summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v519
1 files changed, 0 insertions, 519 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
deleted file mode 100644
index 195527dd..00000000
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
+++ /dev/null
@@ -1,519 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Set Implicit Arguments.
-
-Require Import ZArith Ndigits.
-Require Import BigNumPrelude.
-Require Import DoubleType.
-Require Import DoubleBase.
-
-Local Open Scope Z_scope.
-
-Local Infix "<<" := Pos.shiftl_nat (at level 30).
-
-Section GENDIVN1.
-
- Variable w : Type.
- Variable w_digits : positive.
- Variable w_zdigits : w.
- Variable w_0 : w.
- Variable w_WW : w -> w -> zn2z w.
- Variable w_head0 : w -> w.
- Variable w_add_mul_div : w -> w -> w -> w.
- Variable w_div21 : w -> w -> w -> w * w.
- Variable w_compare : w -> w -> comparison.
- Variable w_sub : w -> w -> w.
-
-
-
- (* ** For proofs ** *)
- Variable w_to_Z : w -> Z.
-
- Notation wB := (base w_digits).
-
- Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
- Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
- (at level 0, x at level 99).
- Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
-
- Variable spec_to_Z : forall x, 0 <= [| x |] < wB.
- Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
- Variable spec_0 : [|w_0|] = 0.
- Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
- Variable spec_head0 : forall x, 0 < [|x|] ->
- wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
- Variable spec_add_mul_div : forall x y p,
- [|p|] <= Zpos w_digits ->
- [| w_add_mul_div p x y |] =
- ([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
- Variable spec_div21 : forall a1 a2 b,
- wB/2 <= [|b|] ->
- [|a1|] < [|b|] ->
- let (q,r) := w_div21 a1 a2 b in
- [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
- 0 <= [|r|] < [|b|].
- Variable spec_compare :
- forall x y, w_compare x y = Z.compare [|x|] [|y|].
- Variable spec_sub: forall x y,
- [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
-
-
-
- Section DIVAUX.
- Variable b2p : w.
- Variable b2p_le : wB/2 <= [|b2p|].
-
- Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h :=
- let (hh,hl) := double_split w_0 n h in
- let (qh,rh) := divn1 r hh in
- let (ql,rl) := divn1 rh hl in
- (double_WW w_WW n qh ql, rl).
-
- Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w :=
- match n return w -> word w n -> word w n * w with
- | O => fun r x => w_div21 r x b2p
- | S n => double_divn1_0_aux n (double_divn1_0 n)
- end.
-
- Lemma spec_split : forall (n : nat) (x : zn2z (word w n)),
- let (h, l) := double_split w_0 n x in
- [!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!].
- Proof (spec_double_split w_0 w_digits w_to_Z spec_0).
-
- Lemma spec_double_divn1_0 : forall n r a,
- [|r|] < [|b2p|] ->
- let (q,r') := double_divn1_0 n r a in
- [|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\
- 0 <= [|r'|] < [|b2p|].
- Proof.
- induction n;intros.
- exact (spec_div21 a b2p_le H).
- simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux.
- assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl).
- rewrite H1.
- assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh).
- destruct H2.
- assert ([|rh|] < [|b2p|]). omega.
- assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl).
- destruct H4;split;trivial.
- rewrite spec_double_WW;trivial.
- rewrite <- double_wB_wwB.
- rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
- rewrite H0;rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc.
- rewrite H4;ring.
- Qed.
-
- Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h :=
- let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl.
-
- Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w :=
- match n return w -> word w n -> w with
- | O => fun r x => snd (w_div21 r x b2p)
- | S n => double_modn1_0_aux n (double_modn1_0 n)
- end.
-
- Lemma spec_double_modn1_0 : forall n r x,
- double_modn1_0 n r x = snd (double_divn1_0 n r x).
- Proof.
- induction n;simpl;intros;trivial.
- unfold double_modn1_0_aux, double_divn1_0_aux.
- destruct (double_split w_0 n x) as (hh,hl).
- rewrite (IHn r hh).
- destruct (double_divn1_0 n r hh) as (qh,rh);simpl.
- rewrite IHn. destruct (double_divn1_0 n rh hl);trivial.
- Qed.
-
- Variable p : w.
- Variable p_bounded : [|p|] <= Zpos w_digits.
-
- Lemma spec_add_mul_divp : forall x y,
- [| w_add_mul_div p x y |] =
- ([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
- Proof.
- intros;apply spec_add_mul_div;auto.
- Qed.
-
- Definition double_divn1_p_aux n
- (divn1 : w -> word w n -> word w n -> word w n * w) r h l :=
- let (hh,hl) := double_split w_0 n h in
- let (lh,ll) := double_split w_0 n l in
- let (qh,rh) := divn1 r hh hl in
- let (ql,rl) := divn1 rh hl lh in
- (double_WW w_WW n qh ql, rl).
-
- Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w :=
- match n return w -> word w n -> word w n -> word w n * w with
- | O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p
- | S n => double_divn1_p_aux n (double_divn1_p n)
- end.
-
- Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (w_digits << n).
- Proof.
- induction n;simpl. trivial.
- case (spec_to_Z p); rewrite Pos2Z.inj_xO;auto with zarith.
- Qed.
-
- Lemma spec_double_divn1_p : forall n r h l,
- [|r|] < [|b2p|] ->
- let (q,r') := double_divn1_p n r h l in
- [|r|] * double_wB w_digits n +
- ([!n|h!]*2^[|p|] +
- [!n|l!] / (2^(Zpos(w_digits << n) - [|p|])))
- mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\
- 0 <= [|r'|] < [|b2p|].
- Proof.
- case (spec_to_Z p); intros HH0 HH1.
- induction n;intros.
- simpl (double_divn1_p 0 r h l).
- unfold double_to_Z, double_wB, "<<".
- rewrite <- spec_add_mul_divp.
- exact (spec_div21 (w_add_mul_div p h l) b2p_le H).
- simpl (double_divn1_p (S n) r h l).
- unfold double_divn1_p_aux.
- assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl).
- rewrite H1. rewrite <- double_wB_wwB.
- assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll).
- rewrite H2.
- replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) +
- (([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] +
- ([!n|lh!] * double_wB w_digits n + [!n|ll!]) /
- 2^(Zpos (w_digits << (S n)) - [|p|])) mod
- (double_wB w_digits n * double_wB w_digits n)) with
- (([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] +
- [!n|hl!] / 2^(Zpos (w_digits << n) - [|p|])) mod
- double_wB w_digits n) * double_wB w_digits n +
- ([!n|hl!] * 2^[|p|] +
- [!n|lh!] / 2^(Zpos (w_digits << n) - [|p|])) mod
- double_wB w_digits n).
- generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh);
- intros (H3,H4);rewrite H3.
- assert ([|rh|] < [|b2p|]). omega.
- replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n +
- ([!n|hl!] * 2 ^ [|p|] +
- [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
- double_wB w_digits n) with
- ([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n +
- ([!n|hl!] * 2 ^ [|p|] +
- [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
- double_wB w_digits n)). 2:ring.
- generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl);
- intros (H5,H6);rewrite H5.
- split;[rewrite spec_double_WW;trivial;ring|trivial].
- assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh);
- unfold double_wB,base in Uhh.
- assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl);
- unfold double_wB,base in Uhl.
- assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh);
- unfold double_wB,base in Ulh.
- assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll);
- unfold double_wB,base in Ull.
- unfold double_wB,base.
- assert (UU:=p_lt_double_digits n).
- rewrite Zdiv_shift_r;auto with zarith.
- 2:change (Zpos (w_digits << (S n)))
- with (2*Zpos (w_digits << n));auto with zarith.
- replace (2 ^ (Zpos (w_digits << (S n)) - [|p|])) with
- (2^(Zpos (w_digits << n) - [|p|])*2^Zpos (w_digits << n)).
- rewrite Zdiv_mult_cancel_r;auto with zarith.
- rewrite Z.mul_add_distr_r with (p:= 2^[|p|]).
- pattern ([!n|hl!] * 2^[|p|]) at 2;
- rewrite (shift_unshift_mod (Zpos(w_digits << n))([|p|])([!n|hl!]));
- auto with zarith.
- rewrite Z.add_assoc.
- replace
- ([!n|hh!] * 2^Zpos (w_digits << n)* 2^[|p|] +
- ([!n|hl!] / 2^(Zpos (w_digits << n)-[|p|])*
- 2^Zpos(w_digits << n)))
- with
- (([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl /
- 2^(Zpos (w_digits << n)-[|p|]))
- * 2^Zpos(w_digits << n));try (ring;fail).
- rewrite <- Z.add_assoc.
- rewrite <- (Zmod_shift_r ([|p|]));auto with zarith.
- replace
- (2 ^ Zpos (w_digits << n) * 2 ^ Zpos (w_digits << n)) with
- (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))).
- rewrite (Zmod_shift_r (Zpos (w_digits << n)));auto with zarith.
- replace (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n)))
- with (2^Zpos(w_digits << n) *2^Zpos(w_digits << n)).
- rewrite (Z.mul_comm (([!n|hh!] * 2 ^ [|p|] +
- [!n|hl!] / 2 ^ (Zpos (w_digits << n) - [|p|])))).
- rewrite Zmult_mod_distr_l;auto with zarith.
- ring.
- rewrite Zpower_exp;auto with zarith.
- assert (0 < Zpos (w_digits << n)). unfold Z.lt;reflexivity.
- auto with zarith.
- apply Z_mod_lt;auto with zarith.
- rewrite Zpower_exp;auto with zarith.
- split;auto with zarith.
- apply Zdiv_lt_upper_bound;auto with zarith.
- rewrite <- Zpower_exp;auto with zarith.
- replace ([|p|] + (Zpos (w_digits << n) - [|p|])) with
- (Zpos(w_digits << n));auto with zarith.
- rewrite <- Zpower_exp;auto with zarith.
- replace (Zpos (w_digits << (S n)) - [|p|]) with
- (Zpos (w_digits << n) - [|p|] +
- Zpos (w_digits << n));trivial.
- change (Zpos (w_digits << (S n))) with
- (2*Zpos (w_digits << n)). ring.
- Qed.
-
- Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:=
- let (hh,hl) := double_split w_0 n h in
- let (lh,ll) := double_split w_0 n l in
- modn1 (modn1 r hh hl) hl lh.
-
- Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w :=
- match n return w -> word w n -> word w n -> w with
- | O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p)
- | S n => double_modn1_p_aux n (double_modn1_p n)
- end.
-
- Lemma spec_double_modn1_p : forall n r h l ,
- double_modn1_p n r h l = snd (double_divn1_p n r h l).
- Proof.
- induction n;simpl;intros;trivial.
- unfold double_modn1_p_aux, double_divn1_p_aux.
- destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll).
- rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh).
- rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial.
- Qed.
-
- End DIVAUX.
-
- Fixpoint high (n:nat) : word w n -> w :=
- match n return word w n -> w with
- | O => fun a => a
- | S n =>
- fun (a:zn2z (word w n)) =>
- match a with
- | W0 => w_0
- | WW h l => high n h
- end
- end.
-
- Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (w_digits << n).
- Proof.
- induction n;simpl;auto with zarith.
- change (Zpos (xO (w_digits << n))) with
- (2*Zpos (w_digits << n)).
- assert (0 < Zpos w_digits) by reflexivity.
- auto with zarith.
- Qed.
-
- Lemma spec_high : forall n (x:word w n),
- [|high n x|] = [!n|x!] / 2^(Zpos (w_digits << n) - Zpos w_digits).
- Proof.
- induction n;intros.
- unfold high,double_to_Z. rewrite Pshiftl_nat_0.
- replace (Zpos w_digits - Zpos w_digits) with 0;try ring.
- simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith.
- assert (U2 := spec_double_digits n).
- assert (U3 : 0 < Zpos w_digits). exact (eq_refl Lt).
- destruct x;unfold high;fold high.
- unfold double_to_Z,zn2z_to_Z;rewrite spec_0.
- rewrite Zdiv_0_l;trivial.
- assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0);
- assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1).
- simpl [!S n|WW w0 w1!].
- unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith.
- replace (2 ^ (Zpos (w_digits << (S n)) - Zpos w_digits)) with
- (2^(Zpos (w_digits << n) - Zpos w_digits) *
- 2^Zpos (w_digits << n)).
- rewrite Zdiv_mult_cancel_r;auto with zarith.
- rewrite <- Zpower_exp;auto with zarith.
- replace (Zpos (w_digits << n) - Zpos w_digits +
- Zpos (w_digits << n)) with
- (Zpos (w_digits << (S n)) - Zpos w_digits);trivial.
- change (Zpos (w_digits << (S n))) with
- (2*Zpos (w_digits << n));ring.
- change (Zpos (w_digits << (S n))) with
- (2*Zpos (w_digits << n)); auto with zarith.
- Qed.
-
- Definition double_divn1 (n:nat) (a:word w n) (b:w) :=
- let p := w_head0 b in
- match w_compare p w_0 with
- | Gt =>
- let b2p := w_add_mul_div p b w_0 in
- let ha := high n a in
- let k := w_sub w_zdigits p in
- let lsr_n := w_add_mul_div k w_0 in
- let r0 := w_add_mul_div p w_0 ha in
- let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in
- (q, lsr_n r)
- | _ => double_divn1_0 b n w_0 a
- end.
-
- Lemma spec_double_divn1 : forall n a b,
- 0 < [|b|] ->
- let (q,r) := double_divn1 n a b in
- [!n|a!] = [!n|q!] * [|b|] + [|r|] /\
- 0 <= [|r|] < [|b|].
- Proof.
- intros n a b H. unfold double_divn1.
- case (spec_head0 H); intros H0 H1.
- case (spec_to_Z (w_head0 b)); intros HH1 HH2.
- rewrite spec_compare; case Z.compare_spec;
- rewrite spec_0; intros H2; auto with zarith.
- assert (Hv1: wB/2 <= [|b|]).
- generalize H0; rewrite H2; rewrite Z.pow_0_r;
- rewrite Z.mul_1_l; auto.
- assert (Hv2: [|w_0|] < [|b|]).
- rewrite spec_0; auto.
- generalize (spec_double_divn1_0 Hv1 n a Hv2).
- rewrite spec_0;rewrite Z.mul_0_l; rewrite Z.add_0_l; auto.
- contradict H2; auto with zarith.
- assert (HHHH : 0 < [|w_head0 b|]); auto with zarith.
- assert ([|w_head0 b|] < Zpos w_digits).
- case (Z.le_gt_cases (Zpos w_digits) [|w_head0 b|]); auto; intros HH.
- assert (2 ^ [|w_head0 b|] < wB).
- apply Z.le_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith.
- replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail).
- apply Z.mul_le_mono_nonneg;auto with zarith.
- assert (wB <= 2^[|w_head0 b|]).
- unfold base;apply Zpower_le_monotone;auto with zarith. omega.
- assert ([|w_add_mul_div (w_head0 b) b w_0|] =
- 2 ^ [|w_head0 b|] * [|b|]).
- rewrite (spec_add_mul_div b w_0); auto with zarith.
- rewrite spec_0;rewrite Zdiv_0_l; try omega.
- rewrite Z.add_0_r; rewrite Z.mul_comm.
- rewrite Zmod_small; auto with zarith.
- assert (H5 := spec_to_Z (high n a)).
- assert
- ([|w_add_mul_div (w_head0 b) w_0 (high n a)|]
- <[|w_add_mul_div (w_head0 b) b w_0|]).
- rewrite H4.
- rewrite spec_add_mul_div;auto with zarith.
- rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
- assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB).
- apply Zdiv_lt_upper_bound;auto with zarith.
- apply Z.lt_le_trans with wB;auto with zarith.
- pattern wB at 1;replace wB with (wB*1);try ring.
- apply Z.mul_le_mono_nonneg;auto with zarith.
- assert (H6 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));
- auto with zarith.
- rewrite Zmod_small;auto with zarith.
- apply Zdiv_lt_upper_bound;auto with zarith.
- apply Z.lt_le_trans with wB;auto with zarith.
- apply Z.le_trans with (2 ^ [|w_head0 b|] * [|b|] * 2).
- rewrite <- wB_div_2; try omega.
- apply Z.mul_le_mono_nonneg;auto with zarith.
- pattern 2 at 1;rewrite <- Z.pow_1_r.
- apply Zpower_le_monotone;split;auto with zarith.
- rewrite <- H4 in H0.
- assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith.
- assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6).
- destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
- (w_add_mul_div (w_head0 b) w_0 (high n a)) a
- (double_0 w_0 n)) as (q,r).
- assert (U:= spec_double_digits n).
- rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7.
- rewrite Z.add_0_r in H7.
- rewrite spec_add_mul_div in H7;auto with zarith.
- rewrite spec_0 in H7;rewrite Z.mul_0_l in H7;rewrite Z.add_0_l in H7.
- assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB
- = [!n|a!] / 2^(Zpos (w_digits << n) - [|w_head0 b|])).
- rewrite Zmod_small;auto with zarith.
- rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith.
- rewrite <- Zpower_exp;auto with zarith.
- replace (Zpos (w_digits << n) - Zpos w_digits +
- (Zpos w_digits - [|w_head0 b|]))
- with (Zpos (w_digits << n) - [|w_head0 b|]);trivial;ring.
- assert (H8 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith.
- split;auto with zarith.
- apply Z.le_lt_trans with ([|high n a|]);auto with zarith.
- apply Zdiv_le_upper_bound;auto with zarith.
- pattern ([|high n a|]) at 1;rewrite <- Z.mul_1_r.
- apply Z.mul_le_mono_nonneg;auto with zarith.
- rewrite H8 in H7;unfold double_wB,base in H7.
- rewrite <- shift_unshift_mod in H7;auto with zarith.
- rewrite H4 in H7.
- assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|]
- = [|r|]/2^[|w_head0 b|]).
- rewrite spec_add_mul_div.
- rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
- replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|])
- with ([|w_head0 b|]).
- rewrite Zmod_small;auto with zarith.
- assert (H9 := spec_to_Z r).
- split;auto with zarith.
- apply Z.le_lt_trans with ([|r|]);auto with zarith.
- apply Zdiv_le_upper_bound;auto with zarith.
- pattern ([|r|]) at 1;rewrite <- Z.mul_1_r.
- apply Z.mul_le_mono_nonneg;auto with zarith.
- assert (H10 := Z.pow_pos_nonneg 2 ([|w_head0 b|]));auto with zarith.
- rewrite spec_sub.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- case (spec_to_Z w_zdigits); auto with zarith.
- rewrite spec_sub.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- case (spec_to_Z w_zdigits); auto with zarith.
- case H7; intros H71 H72.
- split.
- rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith.
- rewrite H71;rewrite H9.
- replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|]))
- with ([!n|q!] *[|b|] * 2^[|w_head0 b|]);
- try (ring;fail).
- rewrite Z_div_plus_l;auto with zarith.
- assert (H10 := spec_to_Z
- (w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split;
- auto with zarith.
- rewrite H9.
- apply Zdiv_lt_upper_bound;auto with zarith.
- rewrite Z.mul_comm;auto with zarith.
- exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a).
- Qed.
-
-
- Definition double_modn1 (n:nat) (a:word w n) (b:w) :=
- let p := w_head0 b in
- match w_compare p w_0 with
- | Gt =>
- let b2p := w_add_mul_div p b w_0 in
- let ha := high n a in
- let k := w_sub w_zdigits p in
- let lsr_n := w_add_mul_div k w_0 in
- let r0 := w_add_mul_div p w_0 ha in
- let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in
- lsr_n r
- | _ => double_modn1_0 b n w_0 a
- end.
-
- Lemma spec_double_modn1_aux : forall n a b,
- double_modn1 n a b = snd (double_divn1 n a b).
- Proof.
- intros n a b;unfold double_divn1,double_modn1.
- rewrite spec_compare; case Z.compare_spec;
- rewrite spec_0; intros H2; auto with zarith.
- apply spec_double_modn1_0.
- apply spec_double_modn1_0.
- rewrite spec_double_modn1_p.
- destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
- (w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial.
- Qed.
-
- Lemma spec_double_modn1 : forall n a b, 0 < [|b|] ->
- [|double_modn1 n a b|] = [!n|a!] mod [|b|].
- Proof.
- intros n a b H;assert (H1 := spec_double_divn1 n a H).
- assert (H2 := spec_double_modn1_aux n a b).
- rewrite H2;destruct (double_divn1 n a b) as (q,r).
- simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith.
- destruct H1 as (h1,h2);rewrite h1;ring.
- Qed.
-
-End GENDIVN1.