summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v446
1 files changed, 446 insertions, 0 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
new file mode 100644
index 00000000..952516ac
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
@@ -0,0 +1,446 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleBase.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+
+Open Local Scope Z_scope.
+
+Section DoubleBase.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_Bm1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_digits : positive.
+ Variable w_zdigits: w.
+ Variable w_add: w -> w -> zn2z w.
+ Variable w_to_Z : w -> Z.
+ Variable w_compare : w -> w -> comparison.
+
+ Definition ww_digits := xO w_digits.
+
+ Definition ww_zdigits := w_add w_zdigits w_zdigits.
+
+ Definition ww_to_Z := zn2z_to_Z (base w_digits) w_to_Z.
+
+ Definition ww_1 := WW w_0 w_1.
+
+ Definition ww_Bm1 := WW w_Bm1 w_Bm1.
+
+ Definition ww_WW xh xl : zn2z (zn2z w) :=
+ match xh, xl with
+ | W0, W0 => W0
+ | _, _ => WW xh xl
+ end.
+
+ Definition ww_W0 h : zn2z (zn2z w) :=
+ match h with
+ | W0 => W0
+ | _ => WW h W0
+ end.
+
+ Definition ww_0W l : zn2z (zn2z w) :=
+ match l with
+ | W0 => W0
+ | _ => WW W0 l
+ end.
+
+ Definition double_WW (n:nat) :=
+ match n return word w n -> word w n -> word w (S n) with
+ | O => w_WW
+ | S n =>
+ fun (h l : zn2z (word w n)) =>
+ match h, l with
+ | W0, W0 => W0
+ | _, _ => WW h l
+ end
+ end.
+
+ Fixpoint double_digits (n:nat) : positive :=
+ match n with
+ | O => w_digits
+ | S n => xO (double_digits n)
+ end.
+
+ Definition double_wB n := base (double_digits n).
+
+ Fixpoint double_to_Z (n:nat) : word w n -> Z :=
+ match n return word w n -> Z with
+ | O => w_to_Z
+ | S n => zn2z_to_Z (double_wB n) (double_to_Z n)
+ end.
+
+ Fixpoint extend_aux (n:nat) (x:zn2z w) {struct n}: word w (S n) :=
+ match n return word w (S n) with
+ | O => x
+ | S n1 => WW W0 (extend_aux n1 x)
+ end.
+
+ Definition extend (n:nat) (x:w) : word w (S n) :=
+ let r := w_0W x in
+ match r with
+ | W0 => W0
+ | _ => extend_aux n r
+ end.
+
+ Definition double_0 n : word w n :=
+ match n return word w n with
+ | O => w_0
+ | S _ => W0
+ end.
+
+ Definition double_split (n:nat) (x:zn2z (word w n)) :=
+ match x with
+ | W0 =>
+ match n return word w n * word w n with
+ | O => (w_0,w_0)
+ | S _ => (W0, W0)
+ end
+ | WW h l => (h,l)
+ end.
+
+ Definition ww_compare x y :=
+ match x, y with
+ | W0, W0 => Eq
+ | W0, WW yh yl =>
+ match w_compare w_0 yh with
+ | Eq => w_compare w_0 yl
+ | _ => Lt
+ end
+ | WW xh xl, W0 =>
+ match w_compare xh w_0 with
+ | Eq => w_compare xl w_0
+ | _ => Gt
+ end
+ | WW xh xl, WW yh yl =>
+ match w_compare xh yh with
+ | Eq => w_compare xl yl
+ | Lt => Lt
+ | Gt => Gt
+ end
+ end.
+
+
+ (* Return the low part of the composed word*)
+ Fixpoint get_low (n : nat) {struct n}:
+ word w n -> w :=
+ match n return (word w n -> w) with
+ | 0%nat => fun x => x
+ | S n1 =>
+ fun x =>
+ match x with
+ | W0 => w_0
+ | WW _ x1 => get_low n1 x1
+ end
+ end.
+
+
+ Section DoubleProof.
+ Notation wB := (base w_digits).
+ Notation wwB := (base ww_digits).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[[ x ]]" := (ww_to_Z x) (at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB ww_to_Z c) (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB ww_to_Z c) (at level 0, x at level 99).
+ Notation "[! n | x !]" := (double_to_Z n x) (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_compare : forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+
+ Lemma wwB_wBwB : wwB = wB^2.
+ Proof.
+ unfold base, ww_digits;rewrite Zpower_2; rewrite (Zpos_xO w_digits).
+ replace (2 * Zpos w_digits) with (Zpos w_digits + Zpos w_digits).
+ apply Zpower_exp; unfold Zge;simpl;intros;discriminate.
+ ring.
+ Qed.
+
+ Lemma spec_ww_1 : [[ww_1]] = 1.
+ Proof. simpl;rewrite spec_w_0;rewrite spec_w_1;ring. Qed.
+
+ Lemma spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1.
+ Proof. simpl;rewrite spec_w_Bm1;rewrite wwB_wBwB;ring. Qed.
+
+ Lemma lt_0_wB : 0 < wB.
+ Proof.
+ unfold base;apply Zpower_gt_0. unfold Zlt;reflexivity.
+ unfold Zle;intros H;discriminate H.
+ Qed.
+
+ Lemma lt_0_wwB : 0 < wwB.
+ Proof. rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_lt_0_compat;apply lt_0_wB. Qed.
+
+ Lemma wB_pos: 1 < wB.
+ Proof.
+ unfold base;apply Zlt_le_trans with (2^1). unfold Zlt;reflexivity.
+ apply Zpower_le_monotone. unfold Zlt;reflexivity.
+ split;unfold Zle;intros H. discriminate H.
+ clear spec_w_0W w_0W spec_w_Bm1 spec_to_Z spec_w_WW w_WW.
+ destruct w_digits; discriminate H.
+ Qed.
+
+ Lemma wwB_pos: 1 < wwB.
+ Proof.
+ assert (H:= wB_pos);rewrite wwB_wBwB;rewrite <-(Zmult_1_r 1).
+ rewrite Zpower_2.
+ apply Zmult_lt_compat2;(split;[unfold Zlt;reflexivity|trivial]).
+ apply Zlt_le_weak;trivial.
+ Qed.
+
+ Theorem wB_div_2: 2 * (wB / 2) = wB.
+ Proof.
+ clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
+ spec_to_Z;unfold base.
+ assert (2 ^ Zpos w_digits = 2 * (2 ^ (Zpos w_digits - 1))).
+ pattern 2 at 2; rewrite <- Zpower_1_r.
+ rewrite <- Zpower_exp; auto with zarith.
+ f_equal; auto with zarith.
+ case w_digits; compute; intros; discriminate.
+ rewrite H; f_equal; auto with zarith.
+ rewrite Zmult_comm; apply Z_div_mult; auto with zarith.
+ Qed.
+
+ Theorem wwB_div_2 : wwB / 2 = wB / 2 * wB.
+ Proof.
+ clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
+ spec_to_Z.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ pattern wB at 1; rewrite <- wB_div_2; auto.
+ rewrite <- Zmult_assoc.
+ repeat (rewrite (Zmult_comm 2); rewrite Z_div_mult); auto with zarith.
+ Qed.
+
+ Lemma mod_wwB : forall z x,
+ (z*wB + [|x|]) mod wwB = (z mod wB)*wB + [|x|].
+ Proof.
+ intros z x.
+ rewrite Zplus_mod.
+ pattern wwB at 1;rewrite wwB_wBwB; rewrite Zpower_2.
+ rewrite Zmult_mod_distr_r;try apply lt_0_wB.
+ rewrite (Zmod_small [|x|]).
+ apply Zmod_small;rewrite wwB_wBwB;apply beta_mult;try apply spec_to_Z.
+ apply Z_mod_lt;apply Zlt_gt;apply lt_0_wB.
+ destruct (spec_to_Z x);split;trivial.
+ change [|x|] with (0*wB+[|x|]). rewrite wwB_wBwB.
+ rewrite Zpower_2;rewrite <- (Zplus_0_r (wB*wB));apply beta_lex_inv.
+ apply lt_0_wB. apply spec_to_Z. split;[apply Zle_refl | apply lt_0_wB].
+ Qed.
+
+ Lemma wB_div : forall x y, ([|x|] * wB + [|y|]) / wB = [|x|].
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros x y;unfold base;rewrite Zdiv_shift_r;auto with zarith.
+ rewrite Z_div_mult;auto with zarith.
+ destruct (spec_to_Z x);trivial.
+ Qed.
+
+ Lemma wB_div_plus : forall x y p,
+ 0 <= p ->
+ ([|x|]*wB + [|y|]) / 2^(Zpos w_digits + p) = [|x|] / 2^p.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros x y p Hp;rewrite Zpower_exp;auto with zarith.
+ rewrite <- Zdiv_Zdiv;auto with zarith.
+ rewrite wB_div;trivial.
+ Qed.
+
+ Lemma lt_wB_wwB : wB < wwB.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ unfold base;apply Zpower_lt_monotone;auto with zarith.
+ assert (0 < Zpos w_digits). compute;reflexivity.
+ unfold ww_digits;rewrite Zpos_xO;auto with zarith.
+ Qed.
+
+ Lemma w_to_Z_wwB : forall x, x < wB -> x < wwB.
+ Proof.
+ intros x H;apply Zlt_trans with wB;trivial;apply lt_wB_wwB.
+ Qed.
+
+ Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ destruct x as [ |h l];simpl.
+ split;[apply Zle_refl|apply lt_0_wwB].
+ assert (H:=spec_to_Z h);assert (L:=spec_to_Z l);split.
+ apply Zplus_le_0_compat;auto with zarith.
+ rewrite <- (Zplus_0_r wwB);rewrite wwB_wBwB; rewrite Zpower_2;
+ apply beta_lex_inv;auto with zarith.
+ Qed.
+
+ Lemma double_wB_wwB : forall n, double_wB n * double_wB n = double_wB (S n).
+ Proof.
+ intros n;unfold double_wB;simpl.
+ unfold base;rewrite (Zpos_xO (double_digits n)).
+ replace (2 * Zpos (double_digits n)) with
+ (Zpos (double_digits n) + Zpos (double_digits n)).
+ symmetry; apply Zpower_exp;intro;discriminate.
+ ring.
+ Qed.
+
+ Lemma double_wB_pos:
+ forall n, 0 <= double_wB n.
+ Proof.
+ intros n; unfold double_wB, base; auto with zarith.
+ Qed.
+
+ Lemma double_wB_more_digits:
+ forall n, wB <= double_wB n.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros n; elim n; clear n; auto.
+ unfold double_wB, double_digits; auto with zarith.
+ intros n H1; rewrite <- double_wB_wwB.
+ apply Zle_trans with (wB * 1).
+ rewrite Zmult_1_r; apply Zle_refl.
+ apply Zmult_le_compat; auto with zarith.
+ apply Zle_trans with wB; auto with zarith.
+ unfold base.
+ rewrite <- (Zpower_0_r 2).
+ apply Zpower_le_monotone2; auto with zarith.
+ unfold base; auto with zarith.
+ Qed.
+
+ Lemma spec_double_to_Z :
+ forall n (x:word w n), 0 <= [!n | x!] < double_wB n.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ induction n;intros. exact (spec_to_Z x).
+ unfold double_to_Z;fold double_to_Z.
+ destruct x;unfold zn2z_to_Z.
+ unfold double_wB,base;split;auto with zarith.
+ assert (U0:= IHn w0);assert (U1:= IHn w1).
+ split;auto with zarith.
+ apply Zlt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n).
+ assert (double_to_Z n w0*double_wB n <= (double_wB n - 1)*double_wB n).
+ apply Zmult_le_compat_r;auto with zarith.
+ auto with zarith.
+ rewrite <- double_wB_wwB.
+ replace ((double_wB n - 1) * double_wB n + double_wB n) with (double_wB n * double_wB n);
+ [auto with zarith | ring].
+ Qed.
+
+ Lemma spec_get_low:
+ forall n x,
+ [!n | x!] < wB -> [|get_low n x|] = [!n | x!].
+ Proof.
+ clear spec_w_1 spec_w_Bm1.
+ intros n; elim n; auto; clear n.
+ intros n Hrec x; case x; clear x; auto.
+ intros xx yy H1; simpl in H1.
+ assert (F1: [!n | xx!] = 0).
+ case (Zle_lt_or_eq 0 ([!n | xx!])); auto.
+ case (spec_double_to_Z n xx); auto.
+ intros F2.
+ assert (F3 := double_wB_more_digits n).
+ assert (F4: 0 <= [!n | yy!]).
+ case (spec_double_to_Z n yy); auto.
+ assert (F5: 1 * wB <= [!n | xx!] * double_wB n);
+ auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ unfold base; auto with zarith.
+ simpl get_low; simpl double_to_Z.
+ generalize H1; clear H1.
+ rewrite F1; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ intros H1; apply Hrec; auto.
+ Qed.
+
+ Lemma spec_double_WW : forall n (h l : word w n),
+ [!S n|double_WW n h l!] = [!n|h!] * double_wB n + [!n|l!].
+ Proof.
+ induction n;simpl;intros;trivial.
+ destruct h;auto.
+ destruct l;auto.
+ Qed.
+
+ Lemma spec_extend_aux : forall n x, [!S n|extend_aux n x!] = [[x]].
+ Proof. induction n;simpl;trivial. Qed.
+
+ Lemma spec_extend : forall n x, [!S n|extend n x!] = [|x|].
+ Proof.
+ intros n x;assert (H:= spec_w_0W x);unfold extend.
+ destruct (w_0W x);simpl;trivial.
+ rewrite <- H;exact (spec_extend_aux n (WW w0 w1)).
+ Qed.
+
+ Lemma spec_double_0 : forall n, [!n|double_0 n!] = 0.
+ Proof. destruct n;trivial. Qed.
+
+ Lemma spec_double_split : forall n x,
+ let (h,l) := double_split n x in
+ [!S n|x!] = [!n|h!] * double_wB n + [!n|l!].
+ Proof.
+ destruct x;simpl;auto.
+ destruct n;simpl;trivial.
+ rewrite spec_w_0;trivial.
+ Qed.
+
+ Lemma wB_lex_inv: forall a b c d,
+ a < c ->
+ a * wB + [|b|] < c * wB + [|d|].
+ Proof.
+ intros a b c d H1; apply beta_lex_inv with (1 := H1); auto.
+ Qed.
+
+ Lemma spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Proof.
+ destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial.
+ generalize (spec_w_compare w_0 yh);destruct (w_compare w_0 yh);
+ intros H;rewrite spec_w_0 in H.
+ rewrite <- H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
+ change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
+ apply wB_lex_inv;trivial.
+ absurd (0 <= [|yh|]). apply Zgt_not_le;trivial.
+ destruct (spec_to_Z yh);trivial.
+ generalize (spec_w_compare xh w_0);destruct (w_compare xh w_0);
+ intros H;rewrite spec_w_0 in H.
+ rewrite H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
+ absurd (0 <= [|xh|]). apply Zgt_not_le;apply Zlt_gt;trivial.
+ destruct (spec_to_Z xh);trivial.
+ apply Zlt_gt;change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
+ apply wB_lex_inv;apply Zgt_lt;trivial.
+
+ generalize (spec_w_compare xh yh);destruct (w_compare xh yh);intros H.
+ rewrite H;generalize (spec_w_compare xl yl);destruct (w_compare xl yl);
+ intros H1;[rewrite H1|apply Zplus_lt_compat_l|apply Zplus_gt_compat_l];
+ trivial.
+ apply wB_lex_inv;trivial.
+ apply Zlt_gt;apply wB_lex_inv;apply Zgt_lt;trivial.
+ Qed.
+
+
+ End DoubleProof.
+
+End DoubleBase.
+