summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v437
1 files changed, 0 insertions, 437 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
deleted file mode 100644
index e94a891d..00000000
--- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
+++ /dev/null
@@ -1,437 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
-(************************************************************************)
-
-Set Implicit Arguments.
-
-Require Import ZArith Ndigits.
-Require Import BigNumPrelude.
-Require Import DoubleType.
-
-Local Open Scope Z_scope.
-
-Local Infix "<<" := Pos.shiftl_nat (at level 30).
-
-Section DoubleBase.
- Variable w : Type.
- Variable w_0 : w.
- Variable w_1 : w.
- Variable w_Bm1 : w.
- Variable w_WW : w -> w -> zn2z w.
- Variable w_0W : w -> zn2z w.
- Variable w_digits : positive.
- Variable w_zdigits: w.
- Variable w_add: w -> w -> zn2z w.
- Variable w_to_Z : w -> Z.
- Variable w_compare : w -> w -> comparison.
-
- Definition ww_digits := xO w_digits.
-
- Definition ww_zdigits := w_add w_zdigits w_zdigits.
-
- Definition ww_to_Z := zn2z_to_Z (base w_digits) w_to_Z.
-
- Definition ww_1 := WW w_0 w_1.
-
- Definition ww_Bm1 := WW w_Bm1 w_Bm1.
-
- Definition ww_WW xh xl : zn2z (zn2z w) :=
- match xh, xl with
- | W0, W0 => W0
- | _, _ => WW xh xl
- end.
-
- Definition ww_W0 h : zn2z (zn2z w) :=
- match h with
- | W0 => W0
- | _ => WW h W0
- end.
-
- Definition ww_0W l : zn2z (zn2z w) :=
- match l with
- | W0 => W0
- | _ => WW W0 l
- end.
-
- Definition double_WW (n:nat) :=
- match n return word w n -> word w n -> word w (S n) with
- | O => w_WW
- | S n =>
- fun (h l : zn2z (word w n)) =>
- match h, l with
- | W0, W0 => W0
- | _, _ => WW h l
- end
- end.
-
- Definition double_wB n := base (w_digits << n).
-
- Fixpoint double_to_Z (n:nat) : word w n -> Z :=
- match n return word w n -> Z with
- | O => w_to_Z
- | S n => zn2z_to_Z (double_wB n) (double_to_Z n)
- end.
-
- Fixpoint extend_aux (n:nat) (x:zn2z w) {struct n}: word w (S n) :=
- match n return word w (S n) with
- | O => x
- | S n1 => WW W0 (extend_aux n1 x)
- end.
-
- Definition extend (n:nat) (x:w) : word w (S n) :=
- let r := w_0W x in
- match r with
- | W0 => W0
- | _ => extend_aux n r
- end.
-
- Definition double_0 n : word w n :=
- match n return word w n with
- | O => w_0
- | S _ => W0
- end.
-
- Definition double_split (n:nat) (x:zn2z (word w n)) :=
- match x with
- | W0 =>
- match n return word w n * word w n with
- | O => (w_0,w_0)
- | S _ => (W0, W0)
- end
- | WW h l => (h,l)
- end.
-
- Definition ww_compare x y :=
- match x, y with
- | W0, W0 => Eq
- | W0, WW yh yl =>
- match w_compare w_0 yh with
- | Eq => w_compare w_0 yl
- | _ => Lt
- end
- | WW xh xl, W0 =>
- match w_compare xh w_0 with
- | Eq => w_compare xl w_0
- | _ => Gt
- end
- | WW xh xl, WW yh yl =>
- match w_compare xh yh with
- | Eq => w_compare xl yl
- | Lt => Lt
- | Gt => Gt
- end
- end.
-
-
- (* Return the low part of the composed word*)
- Fixpoint get_low (n : nat) {struct n}:
- word w n -> w :=
- match n return (word w n -> w) with
- | 0%nat => fun x => x
- | S n1 =>
- fun x =>
- match x with
- | W0 => w_0
- | WW _ x1 => get_low n1 x1
- end
- end.
-
-
- Section DoubleProof.
- Notation wB := (base w_digits).
- Notation wwB := (base ww_digits).
- Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
- Notation "[[ x ]]" := (ww_to_Z x) (at level 0, x at level 99).
- Notation "[+[ c ]]" :=
- (interp_carry 1 wwB ww_to_Z c) (at level 0, c at level 99).
- Notation "[-[ c ]]" :=
- (interp_carry (-1) wwB ww_to_Z c) (at level 0, c at level 99).
- Notation "[! n | x !]" := (double_to_Z n x) (at level 0, x at level 99).
-
- Variable spec_w_0 : [|w_0|] = 0.
- Variable spec_w_1 : [|w_1|] = 1.
- Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
- Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
- Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
- Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
- Variable spec_w_compare : forall x y,
- w_compare x y = Z.compare [|x|] [|y|].
-
- Lemma wwB_wBwB : wwB = wB^2.
- Proof.
- unfold base, ww_digits;rewrite Z.pow_2_r; rewrite (Pos2Z.inj_xO w_digits).
- replace (2 * Zpos w_digits) with (Zpos w_digits + Zpos w_digits).
- apply Zpower_exp; unfold Z.ge;simpl;intros;discriminate.
- ring.
- Qed.
-
- Lemma spec_ww_1 : [[ww_1]] = 1.
- Proof. simpl;rewrite spec_w_0;rewrite spec_w_1;ring. Qed.
-
- Lemma spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1.
- Proof. simpl;rewrite spec_w_Bm1;rewrite wwB_wBwB;ring. Qed.
-
- Lemma lt_0_wB : 0 < wB.
- Proof.
- unfold base;apply Z.pow_pos_nonneg. unfold Z.lt;reflexivity.
- unfold Z.le;intros H;discriminate H.
- Qed.
-
- Lemma lt_0_wwB : 0 < wwB.
- Proof. rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_pos_pos;apply lt_0_wB. Qed.
-
- Lemma wB_pos: 1 < wB.
- Proof.
- unfold base;apply Z.lt_le_trans with (2^1). unfold Z.lt;reflexivity.
- apply Zpower_le_monotone. unfold Z.lt;reflexivity.
- split;unfold Z.le;intros H. discriminate H.
- clear spec_w_0W w_0W spec_w_Bm1 spec_to_Z spec_w_WW w_WW.
- destruct w_digits; discriminate H.
- Qed.
-
- Lemma wwB_pos: 1 < wwB.
- Proof.
- assert (H:= wB_pos);rewrite wwB_wBwB;rewrite <-(Z.mul_1_r 1).
- rewrite Z.pow_2_r.
- apply Zmult_lt_compat2;(split;[unfold Z.lt;reflexivity|trivial]).
- apply Z.lt_le_incl;trivial.
- Qed.
-
- Theorem wB_div_2: 2 * (wB / 2) = wB.
- Proof.
- clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
- spec_to_Z;unfold base.
- assert (2 ^ Zpos w_digits = 2 * (2 ^ (Zpos w_digits - 1))).
- pattern 2 at 2; rewrite <- Z.pow_1_r.
- rewrite <- Zpower_exp; auto with zarith.
- f_equal; auto with zarith.
- case w_digits; compute; intros; discriminate.
- rewrite H; f_equal; auto with zarith.
- rewrite Z.mul_comm; apply Z_div_mult; auto with zarith.
- Qed.
-
- Theorem wwB_div_2 : wwB / 2 = wB / 2 * wB.
- Proof.
- clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
- spec_to_Z.
- rewrite wwB_wBwB; rewrite Z.pow_2_r.
- pattern wB at 1; rewrite <- wB_div_2; auto.
- rewrite <- Z.mul_assoc.
- repeat (rewrite (Z.mul_comm 2); rewrite Z_div_mult); auto with zarith.
- Qed.
-
- Lemma mod_wwB : forall z x,
- (z*wB + [|x|]) mod wwB = (z mod wB)*wB + [|x|].
- Proof.
- intros z x.
- rewrite Zplus_mod.
- pattern wwB at 1;rewrite wwB_wBwB; rewrite Z.pow_2_r.
- rewrite Zmult_mod_distr_r;try apply lt_0_wB.
- rewrite (Zmod_small [|x|]).
- apply Zmod_small;rewrite wwB_wBwB;apply beta_mult;try apply spec_to_Z.
- apply Z_mod_lt;apply Z.lt_gt;apply lt_0_wB.
- destruct (spec_to_Z x);split;trivial.
- change [|x|] with (0*wB+[|x|]). rewrite wwB_wBwB.
- rewrite Z.pow_2_r;rewrite <- (Z.add_0_r (wB*wB));apply beta_lex_inv.
- apply lt_0_wB. apply spec_to_Z. split;[apply Z.le_refl | apply lt_0_wB].
- Qed.
-
- Lemma wB_div : forall x y, ([|x|] * wB + [|y|]) / wB = [|x|].
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- intros x y;unfold base;rewrite Zdiv_shift_r;auto with zarith.
- rewrite Z_div_mult;auto with zarith.
- destruct (spec_to_Z x);trivial.
- Qed.
-
- Lemma wB_div_plus : forall x y p,
- 0 <= p ->
- ([|x|]*wB + [|y|]) / 2^(Zpos w_digits + p) = [|x|] / 2^p.
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- intros x y p Hp;rewrite Zpower_exp;auto with zarith.
- rewrite <- Zdiv_Zdiv;auto with zarith.
- rewrite wB_div;trivial.
- Qed.
-
- Lemma lt_wB_wwB : wB < wwB.
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- unfold base;apply Zpower_lt_monotone;auto with zarith.
- assert (0 < Zpos w_digits). compute;reflexivity.
- unfold ww_digits;rewrite Pos2Z.inj_xO;auto with zarith.
- Qed.
-
- Lemma w_to_Z_wwB : forall x, x < wB -> x < wwB.
- Proof.
- intros x H;apply Z.lt_trans with wB;trivial;apply lt_wB_wwB.
- Qed.
-
- Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB.
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- destruct x as [ |h l];simpl.
- split;[apply Z.le_refl|apply lt_0_wwB].
- assert (H:=spec_to_Z h);assert (L:=spec_to_Z l);split.
- apply Z.add_nonneg_nonneg;auto with zarith.
- rewrite <- (Z.add_0_r wwB);rewrite wwB_wBwB; rewrite Z.pow_2_r;
- apply beta_lex_inv;auto with zarith.
- Qed.
-
- Lemma double_wB_wwB : forall n, double_wB n * double_wB n = double_wB (S n).
- Proof.
- intros n;unfold double_wB;simpl.
- unfold base. rewrite (Pos2Z.inj_xO (_ << _)).
- replace (2 * Zpos (w_digits << n)) with
- (Zpos (w_digits << n) + Zpos (w_digits << n)) by ring.
- symmetry; apply Zpower_exp;intro;discriminate.
- Qed.
-
- Lemma double_wB_pos:
- forall n, 0 <= double_wB n.
- Proof.
- intros n; unfold double_wB, base; auto with zarith.
- Qed.
-
- Lemma double_wB_more_digits:
- forall n, wB <= double_wB n.
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- intros n; elim n; clear n; auto.
- unfold double_wB, "<<"; auto with zarith.
- intros n H1; rewrite <- double_wB_wwB.
- apply Z.le_trans with (wB * 1).
- rewrite Z.mul_1_r; apply Z.le_refl.
- unfold base; auto with zarith.
- apply Z.mul_le_mono_nonneg; auto with zarith.
- apply Z.le_trans with wB; auto with zarith.
- unfold base.
- rewrite <- (Z.pow_0_r 2).
- apply Z.pow_le_mono_r; auto with zarith.
- Qed.
-
- Lemma spec_double_to_Z :
- forall n (x:word w n), 0 <= [!n | x!] < double_wB n.
- Proof.
- clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
- induction n;intros. exact (spec_to_Z x).
- unfold double_to_Z;fold double_to_Z.
- destruct x;unfold zn2z_to_Z.
- unfold double_wB,base;split;auto with zarith.
- assert (U0:= IHn w0);assert (U1:= IHn w1).
- split;auto with zarith.
- apply Z.lt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n).
- assert (double_to_Z n w0*double_wB n <= (double_wB n - 1)*double_wB n).
- apply Z.mul_le_mono_nonneg_r;auto with zarith.
- auto with zarith.
- rewrite <- double_wB_wwB.
- replace ((double_wB n - 1) * double_wB n + double_wB n) with (double_wB n * double_wB n);
- [auto with zarith | ring].
- Qed.
-
- Lemma spec_get_low:
- forall n x,
- [!n | x!] < wB -> [|get_low n x|] = [!n | x!].
- Proof.
- clear spec_w_1 spec_w_Bm1.
- intros n; elim n; auto; clear n.
- intros n Hrec x; case x; clear x; auto.
- intros xx yy; simpl.
- destruct (spec_double_to_Z n xx) as [F1 _]. Z.le_elim F1.
- - (* 0 < [!n | xx!] *)
- intros; exfalso.
- assert (F3 := double_wB_more_digits n).
- destruct (spec_double_to_Z n yy) as [F4 _].
- assert (F5: 1 * wB <= [!n | xx!] * double_wB n);
- auto with zarith.
- apply Z.mul_le_mono_nonneg; auto with zarith.
- unfold base; auto with zarith.
- - (* 0 = [!n | xx!] *)
- rewrite <- F1; rewrite Z.mul_0_l, Z.add_0_l.
- intros; apply Hrec; auto.
- Qed.
-
- Lemma spec_double_WW : forall n (h l : word w n),
- [!S n|double_WW n h l!] = [!n|h!] * double_wB n + [!n|l!].
- Proof.
- induction n;simpl;intros;trivial.
- destruct h;auto.
- destruct l;auto.
- Qed.
-
- Lemma spec_extend_aux : forall n x, [!S n|extend_aux n x!] = [[x]].
- Proof. induction n;simpl;trivial. Qed.
-
- Lemma spec_extend : forall n x, [!S n|extend n x!] = [|x|].
- Proof.
- intros n x;assert (H:= spec_w_0W x);unfold extend.
- destruct (w_0W x);simpl;trivial.
- rewrite <- H;exact (spec_extend_aux n (WW w0 w1)).
- Qed.
-
- Lemma spec_double_0 : forall n, [!n|double_0 n!] = 0.
- Proof. destruct n;trivial. Qed.
-
- Lemma spec_double_split : forall n x,
- let (h,l) := double_split n x in
- [!S n|x!] = [!n|h!] * double_wB n + [!n|l!].
- Proof.
- destruct x;simpl;auto.
- destruct n;simpl;trivial.
- rewrite spec_w_0;trivial.
- Qed.
-
- Lemma wB_lex_inv: forall a b c d,
- a < c ->
- a * wB + [|b|] < c * wB + [|d|].
- Proof.
- intros a b c d H1; apply beta_lex_inv with (1 := H1); auto.
- Qed.
-
- Ltac comp2ord := match goal with
- | |- Lt = (?x ?= ?y) => symmetry; change (x < y)
- | |- Gt = (?x ?= ?y) => symmetry; change (x > y); apply Z.lt_gt
- end.
-
- Lemma spec_ww_compare : forall x y,
- ww_compare x y = Z.compare [[x]] [[y]].
- Proof.
- destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial.
- (* 1st case *)
- rewrite 2 spec_w_compare, spec_w_0.
- destruct (Z.compare_spec 0 [|yh|]) as [H|H|H].
- rewrite <- H;simpl. reflexivity.
- symmetry. change (0 < [|yh|]*wB+[|yl|]).
- change 0 with (0*wB+0). rewrite <- spec_w_0 at 2.
- apply wB_lex_inv;trivial.
- absurd (0 <= [|yh|]). apply Z.lt_nge; trivial.
- destruct (spec_to_Z yh);trivial.
- (* 2nd case *)
- rewrite 2 spec_w_compare, spec_w_0.
- destruct (Z.compare_spec [|xh|] 0) as [H|H|H].
- rewrite H;simpl;reflexivity.
- absurd (0 <= [|xh|]). apply Z.lt_nge; trivial.
- destruct (spec_to_Z xh);trivial.
- comp2ord.
- change 0 with (0*wB+0). rewrite <- spec_w_0 at 2.
- apply wB_lex_inv;trivial.
- (* 3rd case *)
- rewrite 2 spec_w_compare.
- destruct (Z.compare_spec [|xh|] [|yh|]) as [H|H|H].
- rewrite H.
- symmetry. apply Z.add_compare_mono_l.
- comp2ord. apply wB_lex_inv;trivial.
- comp2ord. apply wB_lex_inv;trivial.
- Qed.
-
-
- End DoubleProof.
-
-End DoubleBase.
-