summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v966
1 files changed, 0 insertions, 966 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
deleted file mode 100644
index 4ebe8fac..00000000
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
+++ /dev/null
@@ -1,966 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Set Implicit Arguments.
-
-Require Import ZArith.
-Require Import BigNumPrelude.
-Require Import DoubleType.
-Require Import DoubleBase.
-Require Import DoubleAdd.
-Require Import DoubleSub.
-Require Import DoubleMul.
-Require Import DoubleSqrt.
-Require Import DoubleLift.
-Require Import DoubleDivn1.
-Require Import DoubleDiv.
-Require Import CyclicAxioms.
-
-Local Open Scope Z_scope.
-
-
-Section Z_2nZ.
-
- Context {t : Type}{ops : ZnZ.Ops t}.
-
- Let w_digits := ZnZ.digits.
- Let w_zdigits := ZnZ.zdigits.
-
- Let w_to_Z := ZnZ.to_Z.
- Let w_of_pos := ZnZ.of_pos.
- Let w_head0 := ZnZ.head0.
- Let w_tail0 := ZnZ.tail0.
-
- Let w_0 := ZnZ.zero.
- Let w_1 := ZnZ.one.
- Let w_Bm1 := ZnZ.minus_one.
-
- Let w_compare := ZnZ.compare.
- Let w_eq0 := ZnZ.eq0.
-
- Let w_opp_c := ZnZ.opp_c.
- Let w_opp := ZnZ.opp.
- Let w_opp_carry := ZnZ.opp_carry.
-
- Let w_succ_c := ZnZ.succ_c.
- Let w_add_c := ZnZ.add_c.
- Let w_add_carry_c := ZnZ.add_carry_c.
- Let w_succ := ZnZ.succ.
- Let w_add := ZnZ.add.
- Let w_add_carry := ZnZ.add_carry.
-
- Let w_pred_c := ZnZ.pred_c.
- Let w_sub_c := ZnZ.sub_c.
- Let w_sub_carry_c := ZnZ.sub_carry_c.
- Let w_pred := ZnZ.pred.
- Let w_sub := ZnZ.sub.
- Let w_sub_carry := ZnZ.sub_carry.
-
-
- Let w_mul_c := ZnZ.mul_c.
- Let w_mul := ZnZ.mul.
- Let w_square_c := ZnZ.square_c.
-
- Let w_div21 := ZnZ.div21.
- Let w_div_gt := ZnZ.div_gt.
- Let w_div := ZnZ.div.
-
- Let w_mod_gt := ZnZ.modulo_gt.
- Let w_mod := ZnZ.modulo.
-
- Let w_gcd_gt := ZnZ.gcd_gt.
- Let w_gcd := ZnZ.gcd.
-
- Let w_add_mul_div := ZnZ.add_mul_div.
-
- Let w_pos_mod := ZnZ.pos_mod.
-
- Let w_is_even := ZnZ.is_even.
- Let w_sqrt2 := ZnZ.sqrt2.
- Let w_sqrt := ZnZ.sqrt.
-
- Let _zn2z := zn2z t.
-
- Let wB := base w_digits.
-
- Let w_Bm2 := w_pred w_Bm1.
-
- Let ww_1 := ww_1 w_0 w_1.
- Let ww_Bm1 := ww_Bm1 w_Bm1.
-
- Let w_add2 a b := match w_add_c a b with C0 p => WW w_0 p | C1 p => WW w_1 p end.
-
- Let _ww_digits := xO w_digits.
-
- Let _ww_zdigits := w_add2 w_zdigits w_zdigits.
-
- Let to_Z := zn2z_to_Z wB w_to_Z.
-
- Let w_W0 := ZnZ.WO.
- Let w_0W := ZnZ.OW.
- Let w_WW := ZnZ.WW.
-
- Let ww_of_pos p :=
- match w_of_pos p with
- | (N0, l) => (N0, WW w_0 l)
- | (Npos ph,l) =>
- let (n,h) := w_of_pos ph in (n, w_WW h l)
- end.
-
- Let head0 :=
- Eval lazy beta delta [ww_head0] in
- ww_head0 w_0 w_0W w_compare w_head0 w_add2 w_zdigits _ww_zdigits.
-
- Let tail0 :=
- Eval lazy beta delta [ww_tail0] in
- ww_tail0 w_0 w_0W w_compare w_tail0 w_add2 w_zdigits _ww_zdigits.
-
- Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW t).
- Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W t).
- Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 t).
-
- (* ** Comparison ** *)
- Let compare :=
- Eval lazy beta delta[ww_compare] in ww_compare w_0 w_compare.
-
- Let eq0 (x:zn2z t) :=
- match x with
- | W0 => true
- | _ => false
- end.
-
- (* ** Opposites ** *)
- Let opp_c :=
- Eval lazy beta delta [ww_opp_c] in ww_opp_c w_0 w_opp_c w_opp_carry.
-
- Let opp :=
- Eval lazy beta delta [ww_opp] in ww_opp w_0 w_opp_c w_opp_carry w_opp.
-
- Let opp_carry :=
- Eval lazy beta delta [ww_opp_carry] in ww_opp_carry w_WW ww_Bm1 w_opp_carry.
-
- (* ** Additions ** *)
-
- Let succ_c :=
- Eval lazy beta delta [ww_succ_c] in ww_succ_c w_0 ww_1 w_succ_c.
-
- Let add_c :=
- Eval lazy beta delta [ww_add_c] in ww_add_c w_WW w_add_c w_add_carry_c.
-
- Let add_carry_c :=
- Eval lazy beta iota delta [ww_add_carry_c ww_succ_c] in
- ww_add_carry_c w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c.
-
- Let succ :=
- Eval lazy beta delta [ww_succ] in ww_succ w_W0 ww_1 w_succ_c w_succ.
-
- Let add :=
- Eval lazy beta delta [ww_add] in ww_add w_add_c w_add w_add_carry.
-
- Let add_carry :=
- Eval lazy beta iota delta [ww_add_carry ww_succ] in
- ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ w_add w_add_carry.
-
- (* ** Subtractions ** *)
-
- Let pred_c :=
- Eval lazy beta delta [ww_pred_c] in ww_pred_c w_Bm1 w_WW ww_Bm1 w_pred_c.
-
- Let sub_c :=
- Eval lazy beta iota delta [ww_sub_c ww_opp_c] in
- ww_sub_c w_0 w_WW w_opp_c w_opp_carry w_sub_c w_sub_carry_c.
-
- Let sub_carry_c :=
- Eval lazy beta iota delta [ww_sub_carry_c ww_pred_c ww_opp_carry] in
- ww_sub_carry_c w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_c w_sub_carry_c.
-
- Let pred :=
- Eval lazy beta delta [ww_pred] in ww_pred w_Bm1 w_WW ww_Bm1 w_pred_c w_pred.
-
- Let sub :=
- Eval lazy beta iota delta [ww_sub ww_opp] in
- ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry.
-
- Let sub_carry :=
- Eval lazy beta iota delta [ww_sub_carry ww_pred ww_opp_carry] in
- ww_sub_carry w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_carry_c w_pred
- w_sub w_sub_carry.
-
-
- (* ** Multiplication ** *)
-
- Let mul_c :=
- Eval lazy beta iota delta [ww_mul_c double_mul_c] in
- ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry.
-
- Let karatsuba_c :=
- Eval lazy beta iota delta [ww_karatsuba_c double_mul_c kara_prod] in
- ww_karatsuba_c w_0 w_1 w_WW w_W0 w_compare w_add w_sub w_mul_c
- add_c add add_carry sub_c sub.
-
- Let mul :=
- Eval lazy beta delta [ww_mul] in
- ww_mul w_W0 w_add w_mul_c w_mul add.
-
- Let square_c :=
- Eval lazy beta delta [ww_square_c] in
- ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add add_carry.
-
- (* Division operation *)
-
- Let div32 :=
- Eval lazy beta iota delta [w_div32] in
- w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
- w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c.
-
- Let div21 :=
- Eval lazy beta iota delta [ww_div21] in
- ww_div21 w_0 w_0W div32 ww_1 compare sub.
-
- Let low (p: zn2z t) := match p with WW _ p1 => p1 | _ => w_0 end.
-
- Let add_mul_div :=
- Eval lazy beta delta [ww_add_mul_div] in
- ww_add_mul_div w_0 w_WW w_W0 w_0W compare w_add_mul_div sub w_zdigits low.
-
- Let div_gt :=
- Eval lazy beta delta [ww_div_gt] in
- ww_div_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp
- w_opp_carry w_sub_c w_sub w_sub_carry
- w_div_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits.
-
- Let div :=
- Eval lazy beta delta [ww_div] in ww_div ww_1 compare div_gt.
-
- Let mod_gt :=
- Eval lazy beta delta [ww_mod_gt] in
- ww_mod_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry
- w_mod_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div w_zdigits.
-
- Let mod_ :=
- Eval lazy beta delta [ww_mod] in ww_mod compare mod_gt.
-
- Let pos_mod :=
- Eval lazy beta delta [ww_pos_mod] in
- ww_pos_mod w_0 w_zdigits w_WW w_pos_mod compare w_0W low sub _ww_zdigits.
-
- Let is_even :=
- Eval lazy beta delta [ww_is_even] in ww_is_even w_is_even.
-
- Let sqrt2 :=
- Eval lazy beta delta [ww_sqrt2] in
- ww_sqrt2 w_is_even w_compare w_0 w_1 w_Bm1 w_0W w_sub w_square_c
- w_div21 w_add_mul_div w_zdigits w_add_c w_sqrt2 w_pred pred_c
- pred add_c add sub_c add_mul_div.
-
- Let sqrt :=
- Eval lazy beta delta [ww_sqrt] in
- ww_sqrt w_is_even w_0 w_sub w_add_mul_div w_zdigits
- _ww_zdigits w_sqrt2 pred add_mul_div head0 compare low.
-
- Let gcd_gt_fix :=
- Eval cbv beta delta [ww_gcd_gt_aux ww_gcd_gt_body] in
- ww_gcd_gt_aux w_0 w_WW w_0W w_compare w_opp_c w_opp w_opp_carry
- w_sub_c w_sub w_sub_carry w_gcd_gt
- w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div
- w_zdigits.
-
- Let gcd_cont :=
- Eval lazy beta delta [gcd_cont] in gcd_cont ww_1 w_1 w_compare.
-
- Let gcd_gt :=
- Eval lazy beta delta [ww_gcd_gt] in
- ww_gcd_gt w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
-
- Let gcd :=
- Eval lazy beta delta [ww_gcd] in
- ww_gcd compare w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
-
- Definition lor (x y : zn2z t) :=
- match x, y with
- | W0, _ => y
- | _, W0 => x
- | WW hx lx, WW hy ly => WW (ZnZ.lor hx hy) (ZnZ.lor lx ly)
- end.
-
- Definition land (x y : zn2z t) :=
- match x, y with
- | W0, _ => W0
- | _, W0 => W0
- | WW hx lx, WW hy ly => WW (ZnZ.land hx hy) (ZnZ.land lx ly)
- end.
-
- Definition lxor (x y : zn2z t) :=
- match x, y with
- | W0, _ => y
- | _, W0 => x
- | WW hx lx, WW hy ly => WW (ZnZ.lxor hx hy) (ZnZ.lxor lx ly)
- end.
-
- (* ** Record of operators on 2 words *)
-
- Global Instance mk_zn2z_ops : ZnZ.Ops (zn2z t) | 1 :=
- ZnZ.MkOps _ww_digits _ww_zdigits
- to_Z ww_of_pos head0 tail0
- W0 ww_1 ww_Bm1
- compare eq0
- opp_c opp opp_carry
- succ_c add_c add_carry_c
- succ add add_carry
- pred_c sub_c sub_carry_c
- pred sub sub_carry
- mul_c mul square_c
- div21 div_gt div
- mod_gt mod_
- gcd_gt gcd
- add_mul_div
- pos_mod
- is_even
- sqrt2
- sqrt
- lor
- land
- lxor.
-
- Global Instance mk_zn2z_ops_karatsuba : ZnZ.Ops (zn2z t) | 2 :=
- ZnZ.MkOps _ww_digits _ww_zdigits
- to_Z ww_of_pos head0 tail0
- W0 ww_1 ww_Bm1
- compare eq0
- opp_c opp opp_carry
- succ_c add_c add_carry_c
- succ add add_carry
- pred_c sub_c sub_carry_c
- pred sub sub_carry
- karatsuba_c mul square_c
- div21 div_gt div
- mod_gt mod_
- gcd_gt gcd
- add_mul_div
- pos_mod
- is_even
- sqrt2
- sqrt
- lor
- land
- lxor.
-
- (* Proof *)
- Context {specs : ZnZ.Specs ops}.
-
- Create HintDb ZnZ.
-
- Hint Resolve
- ZnZ.spec_to_Z
- ZnZ.spec_of_pos
- ZnZ.spec_0
- ZnZ.spec_1
- ZnZ.spec_m1
- ZnZ.spec_compare
- ZnZ.spec_eq0
- ZnZ.spec_opp_c
- ZnZ.spec_opp
- ZnZ.spec_opp_carry
- ZnZ.spec_succ_c
- ZnZ.spec_add_c
- ZnZ.spec_add_carry_c
- ZnZ.spec_succ
- ZnZ.spec_add
- ZnZ.spec_add_carry
- ZnZ.spec_pred_c
- ZnZ.spec_sub_c
- ZnZ.spec_sub_carry_c
- ZnZ.spec_pred
- ZnZ.spec_sub
- ZnZ.spec_sub_carry
- ZnZ.spec_mul_c
- ZnZ.spec_mul
- ZnZ.spec_square_c
- ZnZ.spec_div21
- ZnZ.spec_div_gt
- ZnZ.spec_div
- ZnZ.spec_modulo_gt
- ZnZ.spec_modulo
- ZnZ.spec_gcd_gt
- ZnZ.spec_gcd
- ZnZ.spec_head0
- ZnZ.spec_tail0
- ZnZ.spec_add_mul_div
- ZnZ.spec_pos_mod
- ZnZ.spec_is_even
- ZnZ.spec_sqrt2
- ZnZ.spec_sqrt
- ZnZ.spec_WO
- ZnZ.spec_OW
- ZnZ.spec_WW : ZnZ.
-
- Ltac wwauto := unfold ww_to_Z; eauto with ZnZ.
-
- Let wwB := base _ww_digits.
-
- Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
-
- Notation "[+| c |]" :=
- (interp_carry 1 wwB to_Z c) (at level 0, c at level 99).
-
- Notation "[-| c |]" :=
- (interp_carry (-1) wwB to_Z c) (at level 0, c at level 99).
-
- Notation "[[ x ]]" := (zn2z_to_Z wwB to_Z x) (at level 0, x at level 99).
-
- Let spec_ww_to_Z : forall x, 0 <= [| x |] < wwB.
- Proof. refine (spec_ww_to_Z w_digits w_to_Z _); wwauto. Qed.
-
- Let spec_ww_of_pos : forall p,
- Zpos p = (Z.of_N (fst (ww_of_pos p)))*wwB + [|(snd (ww_of_pos p))|].
- Proof.
- unfold ww_of_pos;intros.
- rewrite (ZnZ.spec_of_pos p). unfold w_of_pos.
- case (ZnZ.of_pos p); intros. simpl.
- destruct n; simpl ZnZ.to_Z.
- simpl;unfold w_to_Z,w_0; rewrite ZnZ.spec_0;trivial.
- unfold Z.of_N.
- rewrite (ZnZ.spec_of_pos p0).
- case (ZnZ.of_pos p0); intros. simpl.
- unfold fst, snd,Z.of_N, to_Z, wB, w_digits, w_to_Z, w_WW.
- rewrite ZnZ.spec_WW.
- replace wwB with (wB*wB).
- unfold wB,w_to_Z,w_digits;destruct n;ring.
- symmetry. rewrite <- Z.pow_2_r; exact (wwB_wBwB w_digits).
- Qed.
-
- Let spec_ww_0 : [|W0|] = 0.
- Proof. reflexivity. Qed.
-
- Let spec_ww_1 : [|ww_1|] = 1.
- Proof. refine (spec_ww_1 w_0 w_1 w_digits w_to_Z _ _);wwauto. Qed.
-
- Let spec_ww_Bm1 : [|ww_Bm1|] = wwB - 1.
- Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);wwauto. Qed.
-
- Let spec_ww_compare :
- forall x y, compare x y = Z.compare [|x|] [|y|].
- Proof.
- refine (spec_ww_compare w_0 w_digits w_to_Z w_compare _ _ _);wwauto.
- Qed.
-
- Let spec_ww_eq0 : forall x, eq0 x = true -> [|x|] = 0.
- Proof. destruct x;simpl;intros;trivial;discriminate. Qed.
-
- Let spec_ww_opp_c : forall x, [-|opp_c x|] = -[|x|].
- Proof.
- refine(spec_ww_opp_c w_0 w_0 W0 w_opp_c w_opp_carry w_digits w_to_Z _ _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_opp : forall x, [|opp x|] = (-[|x|]) mod wwB.
- Proof.
- refine(spec_ww_opp w_0 w_0 W0 w_opp_c w_opp_carry w_opp
- w_digits w_to_Z _ _ _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_opp_carry : forall x, [|opp_carry x|] = wwB - [|x|] - 1.
- Proof.
- refine (spec_ww_opp_carry w_WW ww_Bm1 w_opp_carry w_digits w_to_Z _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_succ_c : forall x, [+|succ_c x|] = [|x|] + 1.
- Proof.
- refine (spec_ww_succ_c w_0 w_0 ww_1 w_succ_c w_digits w_to_Z _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|].
- Proof.
- refine (spec_ww_add_c w_WW w_add_c w_add_carry_c w_digits w_to_Z _ _ _);wwauto.
- Qed.
-
- Let spec_ww_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|]+[|y|]+1.
- Proof.
- refine (spec_ww_add_carry_c w_0 w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c
- w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_succ : forall x, [|succ x|] = ([|x|] + 1) mod wwB.
- Proof.
- refine (spec_ww_succ w_W0 ww_1 w_succ_c w_succ w_digits w_to_Z _ _ _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wwB.
- Proof.
- refine (spec_ww_add w_add_c w_add w_add_carry w_digits w_to_Z _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_add_carry : forall x y, [|add_carry x y|]=([|x|]+[|y|]+1)mod wwB.
- Proof.
- refine (spec_ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ
- w_add w_add_carry w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_pred_c : forall x, [-|pred_c x|] = [|x|] - 1.
- Proof.
- refine (spec_ww_pred_c w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_digits w_to_Z
- _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|].
- Proof.
- refine (spec_ww_sub_c w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c
- w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|]-[|y|]-1.
- Proof.
- refine (spec_ww_sub_carry_c w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
- w_sub_c w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_pred : forall x, [|pred x|] = ([|x|] - 1) mod wwB.
- Proof.
- refine (spec_ww_pred w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_pred w_digits w_to_Z
- _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wwB.
- Proof.
- refine (spec_ww_sub w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c w_opp
- w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_sub_carry : forall x y, [|sub_carry x y|]=([|x|]-[|y|]-1) mod wwB.
- Proof.
- refine (spec_ww_sub_carry w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
- w_sub_carry_c w_pred w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_mul_c : forall x y, [[mul_c x y ]] = [|x|] * [|y|].
- Proof.
- refine (spec_ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry w_digits
- w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_karatsuba_c : forall x y, [[karatsuba_c x y ]] = [|x|] * [|y|].
- Proof.
- refine (spec_ww_karatsuba_c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
- _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- unfold w_digits; apply ZnZ.spec_more_than_1_digit; auto.
- Qed.
-
- Let spec_ww_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wwB.
- Proof.
- refine (spec_ww_mul w_W0 w_add w_mul_c w_mul add w_digits w_to_Z _ _ _ _ _);
- wwauto.
- Qed.
-
- Let spec_ww_square_c : forall x, [[square_c x]] = [|x|] * [|x|].
- Proof.
- refine (spec_ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add
- add_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_w_div32 : forall a1 a2 a3 b1 b2,
- wB / 2 <= (w_to_Z b1) ->
- [|WW a1 a2|] < [|WW b1 b2|] ->
- let (q, r) := div32 a1 a2 a3 b1 b2 in
- (w_to_Z a1) * wwB + (w_to_Z a2) * wB + (w_to_Z a3) =
- (w_to_Z q) * ((w_to_Z b1)*wB + (w_to_Z b2)) + [|r|] /\
- 0 <= [|r|] < (w_to_Z b1)*wB + w_to_Z b2.
- Proof.
- refine (spec_w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
- w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c w_digits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- unfold w_Bm2, w_to_Z, w_pred, w_Bm1.
- rewrite ZnZ.spec_pred, ZnZ.spec_m1.
- unfold w_digits;rewrite Zmod_small. ring.
- assert (H:= wB_pos(ZnZ.digits)). omega.
- exact ZnZ.spec_div21.
- Qed.
-
- Let spec_ww_div21 : forall a1 a2 b,
- wwB/2 <= [|b|] ->
- [|a1|] < [|b|] ->
- let (q,r) := div21 a1 a2 b in
- [|a1|] *wwB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
- 0 <= [|r|] < [|b|].
- Proof.
- refine (spec_ww_div21 w_0 w_0W div32 ww_1 compare sub w_digits w_to_Z
- _ _ _ _ _ _ _);wwauto.
- Qed.
-
- Let spec_add2: forall x y,
- [|w_add2 x y|] = w_to_Z x + w_to_Z y.
- unfold w_add2.
- intros xh xl; generalize (ZnZ.spec_add_c xh xl).
- unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z.
- intros w0 Hw0; simpl; unfold w_to_Z; rewrite Hw0.
- unfold w_0; rewrite ZnZ.spec_0; simpl; auto with zarith.
- intros w0; rewrite Z.mul_1_l; simpl.
- unfold w_to_Z, w_1; rewrite ZnZ.spec_1; auto with zarith.
- rewrite Z.mul_1_l; auto.
- Qed.
-
- Let spec_low: forall x,
- w_to_Z (low x) = [|x|] mod wB.
- intros x; case x; simpl low.
- unfold ww_to_Z, w_to_Z, w_0; rewrite ZnZ.spec_0; simpl; wwauto.
- intros xh xl; simpl.
- rewrite Z.add_comm; rewrite Z_mod_plus; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- unfold wB, base; eauto with ZnZ zarith.
- unfold wB, base; eauto with ZnZ zarith.
- Qed.
-
- Let spec_ww_digits:
- [|_ww_zdigits|] = Zpos (xO w_digits).
- Proof.
- unfold w_to_Z, _ww_zdigits.
- rewrite spec_add2.
- unfold w_to_Z, w_zdigits, w_digits.
- rewrite ZnZ.spec_zdigits; auto.
- rewrite Pos2Z.inj_xO; auto with zarith.
- Qed.
-
-
- Let spec_ww_head00 : forall x, [|x|] = 0 -> [|head0 x|] = Zpos _ww_digits.
- Proof.
- refine (spec_ww_head00 w_0 w_0W
- w_compare w_head0 w_add2 w_zdigits _ww_zdigits
- w_to_Z _ _ _ (eq_refl _ww_digits) _ _ _ _); wwauto.
- exact ZnZ.spec_head00.
- exact ZnZ.spec_zdigits.
- Qed.
-
- Let spec_ww_head0 : forall x, 0 < [|x|] ->
- wwB/ 2 <= 2 ^ [|head0 x|] * [|x|] < wwB.
- Proof.
- refine (spec_ww_head0 w_0 w_0W w_compare w_head0
- w_add2 w_zdigits _ww_zdigits
- w_to_Z _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_zdigits.
- Qed.
-
- Let spec_ww_tail00 : forall x, [|x|] = 0 -> [|tail0 x|] = Zpos _ww_digits.
- Proof.
- refine (spec_ww_tail00 w_0 w_0W
- w_compare w_tail0 w_add2 w_zdigits _ww_zdigits
- w_to_Z _ _ _ (eq_refl _ww_digits) _ _ _ _); wwauto.
- exact ZnZ.spec_tail00.
- exact ZnZ.spec_zdigits.
- Qed.
-
-
- Let spec_ww_tail0 : forall x, 0 < [|x|] ->
- exists y, 0 <= y /\ [|x|] = (2 * y + 1) * 2 ^ [|tail0 x|].
- Proof.
- refine (spec_ww_tail0 (w_digits := w_digits) w_0 w_0W w_compare w_tail0
- w_add2 w_zdigits _ww_zdigits w_to_Z _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_zdigits.
- Qed.
-
- Lemma spec_ww_add_mul_div : forall x y p,
- [|p|] <= Zpos _ww_digits ->
- [| add_mul_div p x y |] =
- ([|x|] * (2 ^ [|p|]) +
- [|y|] / (2 ^ ((Zpos _ww_digits) - [|p|]))) mod wwB.
- Proof.
- refine (@spec_ww_add_mul_div t w_0 w_WW w_W0 w_0W compare w_add_mul_div
- sub w_digits w_zdigits low w_to_Z
- _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_zdigits.
- Qed.
-
- Let spec_ww_div_gt : forall a b,
- [|a|] > [|b|] -> 0 < [|b|] ->
- let (q,r) := div_gt a b in
- [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
- Proof.
-refine
-(@spec_ww_div_gt t w_digits w_0 w_WW w_0W w_compare w_eq0
- w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt
- w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-).
- exact ZnZ.spec_0.
- exact ZnZ.spec_to_Z.
- wwauto.
- wwauto.
- exact ZnZ.spec_compare.
- exact ZnZ.spec_eq0.
- exact ZnZ.spec_opp_c.
- exact ZnZ.spec_opp.
- exact ZnZ.spec_opp_carry.
- exact ZnZ.spec_sub_c.
- exact ZnZ.spec_sub.
- exact ZnZ.spec_sub_carry.
- exact ZnZ.spec_div_gt.
- exact ZnZ.spec_add_mul_div.
- exact ZnZ.spec_head0.
- exact ZnZ.spec_div21.
- exact spec_w_div32.
- exact ZnZ.spec_zdigits.
- exact spec_ww_digits.
- exact spec_ww_1.
- exact spec_ww_add_mul_div.
- Qed.
-
- Let spec_ww_div : forall a b, 0 < [|b|] ->
- let (q,r) := div a b in
- [|a|] = [|q|] * [|b|] + [|r|] /\
- 0 <= [|r|] < [|b|].
- Proof.
- refine (spec_ww_div w_digits ww_1 compare div_gt w_to_Z _ _ _ _);wwauto.
- Qed.
-
- Let spec_ww_mod_gt : forall a b,
- [|a|] > [|b|] -> 0 < [|b|] ->
- [|mod_gt a b|] = [|a|] mod [|b|].
- Proof.
- refine (@spec_ww_mod_gt t w_digits w_0 w_WW w_0W w_compare w_eq0
- w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt w_mod_gt
- w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div
- w_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_div_gt.
- exact ZnZ.spec_div21.
- exact ZnZ.spec_zdigits.
- exact spec_ww_add_mul_div.
- Qed.
-
- Let spec_ww_mod : forall a b, 0 < [|b|] -> [|mod_ a b|] = [|a|] mod [|b|].
- Proof.
- refine (spec_ww_mod w_digits W0 compare mod_gt w_to_Z _ _ _);wwauto.
- Qed.
-
- Let spec_ww_gcd_gt : forall a b, [|a|] > [|b|] ->
- Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
- Proof.
- refine (@spec_ww_gcd_gt t w_digits W0 w_to_Z _
- w_0 w_0 w_eq0 w_gcd_gt _ww_digits
- _ gcd_gt_fix _ _ _ _ gcd_cont _);wwauto.
- refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
- w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
- w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_div21.
- exact ZnZ.spec_zdigits.
- exact spec_ww_add_mul_div.
- refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
- _ _);wwauto.
- Qed.
-
- Let spec_ww_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
- Proof.
- refine (@spec_ww_gcd t w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt
- _ww_digits _ gcd_gt_fix _ _ _ _ gcd_cont _);wwauto.
- refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
- w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
- w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_div21.
- exact ZnZ.spec_zdigits.
- exact spec_ww_add_mul_div.
- refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
- _ _);wwauto.
- Qed.
-
- Let spec_ww_is_even : forall x,
- match is_even x with
- true => [|x|] mod 2 = 0
- | false => [|x|] mod 2 = 1
- end.
- Proof.
- refine (@spec_ww_is_even t w_is_even w_digits _ _ ).
- exact ZnZ.spec_is_even.
- Qed.
-
- Let spec_ww_sqrt2 : forall x y,
- wwB/ 4 <= [|x|] ->
- let (s,r) := sqrt2 x y in
- [[WW x y]] = [|s|] ^ 2 + [+|r|] /\
- [+|r|] <= 2 * [|s|].
- Proof.
- intros x y H.
- refine (@spec_ww_sqrt2 t w_is_even w_compare w_0 w_1 w_Bm1
- w_0W w_sub w_square_c w_div21 w_add_mul_div w_digits w_zdigits
- _ww_zdigits
- w_add_c w_sqrt2 w_pred pred_c pred add_c add sub_c add_mul_div
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- exact ZnZ.spec_zdigits.
- exact ZnZ.spec_more_than_1_digit.
- exact ZnZ.spec_is_even.
- exact ZnZ.spec_div21.
- exact spec_ww_add_mul_div.
- exact ZnZ.spec_sqrt2.
- Qed.
-
- Let spec_ww_sqrt : forall x,
- [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
- Proof.
- refine (@spec_ww_sqrt t w_is_even w_0 w_1 w_Bm1
- w_sub w_add_mul_div w_digits w_zdigits _ww_zdigits
- w_sqrt2 pred add_mul_div head0 compare
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
- exact ZnZ.spec_zdigits.
- exact ZnZ.spec_more_than_1_digit.
- exact ZnZ.spec_is_even.
- exact spec_ww_add_mul_div.
- exact ZnZ.spec_sqrt2.
- Qed.
-
- Let wB_pos : 0 < wB.
- Proof.
- unfold wB, base; apply Z.pow_pos_nonneg; auto with zarith.
- Qed.
-
- Hint Transparent ww_to_Z.
-
- Let ww_testbit_high n x y : Z.pos w_digits <= n ->
- Z.testbit [|WW x y|] n =
- Z.testbit (ZnZ.to_Z x) (n - Z.pos w_digits).
- Proof.
- intros Hn.
- assert (E : ZnZ.to_Z x = [|WW x y|] / wB).
- { simpl.
- rewrite Z.div_add_l; eauto with ZnZ zarith.
- now rewrite Z.div_small, Z.add_0_r; wwauto. }
- rewrite E.
- unfold wB, base. rewrite Z.div_pow2_bits.
- - f_equal; auto with zarith.
- - easy.
- - auto with zarith.
- Qed.
-
- Let ww_testbit_low n x y : 0 <= n < Z.pos w_digits ->
- Z.testbit [|WW x y|] n = Z.testbit (ZnZ.to_Z y) n.
- Proof.
- intros (Hn,Hn').
- assert (E : ZnZ.to_Z y = [|WW x y|] mod wB).
- { simpl; symmetry.
- rewrite Z.add_comm, Z.mod_add; auto with zarith nocore.
- apply Z.mod_small; eauto with ZnZ zarith. }
- rewrite E.
- unfold wB, base. symmetry. apply Z.mod_pow2_bits_low; auto.
- Qed.
-
- Let spec_lor x y : [|lor x y|] = Z.lor [|x|] [|y|].
- Proof.
- destruct x as [ |hx lx]. trivial.
- destruct y as [ |hy ly]. now rewrite Z.lor_comm.
- change ([|WW (ZnZ.lor hx hy) (ZnZ.lor lx ly)|] =
- Z.lor [|WW hx lx|] [|WW hy ly|]).
- apply Z.bits_inj'; intros n Hn.
- rewrite Z.lor_spec.
- destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT].
- - now rewrite !ww_testbit_high, ZnZ.spec_lor, Z.lor_spec.
- - rewrite !ww_testbit_low; auto.
- now rewrite ZnZ.spec_lor, Z.lor_spec.
- Qed.
-
- Let spec_land x y : [|land x y|] = Z.land [|x|] [|y|].
- Proof.
- destruct x as [ |hx lx]. trivial.
- destruct y as [ |hy ly]. now rewrite Z.land_comm.
- change ([|WW (ZnZ.land hx hy) (ZnZ.land lx ly)|] =
- Z.land [|WW hx lx|] [|WW hy ly|]).
- apply Z.bits_inj'; intros n Hn.
- rewrite Z.land_spec.
- destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT].
- - now rewrite !ww_testbit_high, ZnZ.spec_land, Z.land_spec.
- - rewrite !ww_testbit_low; auto.
- now rewrite ZnZ.spec_land, Z.land_spec.
- Qed.
-
- Let spec_lxor x y : [|lxor x y|] = Z.lxor [|x|] [|y|].
- Proof.
- destruct x as [ |hx lx]. trivial.
- destruct y as [ |hy ly]. now rewrite Z.lxor_comm.
- change ([|WW (ZnZ.lxor hx hy) (ZnZ.lxor lx ly)|] =
- Z.lxor [|WW hx lx|] [|WW hy ly|]).
- apply Z.bits_inj'; intros n Hn.
- rewrite Z.lxor_spec.
- destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT].
- - now rewrite !ww_testbit_high, ZnZ.spec_lxor, Z.lxor_spec.
- - rewrite !ww_testbit_low; auto.
- now rewrite ZnZ.spec_lxor, Z.lxor_spec.
- Qed.
-
- Global Instance mk_zn2z_specs : ZnZ.Specs mk_zn2z_ops.
- Proof.
- apply ZnZ.MkSpecs; auto.
- exact spec_ww_add_mul_div.
-
- refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW
- w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_zdigits.
- unfold w_to_Z, w_zdigits.
- rewrite ZnZ.spec_zdigits.
- rewrite <- Pos2Z.inj_xO; exact spec_ww_digits.
- Qed.
-
- Global Instance mk_zn2z_specs_karatsuba : ZnZ.Specs mk_zn2z_ops_karatsuba.
- Proof.
- apply ZnZ.MkSpecs; auto.
- exact spec_ww_add_mul_div.
- refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW
- w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
- _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
- exact ZnZ.spec_zdigits.
- unfold w_to_Z, w_zdigits.
- rewrite ZnZ.spec_zdigits.
- rewrite <- Pos2Z.inj_xO; exact spec_ww_digits.
- Qed.
-
-End Z_2nZ.
-
-
-Section MulAdd.
-
- Context {t : Type}{ops : ZnZ.Ops t}{specs : ZnZ.Specs ops}.
-
- Definition mul_add:= w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c.
-
- Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99).
-
- Notation "[|| x ||]" :=
- (zn2z_to_Z (base ZnZ.digits) ZnZ.to_Z x) (at level 0, x at level 99).
-
- Lemma spec_mul_add: forall x y z,
- let (zh, zl) := mul_add x y z in
- [||WW zh zl||] = [|x|] * [|y|] + [|z|].
- Proof.
- intros x y z.
- refine (spec_w_mul_add _ _ _ _ _ _ _ _ _ _ _ _ x y z); auto.
- exact ZnZ.spec_0.
- exact ZnZ.spec_to_Z.
- exact ZnZ.spec_succ.
- exact ZnZ.spec_add_c.
- exact ZnZ.spec_mul_c.
- Qed.
-
-End MulAdd.
-
-
-(** Modular versions of DoubleCyclic *)
-
-Module DoubleCyclic (C:CyclicType) <: CyclicType.
- Definition t := zn2z C.t.
- Instance ops : ZnZ.Ops t := mk_zn2z_ops.
- Instance specs : ZnZ.Specs ops := mk_zn2z_specs.
-End DoubleCyclic.
-
-Module DoubleCyclicKaratsuba (C:CyclicType) <: CyclicType.
- Definition t := zn2z C.t.
- Definition ops : ZnZ.Ops t := mk_zn2z_ops_karatsuba.
- Definition specs : ZnZ.Specs ops := mk_zn2z_specs_karatsuba.
-End DoubleCyclicKaratsuba.