summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/Abstract/NZCyclic.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/Abstract/NZCyclic.v')
-rw-r--r--theories/Numbers/Cyclic/Abstract/NZCyclic.v173
1 files changed, 77 insertions, 96 deletions
diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
index fb3f0cef..517e48ad 100644
--- a/theories/Numbers/Cyclic/Abstract/NZCyclic.v
+++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
@@ -8,7 +8,7 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZCyclic.v 11238 2008-07-19 09:34:03Z herbelin $ i*)
+(*i $Id$ i*)
Require Export NZAxioms.
Require Import BigNumPrelude.
@@ -17,89 +17,79 @@ Require Import CyclicAxioms.
(** * From [CyclicType] to [NZAxiomsSig] *)
-(** A [Z/nZ] representation given by a module type [CyclicType]
- implements [NZAxiomsSig], e.g. the common properties between
- N and Z with no ordering. Notice that the [n] in [Z/nZ] is
+(** A [Z/nZ] representation given by a module type [CyclicType]
+ implements [NZAxiomsSig], e.g. the common properties between
+ N and Z with no ordering. Notice that the [n] in [Z/nZ] is
a power of 2.
*)
Module NZCyclicAxiomsMod (Import Cyclic : CyclicType) <: NZAxiomsSig.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
-Definition NZ := w.
+Definition t := w.
-Definition NZ_to_Z : NZ -> Z := znz_to_Z w_op.
-Definition Z_to_NZ : Z -> NZ := znz_of_Z w_op.
-Notation Local wB := (base w_op.(znz_digits)).
+Definition NZ_to_Z : t -> Z := znz_to_Z w_op.
+Definition Z_to_NZ : Z -> t := znz_of_Z w_op.
+Local Notation wB := (base w_op.(znz_digits)).
-Notation Local "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).
+Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).
-Definition NZeq (n m : NZ) := [| n |] = [| m |].
-Definition NZ0 := w_op.(znz_0).
-Definition NZsucc := w_op.(znz_succ).
-Definition NZpred := w_op.(znz_pred).
-Definition NZadd := w_op.(znz_add).
-Definition NZsub := w_op.(znz_sub).
-Definition NZmul := w_op.(znz_mul).
+Definition eq (n m : t) := [| n |] = [| m |].
+Definition zero := w_op.(znz_0).
+Definition succ := w_op.(znz_succ).
+Definition pred := w_op.(znz_pred).
+Definition add := w_op.(znz_add).
+Definition sub := w_op.(znz_sub).
+Definition mul := w_op.(znz_mul).
-Theorem NZeq_equiv : equiv NZ NZeq.
-Proof.
-unfold equiv, reflexive, symmetric, transitive, NZeq; repeat split; intros; auto.
-now transitivity [| y |].
-Qed.
+Local Infix "==" := eq (at level 70).
+Local Notation "0" := zero.
+Local Notation S := succ.
+Local Notation P := pred.
+Local Infix "+" := add.
+Local Infix "-" := sub.
+Local Infix "*" := mul.
-Add Relation NZ NZeq
- reflexivity proved by (proj1 NZeq_equiv)
- symmetry proved by (proj2 (proj2 NZeq_equiv))
- transitivity proved by (proj1 (proj2 NZeq_equiv))
-as NZeq_rel.
+Hint Rewrite w_spec.(spec_0) w_spec.(spec_succ) w_spec.(spec_pred)
+ w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_sub) : w.
+Ltac wsimpl :=
+ unfold eq, zero, succ, pred, add, sub, mul; autorewrite with w.
+Ltac wcongruence := repeat red; intros; wsimpl; congruence.
-Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Instance eq_equiv : Equivalence eq.
Proof.
-unfold NZeq; intros n m H. do 2 rewrite w_spec.(spec_succ). now rewrite H.
+unfold eq. firstorder.
Qed.
-Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Instance succ_wd : Proper (eq ==> eq) succ.
Proof.
-unfold NZeq; intros n m H. do 2 rewrite w_spec.(spec_pred). now rewrite H.
+wcongruence.
Qed.
-Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Instance pred_wd : Proper (eq ==> eq) pred.
Proof.
-unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_add).
-now rewrite H1, H2.
+wcongruence.
Qed.
-Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Instance add_wd : Proper (eq ==> eq ==> eq) add.
Proof.
-unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_sub).
-now rewrite H1, H2.
+wcongruence.
Qed.
-Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
Proof.
-unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_mul).
-now rewrite H1, H2.
+wcongruence.
Qed.
-Delimit Scope IntScope with Int.
-Bind Scope IntScope with NZ.
-Open Local Scope IntScope.
-Notation "x == y" := (NZeq x y) (at level 70) : IntScope.
-Notation "x ~= y" := (~ NZeq x y) (at level 70) : IntScope.
-Notation "0" := NZ0 : IntScope.
-Notation S x := (NZsucc x).
-Notation P x := (NZpred x).
-(*Notation "1" := (S 0) : IntScope.*)
-Notation "x + y" := (NZadd x y) : IntScope.
-Notation "x - y" := (NZsub x y) : IntScope.
-Notation "x * y" := (NZmul x y) : IntScope.
+Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
+Proof.
+wcongruence.
+Qed.
Theorem gt_wB_1 : 1 < wB.
Proof.
-unfold base.
-apply Zpower_gt_1; unfold Zlt; auto with zarith.
+unfold base. apply Zpower_gt_1; unfold Zlt; auto with zarith.
Qed.
Theorem gt_wB_0 : 0 < wB.
@@ -107,7 +97,7 @@ Proof.
pose proof gt_wB_1; auto with zarith.
Qed.
-Lemma NZsucc_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB.
+Lemma succ_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB.
Proof.
intro n.
pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zplus_mod.
@@ -115,7 +105,7 @@ reflexivity.
now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
Qed.
-Lemma NZpred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB.
+Lemma pred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB.
Proof.
intro n.
pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zminus_mod.
@@ -123,34 +113,32 @@ reflexivity.
now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
Qed.
-Lemma NZ_to_Z_mod : forall n : NZ, [| n |] mod wB = [| n |].
+Lemma NZ_to_Z_mod : forall n, [| n |] mod wB = [| n |].
Proof.
intro n; rewrite Zmod_small. reflexivity. apply w_spec.(spec_to_Z).
Qed.
-Theorem NZpred_succ : forall n : NZ, P (S n) == n.
+Theorem pred_succ : forall n, P (S n) == n.
Proof.
-intro n; unfold NZsucc, NZpred, NZeq. rewrite w_spec.(spec_pred), w_spec.(spec_succ).
-rewrite <- NZpred_mod_wB.
+intro n. wsimpl.
+rewrite <- pred_mod_wB.
replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod.
Qed.
-Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0%Int.
+Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0.
Proof.
-unfold NZeq, NZ_to_Z, Z_to_NZ. rewrite znz_of_Z_correct.
-symmetry; apply w_spec.(spec_0).
+unfold NZ_to_Z, Z_to_NZ. wsimpl.
+rewrite znz_of_Z_correct; auto.
exact w_spec. split; [auto with zarith |apply gt_wB_0].
Qed.
Section Induction.
-Variable A : NZ -> Prop.
-Hypothesis A_wd : predicate_wd NZeq A.
+Variable A : t -> Prop.
+Hypothesis A_wd : Proper (eq ==> iff) A.
Hypothesis A0 : A 0.
-Hypothesis AS : forall n : NZ, A n <-> A (S n). (* Below, we use only -> direction *)
-
-Add Morphism A with signature NZeq ==> iff as A_morph.
-Proof. apply A_wd. Qed.
+Hypothesis AS : forall n, A n <-> A (S n).
+ (* Below, we use only -> direction *)
Let B (n : Z) := A (Z_to_NZ n).
@@ -163,8 +151,8 @@ Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1).
Proof.
intros n H1 H2 H3.
unfold B in *. apply -> AS in H3.
-setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)) using relation NZeq. assumption.
-unfold NZeq. rewrite w_spec.(spec_succ).
+setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)). assumption.
+wsimpl.
unfold NZ_to_Z, Z_to_NZ.
do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]).
symmetry; apply Zmod_small; auto with zarith.
@@ -177,11 +165,11 @@ apply Zbounded_induction with wB.
apply B0. apply BS. assumption. assumption.
Qed.
-Theorem NZinduction : forall n : NZ, A n.
+Theorem bi_induction : forall n, A n.
Proof.
-intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)) using relation NZeq.
+intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)).
apply B_holds. apply w_spec.(spec_to_Z).
-unfold NZeq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct.
+unfold eq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct.
reflexivity.
exact w_spec.
apply w_spec.(spec_to_Z).
@@ -189,47 +177,40 @@ Qed.
End Induction.
-Theorem NZadd_0_l : forall n : NZ, 0 + n == n.
+Theorem add_0_l : forall n, 0 + n == n.
Proof.
-intro n; unfold NZadd, NZ0, NZeq. rewrite w_spec.(spec_add). rewrite w_spec.(spec_0).
+intro n. wsimpl.
rewrite Zplus_0_l. rewrite Zmod_small; [reflexivity | apply w_spec.(spec_to_Z)].
Qed.
-Theorem NZadd_succ_l : forall n m : NZ, (S n) + m == S (n + m).
+Theorem add_succ_l : forall n m, (S n) + m == S (n + m).
Proof.
-intros n m; unfold NZadd, NZsucc, NZeq. rewrite w_spec.(spec_add).
-do 2 rewrite w_spec.(spec_succ). rewrite w_spec.(spec_add).
-rewrite NZsucc_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0.
+intros n m. wsimpl.
+rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0.
rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l.
rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc.
Qed.
-Theorem NZsub_0_r : forall n : NZ, n - 0 == n.
+Theorem sub_0_r : forall n, n - 0 == n.
Proof.
-intro n; unfold NZsub, NZ0, NZeq. rewrite w_spec.(spec_sub).
-rewrite w_spec.(spec_0). rewrite Zminus_0_r. apply NZ_to_Z_mod.
+intro n. wsimpl. rewrite Zminus_0_r. apply NZ_to_Z_mod.
Qed.
-Theorem NZsub_succ_r : forall n m : NZ, n - (S m) == P (n - m).
+Theorem sub_succ_r : forall n m, n - (S m) == P (n - m).
Proof.
-intros n m; unfold NZsub, NZsucc, NZpred, NZeq.
-rewrite w_spec.(spec_pred). do 2 rewrite w_spec.(spec_sub).
-rewrite w_spec.(spec_succ). rewrite Zminus_mod_idemp_r.
-rewrite Zminus_mod_idemp_l.
-now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z by auto with zarith.
+intros n m. wsimpl. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l.
+now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z
+ by auto with zarith.
Qed.
-Theorem NZmul_0_l : forall n : NZ, 0 * n == 0.
+Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
-intro n; unfold NZmul, NZ0, NZ, NZeq. rewrite w_spec.(spec_mul).
-rewrite w_spec.(spec_0). now rewrite Zmult_0_l.
+intro n. wsimpl. now rewrite Zmult_0_l.
Qed.
-Theorem NZmul_succ_l : forall n m : NZ, (S n) * m == n * m + m.
+Theorem mul_succ_l : forall n m, (S n) * m == n * m + m.
Proof.
-intros n m; unfold NZmul, NZsucc, NZadd, NZeq. rewrite w_spec.(spec_mul).
-rewrite w_spec.(spec_add), w_spec.(spec_mul), w_spec.(spec_succ).
-rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
+intros n m. wsimpl. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
now rewrite Zmult_plus_distr_l, Zmult_1_l.
Qed.