Z.lt_nge.
- case (spec_to_Z xl); intros HH3 HH4.
- apply Z.le_lt_trans with (2 := HH4).
- apply Z.le_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith.
- rewrite Hz2.
- apply Z.mul_le_mono_nonneg_r; auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- exists ([|xh|] * (2 ^ ((Zpos w_digits - [|w_tail0 xl|]) - 1)) + z); split.
- apply Z.add_nonneg_nonneg; auto.
- apply Z.mul_nonneg_nonneg; auto with zarith.
- case (spec_to_Z xh); auto.
- rewrite spec_w_0W.
- rewrite (Z.mul_add_distr_l 2); rewrite <- Z.add_assoc.
- rewrite Z.mul_add_distr_r; rewrite <- Hz2.
- apply f_equal2 with (f := Z.add); auto.
- rewrite (Z.mul_comm 2).
- repeat rewrite <- Z.mul_assoc.
- apply f_equal2 with (f := Z.mul); auto.
- case (spec_to_Z (w_tail0 xl)); intros HH3 HH4.
- pattern 2 at 2; rewrite <- Z.pow_1_r.
- lazy beta; repeat rewrite <- Zpower_exp; auto with zarith.
- unfold base; apply f_equal with (f := Z.pow 2); auto with zarith.
-
- contradict H0; case (spec_to_Z xl); auto with zarith.
- Qed.
-
- Hint Rewrite Zdiv_0_l Z.mul_0_l Z.add_0_l Z.mul_0_r Z.add_0_r
- spec_w_W0 spec_w_0W spec_w_WW spec_w_0
- (wB_div w_digits w_to_Z spec_to_Z)
- (wB_div_plus w_digits w_to_Z spec_to_Z) : w_rewrite.
- Ltac w_rewrite := autorewrite with w_rewrite;trivial.
-
- Lemma spec_ww_add_mul_div_aux : forall xh xl yh yl p,
- let zdigits := w_0W w_zdigits in
- [[p]] <= Zpos (xO w_digits) ->
- [[match ww_compare p zdigits with
- | Eq => w_WW xl yh
- | Lt => w_WW (w_add_mul_div (low p) xh xl)
- (w_add_mul_div (low p) xl yh)
- | Gt =>
- let n := low (ww_sub p zdigits) in
- w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
- end]] =
- ([[WW xh xl]] * (2^[[p]]) +
- [[WW yh yl]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
- Proof.
- clear spec_ww_zdigits.
- intros xh xl yh yl p zdigits;assert (HwwB := wwB_pos w_digits).
- case (spec_to_w_Z p); intros Hv1 Hv2.
- replace (Zpos (xO w_digits)) with (Zpos w_digits + Zpos w_digits).
- 2 : rewrite Pos2Z.inj_xO;ring.
- replace (Zpos w_digits + Zpos w_digits - [[p]]) with
- (Zpos w_digits + (Zpos w_digits - [[p]])). 2:ring.
- intros Hp; assert (Hxh := spec_to_Z xh);assert (Hxl:=spec_to_Z xl);
- assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl));
- simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl);
- assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy.
- rewrite spec_ww_compare; case Z.compare_spec; intros H1.
- rewrite H1; unfold zdigits; rewrite spec_w_0W.
- rewrite spec_zdigits; rewrite Z.sub_diag; rewrite Z.add_0_r.
- simpl ww_to_Z; w_rewrite;zarith.
- fold wB.
- rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc;rewrite <- Z.add_assoc.
- rewrite <- Z.pow_2_r.
- rewrite <- wwB_wBwB;apply Zmod_unique with [|xh|].
- exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xl yh)). ring.
- simpl ww_to_Z; w_rewrite;zarith.
- assert (HH0: [|low p|] = [[p]]).
- rewrite spec_low.
- apply Zmod_small.
- case (spec_to_w_Z p); intros HH1 HH2; split; auto.
- generalize H1; unfold zdigits; rewrite spec_w_0W;
- rewrite spec_zdigits; intros tmp.
- apply Z.lt_le_trans with (1 := tmp).
- unfold base.
- apply Zpower2_le_lin; auto with zarith.
- 2: generalize H1; unfold zdigits; rewrite spec_w_0W;
- rewrite spec_zdigits; auto with zarith.
- generalize H1; unfold zdigits; rewrite spec_w_0W;
- rewrite spec_zdigits; auto; clear H1; intros H1.
- assert (HH: [|low p|] <= Zpos w_digits).
- rewrite HH0; auto with zarith.
- repeat rewrite spec_w_add_mul_div with (1 := HH).
- rewrite HH0.
- rewrite Z.mul_add_distr_r.
- pattern ([|xl|] * 2 ^ [[p]]) at 2;
- rewrite shift_unshift_mod with (n:= Zpos w_digits);fold wB;zarith.
- replace ([|xh|] * wB * 2^[[p]]) with ([|xh|] * 2^[[p]] * wB). 2:ring.
- rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc.
- unfold base at 5;rewrite <- Zmod_shift_r;zarith.
- unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
- fold wB;fold wwB;zarith.
- rewrite wwB_wBwB;rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith.
- unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. apply Z_mod_lt;zarith.
- split;zarith. apply Zdiv_lt_upper_bound;zarith.
- rewrite <- Zpower_exp;zarith.
- ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith.
- assert (Hv: [[p]] > Zpos w_digits).
- generalize H1; clear H1.
- unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto with zarith.
- clear H1.
- assert (HH0: [|low (ww_sub p zdigits)|] = [[p]] - Zpos w_digits).
- rewrite spec_low.
- rewrite spec_ww_sub.
- unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits.
- rewrite <- Zmod_div_mod; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
- unfold base; apply Zpower2_lt_lin; auto with zarith.
- exists wB; unfold base.
- unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits).
- rewrite <- Zpower_exp; auto with zarith.
- apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
- assert (HH: [|low (ww_sub p zdigits)|] <= Zpos w_digits).
- rewrite HH0; auto with zarith.
- replace (Zpos w_digits + (Zpos w_digits - [[p]])) with
- (Zpos w_digits - ([[p]] - Zpos w_digits)); zarith.
- lazy zeta; simpl ww_to_Z; w_rewrite;zarith.
- repeat rewrite spec_w_add_mul_div;zarith.
- rewrite HH0.
- pattern wB at 5;replace wB with
- (2^(([[p]] - Zpos w_digits)
- + (Zpos w_digits - ([[p]] - Zpos w_digits)))).
- rewrite Zpower_exp;zarith. rewrite Z.mul_assoc.
- rewrite Z_div_plus_l;zarith.
- rewrite shift_unshift_mod with (a:= [|yh|]) (p:= [[p]] - Zpos w_digits)
- (n := Zpos w_digits);zarith. fold wB.
- set (u := [[p]] - Zpos w_digits).
- replace [[p]] with (u + Zpos w_digits);zarith.
- rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. fold wB.
- repeat rewrite Z.add_assoc. rewrite <- Z.mul_add_distr_r.
- repeat rewrite <- Z.add_assoc.
- unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
- fold wB;fold wwB;zarith.
- unfold base;rewrite Zmod_shift_r with (a:= Zpos w_digits)
- (b:= Zpos w_digits);fold wB;fold wwB;zarith.
- rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith.
- rewrite Z.mul_add_distr_r.
- replace ([|xh|] * wB * 2 ^ u) with
- ([|xh|]*2^u*wB). 2:ring.
- repeat rewrite <- Z.add_assoc.
- rewrite (Z.add_comm ([|xh|] * 2 ^ u * wB)).
- rewrite Z_mod_plus;zarith. rewrite Z_mod_mult;zarith.
- unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
- unfold u; split;zarith.
- split;zarith. unfold u; apply Zdiv_lt_upper_bound;zarith.
- rewrite <- Zpower_exp;zarith.
- fold u.
- ring_simplify (u + (Zpos w_digits - u)); fold
- wB;zarith. unfold ww_digits;rewrite Pos2Z.inj_xO;zarith.
- unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
- unfold u; split;zarith.
- unfold u; split;zarith.
- apply Zdiv_lt_upper_bound;zarith.
- rewrite <- Zpower_exp;zarith.
- fold u.
- ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
- unfold u;zarith.
- unfold u;zarith.
- set (u := [[p]] - Zpos w_digits).
- ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
- Qed.
-
- Lemma spec_ww_add_mul_div : forall x y p,
- [[p]] <= Zpos (xO w_digits) ->
- [[ ww_add_mul_div p x y ]] =
- ([[x]] * (2^[[p]]) +
- [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
- Proof.
- clear spec_ww_zdigits.
- intros x y p H.
- destruct x as [ |xh xl];
- [assert (H1 := @spec_ww_add_mul_div_aux w_0 w_0)
- |assert (H1 := @spec_ww_add_mul_div_aux xh xl)];
- (destruct y as [ |yh yl];
- [generalize (H1 w_0 w_0 p H) | generalize (H1 yh yl p H)];
- clear H1;w_rewrite);simpl ww_add_mul_div.
- replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
- intros Heq;rewrite <- Heq;clear Heq; auto.
- rewrite spec_ww_compare. case Z.compare_spec; intros H1; w_rewrite.
- rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
- generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1.
- assert (HH0: [|low p|] = [[p]]).
- rewrite spec_low.
- apply Zmod_small.
- case (spec_to_w_Z p); intros HH1 HH2; split; auto.
- apply Z.lt_le_trans with (1 := H1).
- unfold base; apply Zpower2_le_lin; auto with zarith.
- rewrite HH0; auto with zarith.
- replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
- intros Heq;rewrite <- Heq;clear Heq.
- generalize (spec_ww_compare p (w_0W w_zdigits));
- case ww_compare; intros H1; w_rewrite.
- rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
- rewrite Pos2Z.inj_xO in H;zarith.
- assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits).
- symmetry in H1; change ([[p]] > [[w_0W w_zdigits]]) in H1.
- revert H1.
- rewrite spec_low.
- rewrite spec_ww_sub; w_rewrite; intros H1.
- rewrite <- Zmod_div_mod; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
- unfold base; apply Zpower2_lt_lin; auto with zarith.
- unfold base; auto with zarith.
- unfold base; auto with zarith.
- exists wB; unfold base.
- unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits).
- rewrite <- Zpower_exp; auto with zarith.
- apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
- case (spec_to_Z xh); auto with zarith.
- Qed.
-
- End DoubleProof.
-
-End DoubleLift.
-